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Drone Empowered Small Cellular Disaster Recovery Networks
for Resilient Smart Cities

Ali Mohammad Hayajneh, Syed Ali Raza Zaidi, Des C. McLernon and Mounir Ghogho

Abstract—Resilient communication networks, which can continue oper-
ations even after a calamity, will be a central feature of future smart
cities. Recent proliferation of drones propelled by the availability of
cheap commodity hardware presents a new avenue for provisioning such
networks. In particular, with the advent of Google’s Sky Bender and
Facebook’s internet drone, drone empowered small cellular networks
(DSCNs) are no longer fantasy. DSCNs are attractive solution for public
safety networks because of swift deployment capability and intrinsic
network reconfigurability. While DSCNs have received some attention
in the recent past, the design space of such networks has not been
extensively traversed. In particular, co-existence of such networks with an
operational ground cellular network in a post-disaster situation has not
been investigated. Moreover, design parameters such as optimal altitude
and number of drone base stations, etc., as a function of destroyed base
stations, propagation conditions, etc., have not been explored. In order
to address these design issues, we present a comprehensive statistical
framework which is developed from stochastic geometric perspective. We
then employ the developed framework to investigate the impact of several
parametric variations on the performance of the DSCNs. Without loss
of any generality, in this article, the performance metric employed is
coverage probability of a down-link mobile user. It is demonstrated that
by intelligently selecting the number of drones and their corresponding
altitudes, ground users coverage can be significantly enhanced. This is
attained without incurring significant performance penalty to the mobile
users which continue to be served from operating ground infrastructure.

Index Terms—Drone, Public safety, Stochastic geometry, Unmanned
aerial vehicles, Coverage probability, Optimization, Heterogeneous net-
works.

I. INTRODUCTION

A. Motivation

IN order to address increased demand for any-time/any-where

wireless connectivity, both academic and industrial researchers

are actively engaged in the design of fifth generation (5G) wireless

communication networks. In contrast to traditional (i.e., bottom-up

or horizontal) design approach, 5G wireless networks are being co-

created with various stakeholders to address connectivity requirements

across various verticals (i.e., employing a top-to-bottom approach).

Most of these verticals belong to the grand vision of smart connected

cities empowered via ubiquitous on-demand connectivity. One of the

key features of smart connected cities is resilience by design. From

communication networks perspective, this requires obliviousness under

various failures. In the context of cellular networks, base station

failures can be caused either due to natural or synthetic phenomenon.

Natural phenomenon such as earth-quake or flooding can result in

either destruction of communication hardware or disruption of energy

supply to base stations. Man made destruction can be either due

to a certain sub-system failure or alternatively due to vandalism.

In such cases there is a dire need for a mechanism through which

capacity short-fall can be met in a rapid manner. Drone empowered

small cellular networks (DSCNs) or so-called flying cellular networks

present an attractive solution as they can be swiftly deployed for

provisioning public safety networks. The ability to self-organize either
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in stand-alone or via remote configuration in an on-demand manner

makes the flying cellular network a key enabler for resilient communi-

cation networks. Despite several recent efforts [1]–[4], the design and

deployment of flying cells as a recovery network is not extensively

investigated in the literature. So, in this paper, by borrowing the

well-known tools from stochastic geometry, we will investigate the

design space of flying cellular networks. We will also explore co-

existence properties of an overlaid DSCN with the operational part of

the existing network.

B. Related Work

In the recent past, public safety networking has received significant

attention within the third generation partnership project (3GPP) stan-

dardization. 3GPP is currently in process of standardizing proximity

services (ProSe) via Device-to-Device (D2D) communication. The

central idea behind ProSe is to form an ad-hoc network where

certain nodes of the network may still have access to operational

cellular infrastructure in a post-disaster situation. These nodes can

act as gateways for forwarding critical information to first responders.

