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SUMMARY

Cardiac Purkinje fibres provide an important pathway to the coordinated contraction of the heart. We
present a numerical algorithm for the solution of electrophysiology problems across the Purkinje network
that is efficient enough to be used in in-silico studies on realistic Purkinje networks with physiologically
detailed models of ion exchange at the cell membrane. The algorithm is based on operator splitting and is
provided with three different implementations: pure CPU, hybrid CPU/GPU, and pure GPU. Compared to
our previous work, we modify the explicit gap junction term at network bifurcations in order to improve
its mathematical consistency. Due to this improved consistency of the model, we are able to perform an
empirical convergence study against analytical solutions. The study verified that all three implementations
produce equivalent convergence rates, which shows that the algorithm produces equivalent result across
different hardware platforms. Finally, we compare the efficiency of all three implementations on Purkinje
networks of increasing spatial resolution using membrane models of increasing complexity. Both hybrid
and pure-GPU implementations outperform the pure-CPU implementation, but their relative performance
difference depends on the size of the Purkinje network and the complexity of the membrane model used.
Copyright c© 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Purkinje fibres form an extensive branching network of fast conducting cells within

the ventricular sub-endocardium of the human heart. This network covers large areas of the

ventricles and ensures their rhythmic contraction, in response to signals traversing from the

atrioventricular (AV) node along the His bundle and its branches [1, 6]. The fibres consist of

specialised cardiac muscle cells that conduct a travelling electrical potential wave (the “action

potential”) towards the ventricular myocardium (MC) at the Purkinje-muscle junctions (PMJs).

Even if the function of Purkinje fibres is well-known, their involvement in arrhythmia is less well

understood. It is suspected that the Purkinje network (PN) can generate an action potential (AP)

spontaneously [4], or be essential to the initiation of some ventricular tachycardias (VT) [19, 3]. The

PN can cause VT if a unidirectional block in the main bundle is present. Assuming the left bundle

∗Correspondence to: Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB),
Department of Electronic and Electrical Engineering University of Sheffield, Pam Liversidge Building, Mappin Street,
Sheffield S1 3JD, UK.

Copyright c© 2015 John Wiley & Sons, Ltd.

Prepared using cnmauth.cls [Version: 2010/03/27 v2.00]



2 M. LANGE ET AL.

branch has a unidirectional block with no orthodromic conduction, but slow antidromic conduction.

Then the AP would be conducted through the right bundle towards the ventricular septum, from

where it travels in the direction of the left ventricular PN and enters in the antidromic direction. In

antidromic direction the AP can pass through the unidirectional block and arrives at the previously

excited PN. If the loop is long enough or the conduction slow enough, the cells in the previously

excited PN have passed their absolute refractory period. Thus, a new excitation can be generated.

Equally unidirectional blocks downstream in the PN are believed to form loops and consequently

generate VT [19]. In summary, the PN is potentially involved in the generation of arrhythmias.

However, it is challenging to investigate the effect of the PN on arrhythmias in a clinical setting.

This is because the PN is very thin and fragile, which makes it difficult to perform imaging or

in-vivo electrophysiological measurements. However, in recent years in-silico experiments have

become feasible, and can provide information about the PN which are difficult to obtain from clinical

settings [27, 10]. It has even been suggested to include the PN in cardiac simulations designed to

aid interventions [27].

In the past, different models for the PN have been suggested and reviewed by Ten Tusscher and

Panfilov in 2008 [26]. More recent work can be found in [32, 9, 11, 10, 12]. In such simulations,

two main types of models have been used. The simpler eikonal model and the monodomain model.

The eikonal model has several limitations, the most significant of which is the absence of an

ionic model. This renders the eikonal model impractical for re-entry simulations, or simulations

of ischemic processes in the heart because the absolute and the relative refractory period of the

cell cannot be simulated. Another limitation is the inability to simulate the physiological delay of

3ms to 12 ms from the PN to the MC at the PMJs. This delay has to be included in the model

manually. Another recently observed limitation of the eikonal model has been the assumption of

constant conduction velocity, which is not correct due to the push and pull effect [30]. Therefore,

the eikonal model has a limited range of applications. Some of this limitations can be overcome if

the monodomain model is used.

The monodomain model describes the propagation of the AP based on the ion exchange over the

cell membrane. For this model certain observations have been made in conjunction with the PN.

Most importantly, it has been shown that coarse networks are not able to reproduce physiological

activations [27, 12, 9, 22]. A further indication that the PN needs a certain density comes from the

fact that a single PMJ might fail to conduct the AP from the PN to the MC. However, if a large

enough density is given, other PMJs will take over. Thus, to obtain realistic activation patters dense

networks are required.

High complexity of the network or ionic model will reflect on the computational costs. Currently,

it is possible to solve the monodomain equation on the densest of PN within hours, as we will show.

For single simulations this might not be a strong limitation. However, to obtain information which

is valid for a population, the computer simulations should be performed in different configurations

representing this population. The leads to experiments with a variety of different configurations in

shape, size, and possibly dysfunction of the hear. The variation in parameters leads to large studies,

as our previous study [10] with more than 700 simulations. We call these type of studies, where

all experiments are performed by a computer simulation, in-silico studies. In this studies the time

demand for simulation of the PN activation with the monodomain model will exceed feasible limits.

