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ABSTRACT

We consider kinematic dynamo action in a sheared helical flow at moderate to high
values of the magnetic Reynolds number Rm. We find exponentially growing solutions
which, for large enough shear, take the form of a coherent part embedded in incoherent
fluctuations. We argue that at large Rm large-scale dynamo action should be identified
by the presence of structures coherent in time, rather than those at large spatial scales.
We further argue that although the growth-rate is determined by small-scale processes,
the period of the coherent structures is set by mean-field considerations.
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1 INTRODUCTION

Astrophysical magnetic fields are generated by dynamo ac-
tion. Even though they are generated in an exceptionally
turbulent environment, they often display a remarkable de-
gree of order in both space and time. A typical example is
the twenty-two year solar cycle. The solar magnetic field has
a large-scale dipole component (predominantly aligned with
the rotation axis of the Sun); moreover temporal coherence
is apparent in the location of emergence and number of ac-
tive regions — a wave of magnetic activity moving from mid-
latitudes to the equator on an eleven year timescale is clearly
visible in the solar butterfly diagram (see e.g. Stix 2004). It
is well-known that other late-type stars exhibit similar be-
haviour (Donahue et al 1996). On even larger scales, galac-
tic magnetic fields are coherent on spatial scales, though
in that case the long-term temporal evolution is unknown
(Shukurov 2002, Kulsrud & Zweibel 2008).

This has led to the theoretical idea of a large-scale
dynamo as a hydromagnetic mechanism to generate these
large-scale fields. This approach is formalised in mean field
electrodynamics (Moffatt 1978; Krause & Rädler 1980). This
is an extremely idealised concept. The reality is that astro-
physical fields do not just have large-scale components, they
in fact have structure on multiple scales with indeed the
strongest fields often being found at small scales. In real-
ity the problem is not one of generating large-scale fields,
rather how does one get a chaotic tubulent mess to have
organisation on the large scales.

This issue is particularly acute at high magnetic
Reynolds numbers (Rm). At low Rm, diffusion is so over-
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whelming that only large-scale magnetic structures are gen-
erated anyway and the problem of generation and organisa-
tion are one and the same. On the other hand at high Rm
fluctuations can exist down to small scales. Furthermore, be-
cause in a turbulent environment it is the small scales that
have the highest rate of strain, it is these and not the large
scales that determine the rate at which magnetic structures
are generated (Tobias & Cattaneo 2005).

These issues arise even at the most basic level of kine-
matic theory where the dynamo problem reduces to the so-
lution of the induction equation for prescribed velocities.
One would think that, because one is avoiding the compli-
cations of a full dynamic approach one could readily con-
struct numerical models to study these problems. However,
the combined requirements of high Rm and a scale separa-
tion between the small characteristic scale of the turbulent
eddies and the assumed large scale magnetic structures (if
they exist) makes the problem computationally challenging
even in kinematic regime.

Progress can be made in special geometries that allow
for dimensional reduction of the dynamo problem. This ap-
proach has been exploited by various authors (Roberts 1972;
Galloway & Proctor 1992; Cattaneo & Tobias 2005) and
most recently by Tobias & Cattaneo (2013), Cattaneo &
Tobias (2014) who demonstrated numerically the existence
of large-scale dynamo action in the form of propagating dy-
namo waves at high Rm. Here we take advantage of this
breakthrough in order further to clarify the relationship be-
tween dynamo action and large-scale dynamo action.
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2 GENERAL CONSIDERATIONS

The large-scale dynamo problem is usually discussed within
framework of mean-field theory. Mean field theory in a broad
sense is a theory of filtered equations, which is a time hon-
oured activity that is applied in all branches of science. In
dynamo theory, filtering introduces two advantages — one
real and one perceived. The first advantage is the reason why
filtering is attractive in many situations — filtering turns
an equation with rapidly varying coefficients that may be
extremely difficult to solve into one with smoothly varying
coefficients that might be much easier to solve. In mean field
electrodynamics the filtering eliminates the rapidly fluctu-
ating part of the underlying turbulent velocity field. The
second advantage is that the filtered equations are free of all
the anti-dynamo theorems that plague the full equations;
this is very peculiar to dynamo theory and why the theory
is so popular. It makes sense then to look for solutions in
very symmetric situations. For example Cowling’s theorem
(Cowling 1933) precludes the possibility of axisymmetric dy-
namo action; however it is still possible to have dynamo
action that is axisymmetric on average. Thus frequently dy-
namo practitioners look for axisymmetric solutions of the
filtered (mean-field) equations.