While D2D communication is a promising solution for public safety

networks, there are several design challenges which need to be

addressed to realize practical deployment. In particular, in multi-hop

D2D communication networks, those nodes which are connected to

cellular network may become traffic-forwarding hot-spots. Due to

limited battery capacity of mobile user equipment, traffic hot-spots

may reduce the operational lifetime of entire network. Moreover,

the network in its essence is ad-hoc and thus guaranteeing reliable

connectivity is not possible. In contrast, DSCNs present an attractive

alternative and complementary deployment option. Since DSCNs are

mostly operator deployed both: (i) interoperability amongst DSCNs

nodes; and (ii) compatibility with operational cellular infrastructure

can be ensured. Moreover, propagation conditions are much more

favorable and can be further optimized by exploiting controlled

mobility of UAVs. Consequently, it is envisioned that both D2D and

DSCNs will complement the legacy private/professional mobile radio

(PMR) (e.g., trans-European trunked radio (TETRA) and project 25

(P25)) for enabling next generation public safety networks [5]–[7].

In the recent past [1]–[4] numerous studies have attempted to define

the design space of the DSCNs from various different perspectives.

Nevertheless, most of them either: (i) study a simple single-cell set

up; (ii) do not account for intrinsic randomness in topology; (iii)

abstract the coverage areas and interference via non-realistic models.

The authors in [4] investigated drone small cells (DSCs) deployment to

provision air-to-ground services. The authors consider a device-centric

deployment approach and adopt modeling abstraction of circular discs

for the coverage areas induced by DSCs. Moreover, they investigate

the optimal DSC altitude which leads to a maximum ground coverage

and minimum required transmit power for a single DSC. Optimization

for both: (i) distance between co-channel drones (i.e., drones sharing

the same frequency) and (ii) the altitudes of co-channel drones was

also performed. The study does not explore cross-tier interference

management in the presence of large scale DSCN deployment. The

authors in [8], based on the results of [9], present a 3D optimization

problem for DSCs with the aim to maximize the number of users to be

covered by such DSCs using a numerical search algorithm to satisfy

the defined quality of service (QoS) measures. The paper focuses



on drone empowered future cellular networks for disaster recovery/

public safety. Nevertheless, the effect of cross network interference

(i.e., interference between operational cellular infrastructure and DSCs

in a post-disaster scenario) has not been addressed. To this end, we

now present a holistic framework for characterizing the performance

of an overlaid DSCN which is collocated with operational cellular

infrastructure. We explicitly investigate the co-existence properties of

both networks in the presence of cross-network interference. Moreover,

we also demonstrate that the desired performance metric can be

significantly enhanced via optimal control of drone altitude. The

optimal altitude for a large DSCN formed by more than two drone

base stations (DBSs) is investigated for the first time.

C. Contributions

The contribution and organization of this paper are as follows:

1) The comprehensive spatial modeling of a drone-based public

safety network is considered over a partially destructed/offloaded

cellular network. The impact of various parameters such as path-

loss, number of DBSs, density of micro base stations (MBSs)

and the altitude of the DBSs on both the DSCN and the cellular

network coverage has been investigated (see section II).

2) Borrowing tools from stochastic geometry, we present a statis-

tical framework for quantifying the performance of large scale

DSCNs deployment. The analytical framework is subsequently

employed for design optimization.

3) The impact of the number of DBSs (and their height) on the

coverage probability performance metric for both drone mobile

users (DMUs) and micro mobile users (MMUs) (see section III).

4) Finally, some critical design issues are explored and envisioned

future developments are summarized (see section V).

D. Notation.

Throughout this paper, we employ the following mathematical

notations. The counting measure of a point process Φ(B) provides

a count of points inside the compact closed subset (i.e., bounded area)

B ∈ R
2. The probability density function (PDF) for a random variable

X is represented as fX(x) with the cumulative density function as

FX(x). The exclusion symbol \ to represent the exclusion of a subset

from a superset. The expectation of a function g(X) of a random

variable X is represented as EX [g(x)]. The symbol W is used to

represent the set of the entire space contained in the d-dimensional

space R
d. The ceiling of any number is represented by ⌈.⌉.