Therefore, a reduction of the computational time for the numeric solver is required. A reduction of

the computational time can be achieved by processing the problem in parallel. High performance

computing facilities offer this parallel computing power. However, the sparsity structure of the

linear system resulting from the Purkinje problem causes a high communication demand for a

one dimensional problem. This reduces the speed-up from using multiple CPUs. To overcome the

scalability issue shared memory systems can be used. For the current task the graphics processing

unit (GPU) poses a promising choice.

There are two major advantages of the GPU when used with the PN problem. 1) The GPU is

a highly parallel shared memory system and 2) the electrophysiology problem in the PN is small

enough to fit on one GPU. The first advantage means that a substantial reduction in computational

time is expected, as more than 100 cores are processing at the same time. The second advantage

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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relates to the fact that memory is often a limitation when using the GPU, as the memory size is

small in comparison to a desktop machine. However, for the Purkinje system the common amount

of 2GB memory for a GPU is sufficient to store the whole problem. Furthermore, the ionic models

can be processed independently of each other. This makes the electrophysiology problem of the PN

a good candidate for acceleration with the GPU.

Using new computational devices, like the GPU, can also introduce new errors. Validation of

the method would be the best, however all Purkinje models currently lack in-vivo validation due to

difficulties in measuring APs in the subendocardial Purkinje network. As such, the importance of

numerical verification first and foremost has been identified as a key stepping stone to the wider

development and acceptance of numerical models and methods for simulating Purkinje network

activation [9].

Hence, in this study we present a verification of the numerical solution of the monodomain

solution in one dimension. Our method of verification is the same as typically used for numerical

solvers: the difference between an analytical solution and the numerical solution is computed. The

numerical method used to solve the electrophysiology problem in the PN is based on the work of

Vigmond and Clemens [33], and has been implemented in three different hardware configurations:

pure-CPU, CPU/GPU hybrid, and pure-GPU.

Once the accuracy of the solutions has been verified, a second comparison is made concerning

the performance of the implementations. Therefore, we create four different Purkinje fibre networks,

where the smallest one has 6251 nodes and the largest one has 43748 nodes. The electrophysiology

for these networks is simulated with two different ionic models: The model developed by di

Francesco and Noble [7] and with the model of Stewart et al. [24].

2. NUMERICAL SCHEME FOR COMPUTING ACTION POTENTIALS IN 1-D NETWORKS

2.1. Definition and modification of the explicit gap junction model

To solve the action potential in the Purkinje fibres, we improve our previously published algorithm

[11] based on [33], which is described below. It is based on the one-dimensional monodomain

equation

∂x (σi∂xVm) = β(Cm∂tVm + Iion(Vm, ξ)), (1)

where Vm is the transmembrane potential, Iion the total current through the ionic channels on the

cell membrane, ξ are the state variables of the membrane model, β is the surface-to-volume ratio of

the cell membrane, Cm the cell membrane capacitance, σi the intracellular conductivity tensor, and

x the local spatial coordinate.

The one-dimensional cable equation needs to be extended to describe the propagation of the

potential at the branching points. Each Purkinje branch is modelled as a separate problem on a

one-dimensional line segment, which is then coupled to other branches by interface conditions

determined by the continuity of potential and Kirchhoff’s current law. For the latter, the input and

output currents at the branching points are needed, which can either be obtained from a numerical

derivative of the potential, or by the use of a finite difference approximation for the derivative. The

numerical problem in this work is solved with a finite element (FE) scheme using Hermite basis

functions, such that the derivatives of the solutions are degrees of freedom (DOF) in the formulation.

To close the monodomain equations approximated using Hermite basis functions, the concept of

explicit gap junction models is introduced. This involves writing Kirchhoff’s laws at the bifurcations

explicitly in terms of the currents and potentials. Gap junctions are specialised intercellular

connections between two Purkinje cells at their ends (see Fig. 1). In the classical monodomain

model for the myocardium, the effect of these gap junctions is conflated into the conductivity tensor

by a homogenisation process [5]. In the types of models considered for the PN in this work, all

gap-junctions between two cells are homogenised into a single gap-junction. This gap-junction is

then modelled explicitly [33, 29, 11]. Also the bifurcation is modelled based on the homogenisation.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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4 M. LANGE ET AL.

This allows us to model bifurcations with a single gap-junction connecting three cells, in order to

correctly capture the “push-and-pull” effect.

Let us consider the case of two Purkinje cells connected by a gap junction (inset of Fig. 1). Then

the DOFs of the problem are the intracellular potential Vg and the current Ig across the gap junction,

where Ig relates to Vg by the derivative.

Ig = πρ2σ∗
i

∂Vg

∂l
, (2)

where σ∗
i is the equivalent conductivity defined later, ρ the Purkinje cell radius and l the cell length.

Both quantities Ig and Vg are formally located in the middle of the gap junction (in red in Fig. 1).

The ionic channel current Iion is calculated in the cells at the ghost nodes (in blue in Fig. 1), which

means for each node point the cell membrane model needs to be evaluated twice.

The relation between the intracellular potential φi in the gap junction and the transmembrane

potential in the two neighbouring cells V± is given by Ohm’s law

V± = φi − φe ∓
IgRg

2
,

where Rg is the gap junction resistance and φe is the extracellular potential. The latter is assumed

to be constant throughout this work. Furthermore, up to a multiplicative factor Ig represents the

derivative of φi by Ohm’s law. The difference between intra- and extra cellular potential is the

transmembrane potential Vg = φi − φe.