There are two problems with the mean-field approach,
which may be related, that manifest themselves at high Rm.
The first of these is that a given filtering may not be enough
to control the fluctuations, with the result that the coef-
ficients in the filtered equations are not as smooth as one
would like (Cattaneo & Hughes 2009; Tobias & Cattaneo
2015). The second is that there is the underlying assump-
tion, not often stated explicitly, that the solutions of the
filtered equations should coincide with the filtered solutions
of the full equations. It is not obvious that this is true. In
fact, there are known examples where it isn’t (Boldyrev,
Cattaneo & Rosner 2005).

To fix ideas, we consider a simple example. In kinematic
theory, once the (stationary) velocity is specified the dynamo
problem essentially reduces to two things, determining the
dynamo growth-rate and computing the structure of the dy-
namo eigenfunction. Now suppose that we define some spa-
tial filter. It is reasonable to expect that application of the
filter to the solutions of the full equations should correspond
the eigenfunction of the filtered equations. That being the
case, it would also be reasonable to assume that the growth-
rate of the large-scale structure of the solutions should coin-
cide with the growth rate predicted by the filtered equations.
However at high Rm that is almost certainly never the case.
The reason is that there is a unique growth-rate and all
structures (small and large) grow at the same rate. As we
mentioned in the introduction, in a turbulent environment,
this rate is determined by the small scales that have been
removed from the filtered equations. It is a common fallacy
to assume that one may have a kinematic dynamo where the
large and small scales grow at different rates.

Let us assume that the spatial structure obtained from
the filtered equations is correct. A natural question then is
to ask “What else does the filtered equation get right?”. As
argued above, it will not get the growth-rate correct. Con-
sider a case which is more complicated, where the filtered
equations have a growth rate and a frequency. For example,
this could happen if there has been a breaking of isotropy

of the filtered equations and a bifurcation to a travelling
wave solution. In the full equations this would correspond
to a breaking of the isotropy of the statistics of the velocity
and therefore it is not unreasonable to expect that this will
manifest itself as a breaking of symmetry of the statistics
of the solutions. We believe that there are cases where the
statistics of the symmetry breaking as measured say by the
propagation speed of a wave pattern is the same both in
the solutions of the filtered equations and those of the un-
filtered equations in a statistical sense. This is because the
effect of symmetry breaking is to move the frequency away
from zero and is controlled by a change in the symmetry of
the large scales. We stress again that this is not the case for
the growth-rate1 We note also that the small scales are too
small to know that any of the statistical symmetries have
been broken and therefore just do their own sweet thing.

A natural way to break large-scale isotropy is to intro-
duce a large-scale shear to the velocity. This has two effects,
it breaks the isotropy and as found by Tobias & Cattaneo
(2015) has the effect of controlling the fluctuations, making
the detection of the large-scale structure easier. In fact the
second property has led these authors to formulate a gen-
eral “suppression principle”. This states that, at high Rm,
large-scale organisation will only be detected if some mech-
anism is present to control the fluctuations at small-scales.
It was further posited that this agent could be related to
the shear, enhanced diffusion or nonlinear effects (in the dy-
namic regime). Here we shall illustrate some of these issues,
by looking at a system related to that of Tobias & Cattaneo
(2013).

3 MODEL AND RESULTS

In the spirit of the discussion above, the idea here is to solve
the full induction equation at high Rm and examine the
behaviour at large scales through some appropriate filtering
procedure. Thus we solve

∂B

∂t
= ∇× (u×B) +

1

Rm
∇

2
B, (1)

for the magnetic field B and a prescribed velocity u, which
we take to be a spatially periodic, random, quasi-two di-
mensional flow. These flows have all three components of
the velocity, but only depend on two co-ordinates, x and y,
say. Because of the invariance in the z-direction, the induc-
tion equation is separable with periodic solutions of the form
B(x, y, z, t) = b(x, y, t) exp(ikzz). This formally reduces the
dynamo problem to a two-dimensional one for any value of
kz. These types of flows have been the workhorse of dynamo
studies at highRm (Roberts 1972; Galloway & Proctor 1992;
Cattaneo & Tobias 2005).

The velocities here are made up of two pieces; the first
is a random, helical flow, whose helicity we can control, with
wavenumbers in the band 14/πL to 20/πL, where L is is the
periodicity in x and y (Pongkitiwanichakul et al 2016). The
second is a large-scale shear flow of the form

us = us cos
(

2πy

L

)

x̂. (2)

1 The only way to make the growth-rate zero is to make Rm

small.
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Figure 1. Activity versus time diagrams. Colour density plots
of the Bx averaged in x as a function of time and y. Top panel:

us = 5.2, Middle panel: us = 4, Lower panel: us = 2. Note
that the relative amplitude of the patterns in the two bands of
maximum shear depends on the (random) initial conditions.