II. NETWORK AND PROPAGATION MODEL

A. Deployment Geometry

Consider the down-link communication in a network formed by

a DSCN overlaid on an existing cellular network. As illustrated in

Fig. 1, the disaster recovery network is established via deployment

of a finite number of DBSs. The key objective is to complement the

capacity of the operational cellular micro base stations serving the

traffic originating from coverage hole created due to the destruction

of infrastructure. The number of drones required to meet the short-

fall in coverage is strongly coupled with: (i) the probability (po)

of destruction of an arbitrary MBS; and (ii) the radius Rr of the

affected area (i.e., the disaster recovery area). As shown in Fig. 1, it

is assumed that in a post-disaster scenario some of the MBSs are

destroyed (illustrated as the red framed points). Consequently, Nd

drones are deployed to cover the destroyed cells. However, the number

of drones is not necessarily the same as the number of the destroyed

cells. This is due to the limitation on the capacity of the DBSs as

well as the difference in transmission power and radio prorogation

conditions when compared to the MBSs. For the modeling of the

spatial distribution of the overall wireless network, we borrow tools

from stochastic geometry. To this end, it is assumed that Nd number

of drones are uniformly distributed inside the two dimensional disc

formed by the disaster recovery area. The overall network geometry

is modeled with two collocated point process, the former for the

operational MBSs while the later for the DBCN BSs, as follows:

1) An inhomogeneous Poisson point process (IHPPP): Here

we define the inhomogeneous Poisson point process, Φm =
{x1, x2, ..., xN} ⊂ R

d, as the superposition of two disjoint

conditional PPPs: (i) a conditional PPP of density λ1 such

that Φ1 = {x1, x2, ..., xN ∈ W \ B(0, Rr)
1} ⊂ R

d and

(ii) a conditional PPP of points density λ2 such that Φ2 =
{x1, x2, ..., xN ∈ B(0, Rr)} ⊂ R

d. Hence, the probability

of finding n = n1 + n2 points (i.e, n1 points from Φ1 and n2

points from Φ2) inside disc of radius R > Rr can be obtained

as

P(Φm(B(0, R)) = n = n1 + n2) =
2∏

i=1

(λiv (Ai))
n

ni!
exp

(
−λiv (Ai)

)
. (1)

where λi is the density of the base stations per unit area of

Ai (i.e., density of MBSs), v (A) =
∫

A
dx is the Lebesgue

measure [10]. In-particular, if the desired area is a ring with

radii A ≤ r ≤ B, then v (A) = π(B2 −A2).
2) Binomial point process (BPP): While the IHPPP formulation

is adequate to model operational cellular network MBSs, the

above equation cannot be employed for the DSCN formed inside

the recovery area B(0, Rr). That is because that the specific

number of drones Nd when uniformly distributed in this finite

area, B(0, Rr), form a binomial point process (BPP)2 [11]. In

particular, for a finite area of radius Rr in the N -dimensional

space, the probability of having k transmitting interferers (i.e.,

co-channel drones) at the origin (i.e., the interference at B(0, 0))
from the ring-shaped area B(0 ≤ A < B ≤ Rr) with,

respectively, an inner and outer radius A and B inside B(0, Rr)
can be evaluated as follows

P(Φ(B(0 ≤ A < B ≤ Rr)) = k) =
(

Nd

k

)(

BN −AN

RN
r

)k(

1−
BN −AN

RN
r

)Nd−k

. (2)

In summary, the spatial distribution of DSCs is captured using a

BPP, while co-existing cellular network is modeled via thinned IHPPP

as described above.