The values φi, Ig at the branching point are repeated in order to allow each segment to be solved

separately. The three endpoints of the segments are then assumed to connect in the gap junction of

the three cells (see Fig. 2). In contrast to our previously published method [11], each of the points

gets only one cell membrane model associated with it instead of two. The single cell membrane

model will then be solved in the corresponding cell segment. The currents are given from each cell

to the branching point as indicated in Fig. 2. This adjustment is necessary because in our previous

work there are six ghost nodes at each branching point, but only three actual cells. As we will see,

the more concise formulation will also result in a more accurate numerical solution in comparison

with analytical solutions.

Once the explicit gap junction model is in place, we need to ensure the compatibility of the

macroscopic conductivity tensor with the gap junction resistance. Therefore, we assume that σi

is the intracellular conductivity without any effect of gap junctions and introduce the equivalent

conductivity under the assumption of a cylindrical volume conductor σ∗
i = (σiℓ)/(ℓ+ σiRgπρ

2),
where ℓ is the length of the Purkinje cell and ρ its radius. Note that this assumes that any

discretisation has a step length h = Zℓ, which is an integer multiple Z of the cell length ℓ. In this

notation (1) becomes

∂xσ
∗
i ∂xV± = β(Cm∂tV± + Iion(V±, ξ±)). (3)

To approximate the solution of (3) in time we introduce a time discretisation, where the superscript

n refers to the numerical solution computed at time tn. The algorithm to obtain the solution at tn+1

from the solution at tn has four steps (Fig. 1), and uses of an operator splitting scheme as follows
{

∂tV + L1(V ) = 0
∂tV + L2(V ) = 0

, (4)

where L1 = Iion, L2 = ∂x (σ
∗
i ∂x) and V being one of the unknown potentials. The first three steps

address the first equation, starting with Ohm’s law to obtain the transmembrane potential V n
± in the

cells from the potential V n
g and current Ing at the gap junctions

V n
± = (φn

i − φn
e )∓

Ing Rg

2
.

The algorithm then proceeds to the second step, in which the membrane models are solved

V
n+1/2
± = V n

± − Iion(V
n
± , ξ)

Cm
∆t.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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The third step generates from the transmembrane potentials V
n+1/2
± the current and potential in the

gap junction I
n+1/2
g , V

n+1/2
g . The last step solves the operator equation ∂tV + L2(V ) = 0 with the

FE model, therefore we use the relation

Vg = φ
n+1/2
i − φn+1/2

e =
V

n+1/2
+ +V

n+1/2
−

2

and since the equations (3) are linear in V± we obtain:

βCm
(φn+1

i − φn+1
e )− (φ

n+1/2
i − φn

e )

∆t
= ∂xσi∂xφ

n+1
i . (5)

In the FEM this translates into the following matrix formulation of the problem:

(κM +K)φ̃
n+1

i = κM(φ̃
n

i + (φ̃
n+1

e − φ̃
n

e )), (6)

where κ = βCm/∆t, M is the mass matrix, K is the stiffness matrix and φ̃i is the vector of

unknowns, which contains the potential and the derivative of the potential at each node. This is

due to the fact that we are using Hermite basis functions, which include as a DOF also the value of

the derivative in each node.

In the stiffness matrix of the FE model, the triplicated branching points of line segments are used

to enforce the interface conditions and thus couple together the solutions obtained from the different

line segments. In the case that segment 1 branches into segments 2 and 3, we enforce the continuity

of the potential φ1 = φ2 = φ3 and the conservation of current I1 = I2 + I3. Our implementation

covers the case where segments 1 and 2 join to form segment 3 and thus giving our algorithm the

ability to solve physiological networks with loops. In this case the coupling condition of the currents

is I1 = I3 − I2. These interface conditions are introduced in the FEM stiffness matrix associated to

(6) and the right hand side.

2.2. Hardware implementation

In the following section, we detail the different characteristics of the three implementations. They

are all performed using the LifeV library†, which provides methods to assemble the FE stiffness

and mass matrices and the right hand side coming from boundary conditions, time discretization and

force terms. Furthermore, linear solvers and preconditioners are provided through the Trilinos‡

linear algebra library.

In all implementations the linear system is solved with the generalised minimal residual method

(GMRES) with incomplete LU (ILU) factorisation for preconditioning of the linear system. The

GMRES method was used as the system matrices are not symmetric due to the coupling condition

enforcement at the junctions. In each iteration the preconditioner is applied to the linear system.

This is done by solving first for the lower triangular system and then solving for the upper triangular

system.

To advance the ionic cell models in time an explicit forward Euler method has been used. The

more efficient Rush-Larsen method could not be used, due to problems with the numerical stability

of the Stewart model. This is also reflected in the stiffness of the resulting ordinary differential

equation (ODE) system from the ionic models. As a result of the high stiffness, a timestep of

0.002ms for the Euler method was needed. This timestep is a factor of ten smaller than the timestep

for the linear system of the diffusion part. Therefore, in each global timestep the ionic model has

been solved ten times.

The pure CPU implementation was parallelised with the help of the OpenMPI framework, which

allows in the proposed algorithm to perform Steps 1 to 3 in a distributed way with linear partitioning.

†The LifeV (http://www.lifev.org) finite element library is the joint collaboration between four institutions: EPFL,
Politecnico di Milano, INRIA, and Emory University.
‡http://www.trilinos.org

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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The linear system is solved with one OpenMPI process to eliminate communication between CPUs

while solving the linear system. Furthermore, the computationally most expensive step in the

algorithm is Step 2. This implies that all other processes need to send their data to the serial process

and after solving the problem the solution needs to be redistributed (see Fig. 3 for the workflow).

