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1 Introduction

The behaviour of thin liquid films whether forced to spread or deposited as a
distinct pattern on the surface of a substrate, is of enormous significance to
many manufacturing and biological processes. The topic of the present study is
the flow of continuous thin liquid films over surfaces containing topographical
features. In the electronics sector (displays, printed circuits, micro-devices,
sensors etc), for example, the industrial goal is often to minimise free surface
deviations from planarity either for aesthetic reasons or to ensure predictable
product properties [1].

These three-dimensional flows present extremely challenging practical de-
sign problems since free surface disturbances caused by even small-scale to-
pography can persist over length scales several orders of magnitude greater
than the actual size of the topography. The focus here is on the numerical
modelling of such flows, an area which is still in its infancy. The majority of
previous numerical studies have modelled the flow using the long wave, lu-
brication approximation which reduces the three-dimensional Navier-Stokes
equations to more tractable two-dimensional fourth order partial differential
equations for film thickness, pressure and (for evaporative flow) solvent con-
centration. Most have solved the resultant time-dependent lubrication equa-
tions with alternating-direction implicit (ADI) algorithms using alternating
sweeps in each direction so that only a banded system of equations needs to
be solved at each time step [2].

Recently, however, a Multigrid approach with adaptive time-stepping has
been developed as a more efficient alternative to ADI schemes, having already
been applied successfully to droplet spreading flows [3] and continuous film
flow with [4] or without evaporation [5]. This paper highlights the additional
benefits of adopting an automatic local grid refinement procedure within the
Multigrid algorithm which allows fine grids to be used only where they are
needed, i.e. near the topographies themselves, and much coarser grids to be
used over the rest of the substrate. Several previous numerical studies have
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successfully used mesh adaptivity in a wide variety of different contexts [6,7].
Here, the adaptive grid refinement strategy employed lies within the multilevel
adaptive technique (MLAT) of Brandt [8]. This approach is readily applicable
to the existing Multigrid solver and facilitates grid adaption using local trun-
cation error estimates coupled within the overall Full Approximation Storage
(FAS) Multigrid method.

2 Problem Specification and Mathematical Formulation

Figure 1 shows a sketch of the motion of a thin liquid film of thickness H(X, Y )
over a flat substrate, containing a small circular trench topography inclined
at an angle θ to the horizontal, with a constant volumetric flow Q0 per unit
width. The liquid is assumed Newtonian and incompressible, with constant
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Fig. 1. Gravity-driven thin film flow over a small circular trench.

density ρ, viscosity µ and surface tension σ, and its motion governed by the
Navier-Stokes and continuity equations, viz:

ρ

(

∂U

∂T
+ U.∇U

)

= −∇P + µ ∇2U + ρ g, (1)

∇.U = 0, (2)

where U = (U, V, W ) and P are the fluid velocity and pressure respectively,
T is time and g = g(sin θ, 0,− cos θ) is the acceleration due to gravity.

Assuming that ε = H0/L0 is small, where H0 and L0 are the character-
istic film thickness and in-plane length scale respectively, yields the following
lubrication equation for non-dimensional film thickness h,

∂h

∂t
=

∂

∂x

[

h3

3

(

∂p

∂x
− 2

)]

+
∂

∂y

[

h3

3

(

∂p

∂y

)]

, (3)

and pressure, p:
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p = − 6

β3
∇2(h + s) +

2

β
61/3N(h + s) , (4)

where L0 = β
(

σH0

3ρg sin θ

)1/3

and N measures the influence of gravity on free

surface shape. Topographies are defined via arctangent functions which enable
the steepness of their sides to be controlled easily and the boundary conditions
are that the flow is fully developed upstream and downstream. Further details
are given in [4].

3 Numerical Method

3.1 Spatial Discretisation

The lubrication equations (3) and (4) are solved on a square computational
domain, (x, y) ∈ Ω = (0, 1) × (0, 1), with equal, uniform grid spacings in the
x and y directions, ∆ say, leading to the following discretised equations:

∂hi,j

∂t
=

1

∆2

[
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3
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2
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3
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2
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2
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3
|i,j− 1

2
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]

−

2

∆

(
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3
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,j −

h3

3
|i− 1

2
,j

)

, (5)

pi,j +
6

∆2

[

(hi+1,j + si+1,j) + (hi−1,j + si−1,j) + (hi,j+1 + si,j+1) +

(hi,j−1 + si,j−1) − 4(hi,j + si,j)

]