Flows of this type are known to be extremely effective
dynamos, amplifying the magnetic field at a well-defined
growth-rate (σ) comparable with a characteristic turnover
time of the eddies. This growth-rate depends on kz and, for
the typical values of Rm that we consider here, there is a
wavenumber of maximum growth such that the vertical size
of the fastest growing magnetic structure is roughly twice its
horizontal extent, which is itself comparable with the size of
the eddies. For these values of Rm σ is largely independent
of Rm (Tobias & Cattaneo 2013)

Because the characteristic scale of the magnetic struc-
ture is comparable with that of the eddies, and its lifetime is
comparable with their turnover time, it is natural to inter-
pret this as a small-scale dynamo. In the presence of shear
the spatial structure of the magnetic fields remain essentially
the same; however now a well-defined frequency of oscilla-
tion emerges that is revealed only when some appropriate
form of filtering is introduced. This is illustrated in Figure 1,
which shows the value of the x-average of the x-component
of magnetic field for the plane z = 0 as a function of y and
time, for three different values of the shear parameter us.
Here the filter is spatial averaging in the x-direction. For the
strongest shear a clear pattern is visible. Alternating regions
of positive and negative mean Bx appear in a cyclic pattern.
We note that the period of the oscillation is long compared
with the characteristic turnover time of the underlying flow
(approximately fifty times longer in this particular case).
Even more importantly the pattern remains phase-coherent
for many, many oscillations. For weaker shears the pattern
becomes less evident and although the period of oscillations
remains long compared with the turnover time, the pattern
appears to lose phase coherence more rapidly.

Figure 1 was obtained by averaging in x, which corre-
sponds to examing the kx = 0 component of the magnetic
field. One could ask if there are other magnetic patterns that
have bigger wavenumbers and display some coherence. If so,
what would be their lifetime? We know that if we go down

Figure 2. Phase diagrams. Ak versus Bk as defined in equation 3.
The top panels are for k = 0 and the bottom panels are for k = 1.
The left panels are for us = 5.2 and the right panels are for us = 2.
The time ordering is given by the colour-bar to the right. For the

k = 0 us = 2 case some of the off-circle points are at later times,
hence corresponding to loss of phase-coherence rather than an
initial transient.

Figure 3. Frequency power spectra for the kx = 0 component of
Bx for the same two cases as in Figure 2; upper panel is for the
higher shear. The horizontal axis is the actual frequency not the
angular frequency.

to the scale of the eddies coherence is lost. If we believe that
there is a pattern at scale 1/k it must take the form

Ak(y, t) sin z +Bk(y, t) cos z; (3)

then for a propagating wave there must be some functional
relationship between Ak and Bk. In particular if one plots
Ak as a function of Bk for a wavelike object then points
corresponding to the values of Ak and Bk at different times
should lie on a closed curve. Figure 2 shows the results of
this procedure for kx = 0 and kx = 1 for two different values
of the shear parameter that are the ones that correspond to
the top and bottom panels of Figure 1. The y-values are
selected to be the locations where the pattern is most ap-
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Figure 4. Dependence of the period of the dynamo waves, when

these can be identified, as a function of the shear strength for
fixed helicity.

Figure 5. Domain of existence in the 1/Helicity-shear plane. For
simple dynamo waves, the boundary should be a horizontal line.

parent. Clearly, for both cases, the kx = 0 is a wave and its
phase coherence is very long, whereas for kx = 1 the points
are all over the place, so there is no coherent pattern with a
characteristic scale half the size of the box. In fact, one can
repeat this procedure for any other value of kx greater than
unity and the result is always the same, so kx = 0 is the
only long-lived coherent pattern. Moreover as the shear is
decreased some of the points move to the interior indicating
that the oscillation occasionally loses coherence and is reset.

Now that we know that there is a pattern that is co-
herent over long times, we can identify its frequency by per-
forming timeseries analysis. The spatiotemporal solution is
analysed at two locations in the y-direction corresponding
to the locations of maximum shear (y = π/4, y = 3π/4)
in the z = 0 plane. The remaining signal is then a func-
tion of x and time. As we have shown that it is only the
largest scale kx = 0 that retains phase-coherence through-
out the evolution, we perform the Fourier transform in time
of this component and plot the resulting periodograms in
Figure 3 for two values of the shear. What is clear from
these is that for the case of the strongest shear the period of
the oscillation is unambiguously identified and is given by
P = 1/0.206 ≈ 5. The signal for the weaker shear is much
noisier with many peaks in the periodogram. Nevertheless
a preferred frequency is detectable and yields a period of
P = 1/0.048 ≈ 20. The dependence of these frequencies does
yield periods that are compatible with those that emerge
from a theory based on the solution of the filtered equa-

tions (in this case mean-field electrodynamics), and is not
determined by the small scale dynamo. This is illustrated
in Figure 4 which shows the period of the dynamo waves -
when they exist - as a function of the shear rate for “fixed”
helicity. The period of the dynamo waves decreases with
increasing shear in agreement with the predictions of mean-
field theory (Parker 1955). From the previous discussion it
should be clear that this is because the small-scale dynamo
shows no phase coherence and so can not be responsible for
setting the period for the oscillation of the large scales.