In the CPU/GPU hybrid implementation the membrane models are solved on the GPU. Therefore,

before Step 2 the transmembrane potential is copied to the GPU, then the membrane model variables

are updated, and the transmembrane potential is copied back from the GPU to the CPU. These three

tasks are generated and queued in a CUDA streams, which allow for asynchronous GPU tasks.

After the CPU has scheduled all task groups, it waits for their completion, and subsequently returns

to Steps 3 and 4 on the CPU.

The third implementation does all the computation on the GPU, thus there is no memory copy

between the steps. Steps 1 and 3 use the same code on the GPU as on the CPU, and in Step 2 we

reuse the code from the hybrid implementation, but without the memory copy. To solve the linear

system in Step 4, the mass matrix and the stiffness matrix are built on the CPU with the LifeV

framework, and the resulting sparse matrices are copied to the GPU. The same is done for the

preconditioner, which is built on the CPU and then copied to the GPU. The GMRES method on

the GPU is the same as on the CPU, but uses cuSPARSE and cuBLAS for the matrix operation.

Solving for the upper and lower triangular matrix in the preconditioner is optimised with the CUDA

framework, which provides a parallel implementation for the solution process [17].

There are two different hybrid and GPU implementations in the performance test, which

correspond to using different levels of floating point precision. GPUs are designed for single

precision and thus have much higher number of floating point operations in single precision than

in double precision mode. Therefore, we implemented the same GPU code using both double

precision, and selectively dropping down to single precision where numerical stability was verified

not to be affected. This is referred to as mixed-mode.

All computations were performed with a Dell Precision-WorkStation-T7500 featuring two

Intel(R) Xeon(R) CPUs E5620 at 2.40GHz and a NVIDIA Quadro 4000 GPU with 256 CUDA

Cores.

3. VERIFICATION OF THE PROPOSED NUMERICAL METHOD

Two verification tests are performed. The first evaluates the accuracy of the solution in equilibrium

against an analytical solutions, and the second uses a travelling pulse solutions to verify the dynamic

solutions.

3.1. Numerical error and convergence in equilibrium

In the first experiment we seek an equilibrium solution for the monodomain equation (3), of a

simplified cell membrane model [28] given by

∂tV = pV, (7)

where V is the transmembrane potential and p is a model parameter. Depending on p the solution is

stable (p < 0), or it is exponentially unstable if (p > 0). The cell membrane model is then applied

to two different test geometries. The first geometry is a finite one-dimensional line segment (Fig. 4,

left) D1 = [−M,M ], M > 1, which is divided in three subparts D1,1 = [−M,−1], D1,2 = [−1, 1],
and D1,3 = [1,M ]. In D1,1 and D1,3 the cell membrane model is chosen to be stable while in D1,2

it is unstable

p(x) =

{

p1 for x ∈ D1,2

−p2 else where
,

where pi > 0. The simplified cell membrane model is then introduced in the monodomain

equation (1). Letting δ = σi/β and, assuming that the conductivity σi has no spatial dependency,

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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the problem to be solved becomes

Cm∂tV = δ∂2
xV − p(x)V,

V1(−1) = V2(−1) , V2(1) = V3(1),
V ′
1(−1) = V ′

2(−1) , V ′
2(1) = V ′

3(1),
V1(−M) = 0 , V3(M) = 0.

(8)

The solution can be deduced with the canonical ansatz Vi(x) = c1 exp(kx) + c2 exp(kx), as

shown by Artebrant et al. [2]. For a line segment the solution is:

V (x) =







sinh(κ(M + x)) , x ∈ D1,1

d cos(kx) , x ∈ D1,2

sinh(κ(M − x)) , x ∈ D1,3

, (9)

where d = sinh(κ(M − 1))/cos(k) and parameters κ =
√

p1/δ and k =
√

p2/δ. To satisfy the

differentiability conditions V ′
1(x)|x=−1 = V ′

2(x)|x=−1, V ′
2(x)|x=1 = V ′

3(x)|x=1, in (8) the relation

k tan(k) =
κ

tanh(κ(M − 1))

must hold.

The second problem is a symmetric domain D2 with a branching and joining point (Fig. 4, right).

The domain consists of five line segments, the first two, D2,1 = [−M,−1] and D2,2 = [−M,−1],
join the segment D2,3 = [−1, 1], which branches into two further segments D2,4 = [1,M ] and

D2,5 = [1,M ]. As in the first domain, the middle segment D2,3 has unstable cells while the outer

branches D2,1, D2,2, D2,4, and D2,5 are stable. The problem is symmetric at zero, so we will look

at the negative domain only. Furthermore, D2,1 and D2,2 are equal, thus it is sufficient to find the

solution on one of them. This means we need to solve the following problem

δV ′′
1 − p1V1 = 0 ∀ x ∈ D2,1

δV ′′
3 + p2V3 = 0 ∀ x ∈ D2,3

V1(−1) = V3(−1), 2V ′
1(x)|x=−1 = V3′(x)|x=−1, V1(−M) = 0

,

where the first two equations are due to Kirchoff’s current law, which states that the current sum of

the first and second branch need to equal the third branch.