B. Propagation Model

1) Path Loss Model: In order to accurately capture the propagation

conditions in a DSCN, we employ the path loss model presented in [4]

which is derived from practical measurements. The employed path loss

model adequately captures line of sight (LoS) and non line of sight

(NLoS) contributions for drone-to-ground communication as follows:

lLoS(h, r) =

(

r2 + h2
)−1

KLoS

, (3)

lNLoS(h, r) =

(

r2 + h2
)−1

KNLoS

, (4)

where KLoS and KNLoS are environment and frequency dependent

parameters such that Ki = ζi
(
c/(4πfMHz)

)−α
, ζi is the excess

1B(0, Rr) denotes a ball of radius Rr centred at origin.
2The spatial distribution of the drones is their projection onto the two-

dimensional coverage region. This, can obtained by angular transformation of
the geographical three-dimensional distribution of the DBCN.
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Fig. 1: One realization of the proposed network model. The green

circle represents the recovery area of a radius Rr to be covered by

drones (on the top of the existing cellular network). The small red

points represents the MBSs. The red points (framed by a red square)

represent the destroyed BSs (any BS inside the circle destroyed with

probability po = 0.5).

path loss for i ∈ {LoS,NLoS} and α is the path loss exponent

which is equal to 2 as can be found in the literature of drone-based

small cell applications. This propagation model categorizes the path

loss exponent or the excess path loss into two groups depending on

the probability of being in line of sight or not, whereas the majority

on the literature categorizes into dual slope with regards to a threshold

distance at which the slope of path loss curve switches to a different

value. Furthermore, the probability of having a LoS link from the DSC

and the desired mobile user (MU) is as follows:

PLoS(θ) =
1

1 + a1 e−b1η θ+b1 a1
, (5a)

PNLoS(θ) = 1− PLoS(θ), (5b)

where a1, b1 and c1 are environment dependent constants, η = 180/π.

Consequently, the total average excess path loss can be characterized

as

κ̄(r) = KLoS +
K∆

1 + a1 e
−b1η tan−1(h

r
)+b1 a1

. (6)

where K∆ = KLoS − KNLoS , and r = h/ tan(θ). Note that, the

average path loss from the DBS to the desired MU can be quantified

from the above equations as

l̄d(r) =
(r2 + h2)−1

κ̄(r)
. (7)

The large scale path loss for the down-link of the cellular network is

modeled by the well-known power law path loss function

lm(r) =
r−α

K
. (8)

where α, the path loss exponent has typical values for small/micro

cells between 2 and 4. K is the excess path loss and has typical

values between 100 dB and 150 dB (see [12], [13] for details). The

power law path loss is widely adopted in literature for analysis of large

scale cellular networks3.

3An alternative general formula for the path loss is l(r) = 1
K(ϵ+rα)

. This

formula is widely used to mitigate the singularity at r = 0 and the divergence
of the Laplace functional of aggregate interference with path loss exponent
equal to or less than α ≤ 2. Here, ϵ is defined as the minimum distance
between the transmitter and the receiver. This is implicitly incorporated for
drone-based communication with ϵ = h2 [14].

C. Small scale Fading

It is assumed that large scale path loss is complemented with small

scale Rayleigh fading such that |g|2 ∼ Exp(1). Also, it is assumed

that the network is operating in an interference limited regime, i.e.,

performance of all links is dependent upon co-channel interference

and thermal noise at the receiver front-end is negligible.

III. COVERAGE PROBABILITY

In order to characterize the link level performance of DSCN, we

employ coverage probability as a metric. The coverage probability of

an arbitrary user is defined as the probability at which the received

signal to interference ratio (SIR) is larger than a pre-defined threshold,

β.