Clearly, higher shear produces more coherent wave-
patterns, and we know that in the absence of shear one
should not expect to detect wave patterns at all. Moreover
in the absence of helicity the wave patterns should also be
absent. Hence one should expect a boundary distinguishing
regions where waves are detectable or not in the Helicity-
Shear plane. A simple-minded application of mean-field the-
ory gives that the critical dynamo number for the onset of
large-scale dynamo action is made up of the product of the
shear and the α-effect (Parker 1955), which in turn should
be related to the helicity. That argument being correct, the
boundary in the S −

1

H
-plane should be a horizontal line.

Figure 5 shows what the boundary actually looks like for
this case. For weak shear, that is indeed the case, breaking
down when the shear is strong; for a fixed shear less helicity
than expected is required to detect dynamo waves. There
are a number of reasons why this may be the case. First, as
argued above, shear suppresses the fluctuations making the
detection of the large-scale pattern more straight-forward.
Furthermore, there are inductive effects, other than the α-
effect that contribute at high shear amplitude to the elec-
tromotive force (Krause & Rädler 1980).

4 DISCUSSION

In this paper we have considered dynamos driven by sheared
helical random noise. These systems according to classical
mean-field theory should have large-scale behaviour, but
these assertions are based on low magnetic Reynolds number
arguments where no other dynamo action can occur. This
is not the case at moderate and high Rm, which is what we
consider here. We find that indeed the dynamo operates to
generate a magnetic structure whose amplitude grows ex-
ponentially in time, with a well-defined growth-rate. This
growth-rate is entirely determined by small-scale processes,
such as chaotic stretching and cancellation exponents (Du &
Ott 1993) and not in any way related to mean-field effects.

However, within this object there is a large-scale pattern
in the form of a travelling helical (dynamo) wave, that re-
mains coherent for long periods of time and whose frequency
is determined by mean-field effects. It is important to under-
stand that this wave does not have a separate growth-rate
from the rest of the magnetic structure. It can only be un-
ambiguously identified from the rest of the structure by this
persistent phase coherent signal; all other parts of the solu-
tion are incoherent in time. This raises an interesting point,
related to how would one identify large-scale dynamo action
for a non-oscillatory pattern. It is possible that this may be
identified by a slowly-evolving pattern in the exponentially
growing solution, should one of these exist. Here by slowly
evolving we mean something that is changing on a timescale
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much longer than any characteristic timescale of the turbu-
lent flow. For example in a spherical shell this could corre-
spond to the axis of the dipole component of the magnetic
field which may wander on a timescale much longer than
the turbulent eddies that are driving the dynamo. Hence we
believe that it is better to consider a definition of large-scale
dynamo action that considers the timescale of evolution of
the pattern, rather than one that relies on spatial scales
alone.

Thus we find that at high Rm, large-scale dynamo ac-
tion consists of a long-lived coherent pattern embedded in
a sea of incoherent fluctuations. It is natural to speculate
as to the relationship between the coherent and incoherent
parts. If we think of them as signal and noise then one could
conceive several different scenarios; an additive noise case
in which the overall signal is the superposition of a periodic
part and random noise, a multiplicative case in which the
signal is periodic but with a randomly varying amplitude,
and a random phase case in which the signal is periodic but
where the phase of the oscillation varies as a random process.
In principle, given a long enough signal, it should be possible
to differentiate between these different possibilities using the
techniques of timeseries analysis. This exercise may provide
valuable insight into the physical processes that give rise to
the large-scale organisation, and we plan to undertake this
exercise in a subsequent investigation.

Of course the previous discussion, as is mean-field the-
ory, is all framed within the kinematic approximation where
the magnetic field does not act back on the turbulent flow.
Thereby it gives no indication of what the relative ampli-
tudes of the coherent part to the incoherent part of the
magnetic structure will be once this process saturates. This
is a subtle issue, for the kinematic evolution the relative
amplitude of the coherent to the incoherent part is fixed
in the growing solution. Once nonlinearity becomes impor-
tant different scales may continue to grow at different rates,
and when they saturate they may saturate at relative ampli-
tudes completely different from those of the kinematic phase.
Nonetheless the filtering technique used to identify coherent
large-scale fields in the kinematic regime may continue to be
utilised in the nonlinear regime.
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