Following an exponential ansatz, we constrain the solution to be unique by choosing the

maximum amplitude V (0) = 1, which leads to

V1,2 = c1 sinh(κ(M + x)),

V3 = cos(kx), (10)

V4,5 = c1 sinh(κ(M − x)),

where c1 = cos(−k)/ sinh(λ1(M − 1)) and the relation between κ and k changes to

k tan(k) =
2κ

tanh(κ(M − 1))
.

3.1.1. Numerical solution in equilibrium For the numerical solution we choose δ = 1, which

imposes the condition 1 = σ∗/β. With a physiological cell length of ℓ = 62.5 µm, diameter 16.0
µm, and chosen gap-junction resistance R = 0.1 kΩ, the intracellular conductivity becomes 1967.5
kS/cm. Furthermore, the spatial step size h is chosen as an integer multiples of the cell length ℓ.

On the line D1 we choose parameters p2 = 0.0946441, M = 20, and the capacitance of the cell

membrane Cm = 1 µF. For the branching domain D2 we choose M = 10, p2 = 1, and δ = 1.

The resulting error distribution over the line and the branching domain is shown in Fig. 5, where

the largest contribution of the error comes from the passive cell region. The convergence test shows

that with decreasing spatial step size the L2-error reduces faster than linearly for the single-interval

domain D1 (Fig. 5) and linearly for the example in the branching domain D2. Note that without

the modification introduced in Sect. 2.1 only sub-linear convergence behaviour was obtained for the

branching domain case (compare with Fig. 3 from [11]), indicating that the modification is required

for the accuracy of the numerical method.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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3.2. Analytical solution for a travelling pulse

In this section the convergence of the dynamic solution is investigated. Therefore, an analytic

solution for a travelling wave of the linearised FitzHugh-Nagumo (FHN) equation [20, 15] is

constructed and then solved numerically.

For the construction of the solution to the FHN model we follow the work of Rinzel and

Keller [20]. They used the two variable model, with the transmembrane potential V and the recovery

variable w

∂tV = Iion = f(V ) + w
∂tw = bV

f = V (a− V )(1− V )
. (11)

f can be linearised to f = V −H(V − a), with 0 ≤ a ≤ 1/2 and H is the Heaviside function. The

solution of the linearised problem (11) on an infinite line is well-known [8, 20].

We consider the monodomain equation (3) over an infinite line under the assumption that σ∗
i does

not depend on x and couple it to the linearised FHN cell membrane model

Cm∂tV =
σ∗

i

β ∂2
xV − f(V )− w

∂tw = bV , b ≥ 0
f(V ) = V −H(V − a) , 0 ≤ a ≤ 1/2

. (12)

To be in the condition of the approach in [20] we assume in the following σ∗
i /β = 1 and Cm = 1.

By differentiating the first equation in (12) with respect to time, the system can be rewritten in

one equation

∂2
t V = ∂t∂

2
xV − ∂tf(V )− ∂tw,

⇒ ∂2
t V = ∂t∂

2
xV − ∂tf(V )− bV. (13)

To solve this problem the travelling wave ansatz V (x, t) = vc(z) where z = x+ ct with c > 0
is introduced. Furthermore, we assume that vc(0) = a and lim|z|→∞ vc(z) → 0, and from the

intermediate value theorem follows the existence of a z1 6= 0 with vc(z1) = a. The system to be

solved can be rewritten as

c2v′′c = cv′′′c − cf ′(vc)v
′
c − bv

0 = v′′′c − cv′′c − f ′(vc)v
′
c − (b/c)v

0 =

{

v′′′c − cv′′c − v′c − (b/c)v ∀z ∈ R\{0, z1}
v′′′c − cv′′c − (b/c)v z ∈ {0, z1} , (14)

with boundary condition lim|z|→∞ vc(z) → 0 and where ′ indicates a derivative with respect to

z. The solution can be obtained in the three regions z < 0, 0 ≤ z ≤ z1 and z > z1. Following an

exponential ansatz for the differential equation we need to find the roots of the cubic polynomial

p(λ) = λ3 − λ2 − λ− (b/c). (15)

If the discriminant is non-negative there are three distinct real solutions, while for a negative

discriminate two of the solutions are complex. Let λ1 be the positive real solution while λ2 and

λ3 are the possible complex solutions. Then, the solution to the differential equation (14) is [8]

vc =







a exp(λ1x) z < 0
(a− p′(λ1))

−1 exp(λ1x)− p′(λ2)
−1 exp(λ2x)− p′(λ3)

−1 exp(λ3x) 0 ≤ z ≤ z1
p′(λ2)

−1(exp(−λ2z1)− 1) exp(λ2x) + p′(λ3)
−1(exp(−λ3z1)− 1) exp(λ3x) z > z1.

(16)

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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In the sequel, we show that vc is real, even with complex eigenvalues λ2, λ3. We use that Re(λ2) =
Re(λ3) and Im(λ2) = −Im(λ3), where i =

√
−1.

⇒ vc =











a exp(λ1x) z < 0
exp(λ1x)
(a−p′(λ1))

− ( e(iIm(λ2)x)

(p′(Re(λ2)+iIm(λ2))
+ e(−iIm(λ2)x)

p′(Re(λ2)−iIm(λ2))
)e(Re(λ2)x) 0 ≤ z ≤ z1

eλ2(x−z1)−e(λ2)x

p′(λ2)
+ eλ3(x−z1)−eλ3x

p′(λ3)
z > z1

,

(17)

⇒ vc =











a exp(λ1x) z < 0
exp(λ1x)
(a−p′(λ1))

− ( α−iβ
α2+β2 e

(iIm(λ2)x) + α+iβ
α2+β2 e

(−iIm(λ2)x))e(Re(λ2)x) 0 ≤ z ≤ z1
eλ2(x−z1)

p′(λ2)
+ eλ3(x−z1)

p′(λ3)
−
(

e(λ2)x

p′(λ2)
+ eλ3x

p′(λ3)

)

z > z1

,

(18)

α = 3(Re(λ2)
2 − (Im(λ2)

2)− 2Re(λ2)− 1,

β = 6(Re(λ2))(Im(λ2))− 2(Im(λ2)).