A. Coverage Probability of a stand-alone DSCN

In order to perform comparative analysis, we first quantify the

performance of a stand-alone DSCN, (i.e., in absence of any cellular

network). Without any loss of generality, we focus on the MU located

at the center of the disaster recovery area as it is the most distant

MU from the any MBS (i.e., worst MU with regards to average

received power) and has the worst interference conditions (i.e., largest

aggregate interference power) [15]. We also assume that Nc channels

are assigned to the Nd DBSs to serve the traffic originating from the

disaster recovery area. The received SIR at the DMU can be quantified

as

SIR(d) =
|g|2 Pd l̄d(r)

IdΦ
d

. (9)

where Pd is the transmit power employed by the DBS and
IdΦ

d
is the aggregate interference from the co-channel transmitting

DBSs experienced by the MU and can be written as IdΦ
d

=
∑

i∈Φ
d
\{0} |gi|

2 Pd l̄(ri), where Φd is the set of all co-channel active

DBSs. Consequently, the coverage probability for a DMU is given as

P
(d)
c = Pr{SIR(d) > β},

= Er







EIdΦ

d






exp




−

IdΦ
d
β

Pd
(r2+h2)−1

κ̄(r)


















,

= Er

[

L
IdΦ

d

(s1)

]

(10)

where s1 = βκ̄(r)/(Pd

(

r2 + h2
)−1

), LIdΦ
d

(s1) is the Laplace

transform of the aggregate interference and this can be evaluated as

in (11), where Nc is the number of channels available and
⌈

Nd

Nc

⌉

is

to assure that the total number of the remaining co-working nodes is

an integer number [11].

B. Coverage Analysis of co-existing DSCN and Cellular Network

We now characterize the coverage probability of the DSCN operat-

ing in presence of a partially destroyed ground cellular network. As

highlighted before, we assume that ground BSs are destroyed with

a certain probability po within a circular disaster-affected area. In

practice, the shape of the disaster recovery area can be arbitrary and

the probability of destruction can be function of a natural phenomenon.

Also, destruction across various ground BSs will be correlated which

can be catered for by redefining po. However, for the sake of generality

and tractability we employ a baseline model where po is a uniform

random variable independent from BS location. The post-disaster

operational cellular network forms a IHPPP such that

λ(r) = λ21(r ≤ Rr) + λ11(r > Rr) (12)



L
IdΦd

(s) =






1−

1

R2
r

∫ Rr

0

Eg








1− exp

(

−
s |g|2 Pd

(h2 + t2)κ̄(t)

)

 2 t




 dt







⌈

Nd
Nc

⌉

−1

=

(

1−

∫ Rr

0

2tsPd

R2
r

(
κ̄(t)h2 + κ̄(t) t2 + sPm

)dt

)
⌈

Nd
Nc

⌉

−1

. (11)

where λ1 and λ2 are respectively the original and the retained PPP

density of the cellular network before and after destruction. Here,

we will quantify the overall coverage by studying: (i) the coverage

probability for the DMU and (ii) the coverage probability for a MMU.

To this end, the SIRs at the DMU and MMU can be respectively

quantified as

SIR(d) =
|ho|

2 Pd l̄d(r)

I
(d)
tot

, SIR(m) =
|ho|

2 Pmlm(r)

I
(m)
tot

(13)

where Pd and Pm are the transmitted signal power from the DBS

and MBS, respectively, I
(d)
tot = IdΦ

d
+ IdΦm

and I
(m)
tot = ImΦ

d
+ ImΦm

are, respectively, the total aggregated co-channel interference seen
by any down-link user located at the origin of the coverage area,
and can be written as IdΦ

d
=
∑

i∈Φ
d
\{0} |gi|

2 Pd l̄d(ri), I
d
Φm

=
∑

i∈Φm
|gi|

2 Pmlm(ri), I
m
Φm

=
∑

i∈Φm\{0} |gi|
2 Pd l̄d(ri)andImΦ

d
=

∑

i∈Φ
d
|gi|

2 Pmlm(ri). Thus, the coverage probability, P
(d)
c , for any

DMU in the coverage of a DBS can be written in the same way as in
(10) as follows:

P
(d)
c = Pr{SIR(d) > β},

= Er

[

LIdΦ
d

(s1) LIdΦm

(s1)

]

. (14)

Note here, that the Laplace transform of the total interference can
be evaluated by simply applying the convolution property of Laplace
transforms as L

I
(d)
tot

(s) = LIdΦ
d

(s)LIdΦm

(s). Next, the coverage

probability at the MMU can be evaluated in the same way as in (10)
and (14) as

P
(m)
c = Pr{SIR(m) > β},

= Er

[

LImΦm

(s2) LImΦ
d

(s2)

]

. (15)

where s2 = Kβ/(Pmr−α). In order to evaluate the Laplace transform

of the aggregate interference for the MMUs, we can write the

following:

LImΦm
(s) = E(exp(−sIΦm)),

= E




∏

xi∈Φm

EG

(

exp
(

−s |g|2 lm(r)
))


 (16)

which can be solved using the generating functional of PPP as in [16],
[17] such that

LImΦm
(s) = exp









−

∫ ∞

0

(

1− EG

(

−sPmK |g|2 lm(r)
))

λ(r)2πrdr

︸ ︷︷ ︸

A1









.

(17)

Here, using the nodes density in (12), then A1 in (17) can be written

as

A1 =
2π λ2Rr

2

α
2F1(1,

2

α
;
α+ 2

α
; −

Rr
α

sKPm

)

+
2sKPmπ λ1Rr

2−α

α− 2
2F1(1,

α− 2

α
; 2

α− 1

α
; −sKPmRr

−α).

×10-5
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Fig. 2: Coverage probability for a drone mobile user at the center of the

recovery area with both the DBSs and the MBSs sharing interference.

The total available channels is 3. The destruction probability inside

the recovery area is po = 0.5, with α = 4, Rr = 2 km, Nd = 6, and

β = −3 dB (see (14)).

where 2F1(a, b; c; d) is the Gauss Hyper-geometric function. One

can solve this equation by change of variables, change of integral

boundaries and finally using the identity
∫ u

0
xµ−1/(1 + βx)v =

uµ

µ 2F1(µ, v; 1 + µ; −β u) as in Eq.3.194.1-3 [18].

C. Link Distance Analysis

The coverage probability derived in the previous sub-section for the

MU is strongly dependent upon link distance. Consequently, P
(m)
c

and P
(m)
d are conditional coverage probabilities as a function of user

association model. In this article, we assume that the user associates

to the nearest base station. Consequently, the conditional coverage

probability derived in the previous sub-section must be averaged

over the random link distance. To this end, in this sub-section we

characterize the distribution of the link distance: (i) between DBS and

its corresponding DMU and (ii) the MBS and its down-link MMU.
1) Distance between DMU and DBS: Since DBSs are uniformly

distributed in the disaster area, the distance between a DMU at the

origin and the DBS can be quantified from the void probability of a

BPP as follows [19]:

fR(r) =
2Nd

r

(

1−

(
r

Rr

)2
)Nd−1(

r

Rr

)2

. (18)

2) Distance between MMU and serving MBS: From a stochastic

geometry analysis for homogeneous PPP with a density λ, it is well

known that the distance PDF of the nearest node can be written as

fR(r) = 2πrλe−πr2λ [10]. Hence, the cumulative density function

(CDF) for the nearest neighbor can be written as FR(r) = 1−e−πr2λ.

In case of the post-disaster operational cellular network, the PPP

assumption does not hold. As highlighted before, the MBSs form an

IHPPP for which the link distance distribution has not been explored

in the existing literature. Consequently, in the following proposition,

we present an expression for the PDF of the distance between the

MBS and its corresponding MMU.
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Fig. 3: Coverage probability at the center of the recovery area for drone

mobile user with both the DBSs and the MBSs sharing interference.

The total available channels is 3. The destruction probability inside the

recovery area is po = 0.5. The MBS density of the original network

λ1 = 1× 10−5, with α = 4, Rr = 3 km and β = −3 dB (see (14)).