Note that α, β ∈ R. Then applying Euler’s formula

(a+ bi)e−ci + (a− bi)eci = 2(a cos(c) + b sin(c)) a, b, c ∈ R. (19)

to write the formula in the region 0 ≤ z ≤ z1 as real expression

⇒ vc =











a exp(λ1x) z < 0
exp(λ1x)
(a−p′(λ1))

− 2( α
α2+β2 cos(Im(λ2)x) +

β
α2+β2 sin(Im(λ2)x))e

(Re(λ2)x) 0 ≤ z ≤ z1
eλ2(x−z1)

p′(λ2)
+ eλ3(x−z1)

p′(λ3)
−
(

e(λ2)x

p′(λ2)
+ eλ3x

p′(λ3)

)

z > z1

,

(20)

α = 3(Re(λ2)
2 − (Im(λ2)

2)− 2Re(λ2)− 1,

β = 6(Re(λ2))(Im(λ2))− 2(Im(λ2)).

For the term in z > z1 we apply twice the steps we used in the region 0 ≤ z ≤ z1, which results in

the real expression

vc =



















a exp(λ1x) z < 0
exp(λ1x)
(a−p′(λ1))

− 2( α
α2+β2 cos(Im(λ2)x) +

β
α2+β2 sin(Im(λ2)x))e

(Re(λ2)x) 0 ≤ z ≤ z1

2( α
α2+β2 cos(Im(λ2)(x− z1)) +

β
α2+β2 sin(Im(λ2)(x− z1)))e

(Re(λ2)(x−z1))− z > z1

−2( α
α2+β2 cos(Im(λ2)x) +

β
α2+β2 sin(Im(λ2)x))e

(Re(λ2)x)

(21)

Rintzel and Keller showed that the above solution (16) holds true only if the parameter a satisfies

the relation with the parameters b and c, which we outline in the following. The relation assumes

we know the eigenvalues λi i = 1, 2, 3 for given b, c, which then define the function

f(s) := 2− s+
p′(λ1)

p′(λ2)
s(−λ2/λ1) +

p′(λ1)

p′(λ3)
s(−λ3/λ1).

The root s0 of the function f defines

a =
1− s0
p′(λ1)

. (22)

This relation can be satisfied for any b with at most two ci, where c1 ≤ c2. The slow pulse c1 is an

unstable solution, while c2 is a stable solution [8, 20]. To obtain the value of z1 for the given set of

parameter a, b, c the following equation needs to be solved

exp(−λ1z1s0) = 1− ap′(λ1). (23)

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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3.2.1. Numerical simulation of the travelling wave For the verification of the dynamic solution

we use the solution for a = 0.2250646 mV, c = 1.2 cm/ms , b = 0.2 and z1 = 6.63395 cm. In the

numerical problem the parameter σi = 1967.5, β = 1, R = 0.1 kΩ and Cm = 1 µF are used. We use

the solution (16) to initialise our numerical solution at the time 0 ms on a line of length 160 cm, and

origin at 85 cm. With these values the wave exits the domain at 50 ms. The final time is chosen such

that the wave in the numerical simulation stabilises in shape and then propagates for about 20 ms.

All simulation use a temporal time step of 0.001 ms.

The first experiment was performed for spatial resolution of 0.00625 mm, where the L2-error

was calculated at each time step and plotted against the time for all three solvers (Fig. 6, top, left)).

For the first time steps the error increases slower compared to the error increase after about 20 ms.

Thereafter, a linear increase of the error is observed. This can be explained with the plot of the

L2-norm of the solution (Fig. 6, top, right), which is changing until 20 ms and thereafter can be

considered as constant. The changes are due to the fact that the maximal amplitude of the wave is

changing. The stable, slightly larger pulse, has after 20 ms a higher conduction velocity of about

c = 1.20132 m/s, which is responsible for the linearly increasing error over time.

We conclude the verification with a convergence test in the L2 error and the con-

duction velocity for the dynamic simulation. Therefore, the L2 error and the conduc-

tion velocity after 40 ms have been evaluated for different step discretisations h = {1 mm,
0.5 mm, 0.25 mm, 0.125 mm, 0.0625 mm}. The L2 error converges superlinearly (Fig. 6, bottom,

left). More importantly, the conduction velocity approaches the theoretical value of 1.2 m/s at a step

size of 0.0625 mm (Fig. 6, bottom, right). Again, the improved method of Sect. 2.1 exhibits proper

convergence to the exact conduction velocity.

4. COMPUTATIONAL EFFICIENCY

We next evaluate the computational performance of the different solver implementations on

problems of varying size and complexity. The number of DOFs is therefore varied either by

increasing the complexity of the Purkinje fibre network (spatial complexity), or by the switching

to a more complex cell membrane model (model complexity).

Four different Purkinje networks of varying levels of detail are considered, all of which are

generated with the fractal rule presented in [23]. In order of increasing complexity, the first Purkinje

network consists of the main Purkinje branches only, the second one has another level of branching

giving a physiological covering of the LV, and the third network has another level of Purkinje

branches added to increase the density of the end-junctions, resulting in a physiological network for

the left ventricle. The fourth case is a dense Purkinje network for both the left and right ventricles.

All Purkinje networks are discretised with a spatial resolution of 0.1mm and are generated without

loops for compatibility with other solvers (see Fig. 7).

Two different cell membrane models were used to test the influence of model complexity. The

first and simpler Di Francesco-Noble model [7], which has been used in previous works [33],

has 15 state variables. The model has been obtained from the CellML database and used without

modification to the initial states or constants. The second membrane model used here has been

published by Stewart et al. [24], and is based on modifications to the ten Tusscher-Panfilov model,

and has 20 state variables. The model was obtained from the CellML repository, although the initial

conditions were set to the values stated in Appendix Tab. II. The change in initial conditions was

made to avoid the early self-excitation that is present in Purkinje cells but should not manifest itself

under physiological conditions. For both membrane models a cell length of 0.01 mm, cell radius of

0.005mm, and an intracellular conductivity of 40 Ω−1cm−1 were assumed, where the last two values

were chosen to obtain realistic conduction velocities in the range between 3 m/s and 4 m/s. The gap

junction resistance was chosen as 500 kΩ. For the simulation a temporal step size of 0.01 ms has

been used and the simulation was run for 50 ms, after which all networks were fully depolarised.

The meshes corresponding to the Purkinje networks can be downloaded as supplementary material,

including the local activation times as supplemental material.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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In the pure CPU implementation eight processes are run in parallel, while the hybrid and

GPU implementations are run using one CPU process. The simulations were run in two different

configurations on the GPU, the first in double precision, while the second was in single precision.

For all simulations, we measure the time spent on setting up the problem, which includes reading

the mesh and assembling the matrices and preconditioners. We report the time needed for solving

the ionic membrane models and the diffusion equation in Fig. 7.

As expected the hybrid and pure GPU implementations are faster than the pure CPU

implementation (Fig. 7), and a further speed-up is observed moving from double precision to single

precision in the pure GPU implementation. The reason for the speed-up with the single precision

in the pure GPU implementation is that the particular GPU used has roughly twice the number

of floating point operations in single precision than it has in double precision. The reduction of

computational time achieved with the hybrid implementation was limited. One possible reason for

this might be that the particular GPU used is able to handle the entire double precision problem

without full occupation. The second reason might be that the transmembrane potential needs to be

converted from double precision to single precision, which is done in serial on the CPU.

The amount of time needed to solve the reaction part of the problem varies considerably between

the pure CPU, hybrid, and pure GPU implementations. The pure CPU implementation is always

the slowest, but the hybrid implementation performs more favourably on less complex membrane

models, while the pure GPU implementation performs better with more complex membrane models.

This is much more evident in the single precision versions. A possible reason for this can be found

in the workflow of the hybrid and pure GPU implementations (Fig. 3), where a memory copy from

the GPU to the CPU takes place in each time step of the hybrid implementation. In the pure GPU

implementation this is unnecessary because values are used on the GPU only. This explains why the

GPU implementation performs better with increasing complexity of the membrane model.

Solving the diffusion step with the pure GPU implementation is nearly always the slowest. We

note that the hybrid implementation is faster than the pure CPU, as in the CPU implementation

the transmembrane potential and the current need to be sent from all the OpenMPI nodes to the

master node and the results communicated back. The linear system itself is solved in the same

way in the pure CPU and the GPU/CPU hybrid cases. While in the pure GPU implementation the

same algorithm is used, but the matrix operations are performed on the GPU. For small Purkinje

systems, meaning very sparse and small matrices, the performance of the pure GPU implementation

is behind the pure CPU and hybrid implementations. With increasing spatial complexity the pure

GPU performance becomes better compared to the pure CPU performance, which likely is related

to the size of the problem. Due to the overhead introduced by each CUDA operation, for very small

problem sizes the benefits of GPU parallelism are lost.

After comparing between our various implementations, we compare our results with previously

published studies (Tab. I). We survey the speed-up for the reaction part only, because no comparable

speed-up was studied for solutions on 1-D networks. Most studies compare the speed-up of a single

GPU against a single CPU core. Therefore, we performed our simulation of the bi-ventricular PN

on one core with the di Francesco-Nobel model. It took 13497s to solve the reaction part. This

means that the pure-GPU formulation was 123 times faster in mixed precision mode and in double

precision mode it was 30 times faster. We compare our results against four different studies, which

use an explicit solving schema and report their speed-ups. The first study is conducted by Mena

and Rodrigues [16] and investigates the speed-up for different number of nodes in the mesh. Their

results are based on the ionic model by Ten Tusscher and Panfilov [25], which is integrated with the

Rush-Larson method. The best speed-up achieved was 120, where a single CPU core is compared

against one NVIDIA Tesla M2090 GPU with 512 CUDA cores. This is the highest speed-up reported

in our comparison, and our single precision implementation performs slightly better. The double

precision mode is out performed by the study of Mena and Rodrigues, as well as by the study

of Rocha et al. [21]. In their study the Luo and Rudy [13] model was solved by a Euler forward

method. The usage of a GPU with 480 CUDA cores resulted in a speed-up of 51 over one CPU.