Proposition 1. The PDF of the distance between the MMU at the

center of the recovery area and the nearest MBS can be written as

follows:

fR(r) = exp(−πλ2R
2
r)(2πλ1r exp(−πλ1(r

2 −R2
r)))

+ (1− exp(−πλ2R
2
r))(2πλ2re

−πr2λ2). (19)

Proof. We assume that the resulting IHPPP is the superposition of two

conditioned PPPs (i.e., the first with nodes density λ2 (with any node

x{2,i} ∈ B(0, Rr)) and the second with density λ1 (with any node

x{1,i} ∈ W \ B(0, Rr))). Furthermore, the MMU is only connected

to a MBS outside the recovery area, if and only if, there are no

operational BSs inside the recovery area. In other words, this is when

the recovery area acts as a hole with radius Rr . Thus, the probability

that the distance to the nearest neighbor MBS, R, is greater than Rr

can be quantified as follows:

F
(1)
R (r) = 1− Pr(R ≥ r),

= 1− Pr(Number of points of Φ1

inside the set {B(0, r) \ B(0, Rr)} = 0),

= 1− exp(−πλ1(r
2 −R2

r)). (20)

Next, by differentiating the expression in (20) the PDF can be obtained

as

f
(1)
R (r) = 2πλ1r exp(−πλ1(r

2 −R2
r)). (21)

Then, we average the nearest neighbor CDFs of the hypothetical Φ1

and Φ2 over the void probability of Φ2 to obtain the average CDF of

the nearest neighbor distance to the MMU as

FR(r) = vo2F
(1)
R (r) + (1− vo2)F

(2)
R (r),

= exp(−πλ2R
2
r)(1− exp(−πλ1(r

2 −R2
r)))

+ (1− exp(−πλ2R
2
r))(1− e−πr2λ2) (22)

where vo2 is the void probability of the PPP with density λ2 which

models the nodes inside the recovery area. Thus by simply differenti-

ating FR(r) in (22) we can write (19)

IV. RESULTS AND DISCUSSION

In this section, we show numerical results for the coverage probabil-

ities (P d
c ) and (Pm

c ) of drone-based communication recovery network

deployment. Furthermore, we assume that the DBCN is operating in

TABLE I: Simulation parameters.

Parameter Value Description

ζLoS , ζNLoS 1,20 dB Excess path loss
fMHz 1800 MHz Carrier frequency

α 4 Path loss exponent
K 132 dB Excess path loss for micro cells

a1, b1 9.6, 0.28 Environment dependent constants

λ1 1× 10−5 Base stations density
Nc 3 Available number of channels
Pd 1 dBW Drone cell transmission power
Pm 10 dBW Small BS cell transmission power

an urban environment with the parameters shown in Table I. Also,

as described in the previous sections, we consider a Rayleigh fading

wireless channel.

Fig. 2 shows the coverage probability for a DMU that is located at

the center of the recovery area (see (14)). The coverage probability is

plotted against both the MBSs density (λ1) and the DBSs altitude (h).

An interesting observation here is that the drone-based recovery net-

work can achieve a significant enhancement of the coverage probability

when the MBS density is around a certain value. For example, with an

MBS density equal to λ1 = 1×10−5, a minimum coverage probability

P
(d)
c = 0.8 can be obtained. That is, the deployment of drones as a

recovery network can be utilized to the maximum for small/micro cells

(i.e., with average micro cell radii between 200 < Ravg < 1000 m).

This is intuitively attributed to the fact that the interference which

is seen by the DMU from the MBSs is lower as their density λ1 is

smaller.