The remaining two studies reported smaller speed-ups than our double precision implementation

achieved. Vigmond et al. [31] compared the speed-up for the cell model by Mahajan et al. [14]. For

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
Prepared using cnmauth.cls DOI: 10.1002/cnm



12 M. LANGE ET AL.

Study # CUDA

cores

Speed-up Degrees of freedom Ionic

model

Temporal

step size [ms]

Mena [16] 512 120 1 900 000 TP06 0.020

Rocha[21] 240 51 824 328 LR 0.010

Vigmond [31] 240 11 27 000 600 Mahajan 0.025

Neic [18]* 448 12 116 100 000 Mahajan 0.025

Hybrid 256 123 1 387 410 DFN 0.002

Full GPU 256 30 1 387 410 DFN 0.002

Table I. Comparison of the speed-up in solving the ionic model with previous studies. The speed-up are
based on one CPU core, against one GPU. * obtained using 6 CPUs and 6 GPUs. TP06 model by Ten
Tusscher and Panfilov [25], LR Model by Luo and Rudy [13], DFN model by di Francesco and Noble [7].

integration the Rush-Larsen method was employed where possible and otherwise the Euler forward

or Runge-Kutta method. This allowed them to reduce the computational time by a factor of about

11, when using a single GPU with 240 CUDA cores. In the work of Neic et al. [18] a larger whole

ventricular simulation with the Mahajan ionic model is performed. Therefore, they employed a

minimum of six GPU with 448 CUDA cores each, and compared it against an implementation with

six CPU. The reported timings for the time spent solving the ODE system shows a reduction by a

factor of 12. Overall, our single precision implementation has the best speed-up of all studies, but

also our double precision implementation shows an average improvement for the speed-up.

5. CONCLUSION

We have presented an improved parallel algorithm for solving the monodomain cardiac

electrophysiology equations on one-dimensional branching Purkinje fibre networks that is suitable

for simulating activation on realistic Purkinje fibre networks in human-size hearts. We then

developed a verification scheme of the numerical solution, which was applied to our three different

implementations: pure-CPU, pure-GPU, and hybrid. Finally, we compared the performance of the

implementations.

The verification of our first implementation [11] of the original proposed algorithm by Vigmond

and Clemens [33] showed sublinear convergence in the L2-error for branching fibres. To improve the

convergence in this work, we have described a new explicit gap junction formulation, which is also

more consistent in terms of the connection between multiple Purkinje fibre endpoints. Furthermore,

a modification to the effective conductivity tensor was needed to ensure mathematical compatibility

with the new formulation. Both improvements together led to a linear convergence as demonstrated

in our verification study. Our results also showed convergence of the conduction velocity in the

numeric solution towards its theoretical value. Importantly, there were no notable differences in

convergence rates between the three different implementations.

After establishing that all three implementation achieved the same accuracy, the selection of an

implementation is based on the relative computational performances of each implementation. Our

first observation was that GPU based methods outperformed the implementation of eight parallel

CPUs. The largest benefit of the parallel pure-GPU implementation was obtained either when a

fully detailed biventricular (spatially complex) network was used, or when sufficiently complex

membrane models were used, such as the model proposed by Stewart et al. 2009 considered in

this study. For simpler LV-only models, or when using simpler membrane models, such as the

Di Francesco-Noble model considered in this study, the hybrid implementation may be more

attractive. In either case, the benefits of GPU-accelerated computation of action potentials in the

fast conduction system have been demonstrated.

The implementation proposed in this study, results in a substantial reduction of computational

time over conventional multi-processor implementations. Moreover, it relies on GPU hardware

which is widely available. Thus, there is no need to use less available or expensive HPC facilities.
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The speed-up gained by the GPU implementation enables running more simulations in less time.

Therefore, it is more feasible to perform in-silico simulation, where large numbers of experiments

are required.

The PN model can be combined with different models of the myocardium to conduct simulations

of the ventricular activation. Currently, the feasible model for in-silico studies is the eikonal model

of activation time. However, our model of the PN can also be coupled with monodomain or bidomain

approach for the myocardium [30].

Future work could involve incorporating similar algorithms for the bidomain equations to explore

e.g. the effect of defibrillation on Purkinje fibres. Currently ongoing work aims at extending the

Purkinje fibre model to account for the presence of ischemia in the heart. We hope to have convinced

the cardiac modelling community that large-scale numerical simulation of action potentials in the

Purkinje fibre system is both feasible and important.
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APPENDIX

Table II. Initial conditions used for the Stewart et al. 2009 model

V Transmembrane potential [mV] -75.6095

Ki Potassium dynamics [mMol] 136.757

Nai Sodium dynamics [mMol] 0.80211

Cai Intracellular calcium [mMol] 1.47164e-4

y y gate 0.00780153

Xr1 Rapid time dependent potassium current 0.382558

Xr2 Rapid time dependent potassium current 0.37373

Xs Slow time dependent potassium current 3.85284e-2

m m gate 1.24135e-2

h h gate 0.361832

j j gate 0.102063

Cass Calcium dynamics [mMol] 5.49319e-4

d L type Ca current d 1.21585e-4

f L type Ca current f 0.611603

f2 L type Ca current f2 0.861484

fcass L-type Ca current 0.985735

s Transient outward current s 0.925862

r Transient outward current r 6.46602e-4

CaSR Calcium in sarcoplasmic reticulum [mMol] 3.17519

Rprime Calcium dynamics 0.851882
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