Fig. 3 shows the coverage probability of the DMU (see (14)). The

coverage probability is plotted against Nd (the number of drones) and

the drone altitude (h) in meters. As illustrated in Fig. 3, it can be

observed that with an increase in the number of DBSs the optimal

altitude is reduced for the DBSs. Thus, altitude control gives a new

degree of freedom to the optimal deployment of the DSCN. Generally,

the the coverage probability values obtained with regard to the number

of DBSs depends on two main factors: (i) the required total average

network capacity, which intuitively increases as the number of DBSs

increases and (ii) an increase in the number of channels deployed

which translates into increases in the coverage probability.

Fig. 4(a) shows the coverage probability for DMU vs. the drone

altitude for multiple network configurations (see (14). Here, the solid

lines correspond to the deployment geometry for a multiple number

of drones for a disaster recovery area of radius Rr = 2 km while the

dashed lines are for Rr = 3 km. The figure shows that the optimal

drone altitude decreases as the number of drones increases. In turn,

this corresponds to the decrease in interference experienced at the

DMU. Also, an interesting observation is that a wider recovery area

radius requires a higher drone altitude to maintain the same baseline

coverage. Nevertheless, deploying DBSs at higher altitudes means

that a smaller number of BSs are required to cover a wide recovery

area. While this corresponds to a reduction in co-channel interference

experienced at the DMU, this comes at the cost of reduced throughput.

The down-link throughput of a MU increases with an increase in the

number of DBSs due to aggregate load reduction on individual BSs.

Fig. 4(b) shows the coverage probability vs. drones altitude for the

DMU for both: (i) the configurations when only DBSs are deployed

(depicted with solid orange lines derived from (10)) and (ii) the

configuration when the DBSs are overlaid on the operational cellular

network(the dashed blue lines obtained from (14)). Here, we can

observe two main trends: (i) good coverage can be achieved for the

network deployment with only DBSs, and this can also be seen as

allocating unique channels for the DBCN and (ii) there is a substantial

need to search for the optimal altitude for the DBS, since the coverage

probability dramatically decreases when an operational altitude other
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Fig. 4: Coverage Probability with Nc = 3, po = 0.5, λ1 = 1× 10−5, α = 4, Rr = 2 km and β = −3 dB

than the optimal altitude is selected.

Fig. 4(c) shows the coverage probability of MMU vs. the drone

altitude for multiple network configurations (see (15)). The dashed

green line shows the maximum achievable coverage of the MMU

without the existence of the DSCN. Intuitively, this upper limit cannot

be achieved in the presence of the DBSs, mainly due to non-zero

co-channel interference which will be generated from the DBSs.

For a recovery area with radius Rr = 2 km, the optimal drone

altitude is lower than h = 600 m (see Fig. 4(a)). Consequently, for

Nd = 9 DBSs the optimal network altitude is around 500 m, while

the coverage probability for the MMU with the same deployment con-

figuration of the DBCN is around 0.75 (i.e., this means that the ratio

((P
(m)
c − Maximum Coverage)/Maximum Coverage)×100 = 90%)

which is quite acceptable with the advantage of a higher achieved

P
(d)
c . Consequently, a DSCN can be deployed by only optimizing the

number of drones and their altitude.

V. CONCLUSION

Drone empowered small cellular networks (DSCNs) are key en-

ablers towards the deployment of resilient communication networks

for smart cities. In this paper, we developed a statistical framework

for exploring the design space of a DSCN under realistic propaga-

tion conditions. The impact of co-channel inter and intra-network

interference, when a DSCN is deployed to complement a capacity

short-fall in disaster recovery scenario, has explicitly accommodated

in the model. In other words, the co-existence properties of overlaid

DSCN networks are investigated. It is also shown that by optimizing

the altitude of drone base stations (DBSs) and number of drones the

coverage probability of a ground user can be significantly enhanced

in a post-disaster situation. Moreover, this can be accomplished at a

minimum loss of performance incurred at a micro mobile user (MMU)

that being served by an operational ground cellular network. Overall,

coverage probability of ground users is significantly enhanced when

DSCN is deployed and the network design is appropriately optimized.
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