− 2
3
√

6N(hi,j + si,j) = 0, (6)

for each, (i, j), in the computational domain. The terms, h3

3
|i± 1

2
,j ,

h3

3
|i,j± 1

2

are the pre-factors obtained from linear interpolation between neighbouring
vertices. Time integration is performed using the standard, second-order ac-
curate Crank-Nicholson method and writing the right hand side of equation
(5) as F (hi,j , pi,j , hi±1,j , pi±1,j , hi,j±1, pi,j±1) leads to the equation

hn+1

i,j − ∆tn+1

2
F (hn+1

i,j , pn+1

i,j , hn+1

i±1,j , p
n+1

i±1,j , h
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i,j±1
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i,j±1
)

= hn
i,j +
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2
F (hn

i,j , p
n
i,j , h

n
i±1,j , p

n
i±1,j , h

n
i,j±1, p

n
i,j±1), (7)

for which ∆tn+1 = tn+1 − tn, and the right hand sides are given in terms of
known values at the end if the nth time step, t = tn.
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3.2 Adaptive Multigrid Solution Strategy

Equations (6) and (7) and are solved using a Full Approximation Storage
Multigrid algorithm within a Full Multigrid Cycle. Error reduction is per-
formed using a fixed number of pre- and post- Red-Black Gauss-Seidel New-
ton relaxations. On the coarsest grid level, the discretised equations are solved
using Newton iteration. Adaptive local mesh refinement is implemented us-
ing the Multi-Level Adaptive Technique (MLAT) first proposed by Brandt [8].
The τ -indicator is used to quantify errors since information is readily available
from the different grid levels. The difference in truncation error on successive
grids Gk and Gk−1 is approximated via a relative truncation error quantity,
τk−1

k , with large values of τk−1

k indicating regions of significant error between
successive grid levels and where correspondingly further grid refinement is
necessary.

A general approach to the discretisation at local refinement interfaces is
to conserve numerical flux at both the coarse and fine locally refined regions,
where the numerical flux across a control volume is defined via;

F =

∫ ∫

S

u · n dS . (8)

For equation (7)

u = uh =

(

h3

3

(

∂p

∂x
− 2

)

,
h3

3

(

∂p

∂y

))

, (9)

and for equation (6)

u = up = − 6

β3
∇(h + s) . (10)

Further details of the adaptive approach used here are given in [9].

4 Results

The cases considered here are for the flow of thin water films of asymptotic
film thickness H0 = 100µm, viscosity 0.001Pa s, density ρ = 1000kgm−3

and surface tension σ = 0.07N m−1 down a substrate inclined at 30◦ to the
horizontal and with a constant inlet flow rate Q0 = 1.635 × 10−6m2s−1 [1].
These parameters yield a Capillary length Lc = 0.78mm and N = 0.122,
the latter value indicating that gravity has little influence on the free surface
shape. All results are obtained using an FMG V(4,2) cycle with a coarse grid
with 9x9 nodes in each direction and finest grid levels up to 513x513 (k = 6).

Figure 2 illustrates the flexibility of the adaptive approach by solving flow
over a square 39mm x 39mm domain containing three trenches each of char-
acteristic length 3.9mm, depth 10µm and with square, circular and a diamond
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cross-sectional shapes indicated on the right hand plan view of the computa-
tional grids. The left hand side of the Figure shows the resultant free surface
disturbances, with the characteristic upstream capillary ridge and downstream
bow wave evident around each isolated topography [4]. It also clearly shows

Fig. 2. Flow past three small topographies.

that the greatest refinement is concentrated around the topographies them-
selves while allowing coarser 33x33 grids to be employed in the simple regions
of the flow with the smallest free surface disturbances. The efficiency of the
adaptive approach is highlighted for flow past a square trench of dimensions
0.78mm x 0.78mm x 10µm. Figure 3 shows the CPU time for (a single time
step?) needed for the adaptive Multigrid solver compared to that taken by
the non-adaptive solver. The grid levels used are k = 2 (33x33 nodes in each
direction), k = 3 (65x65),..., k = 6 (513x513) over a square 39mm x 39mm
substrate. Non-adaptive solutions are calculated on uniformly-spaced grids
whereas the adaptive ones use a global coarse 33x33 grid and refine adap-
tively if the residuals of the discretised equations on grid k are greater than
0.1τk−1

k . Figure 3 shows that the adaptive solutions are much more efficient
than the non-adaptive ones. For the case of a 513x513 grid (k = 6), for exam-
ple, the adaptive solution calculates a solution of equal accuracy in less than
10% of the CPU time.

5 Conclusion

Thin film and spreading flows over topographically heterogeneous substrates
are of enormous significance in a variety of biological, scientific and industrial
processes. A new Multigrid strategy with automatic mesh adaption for inves-
tigating thin film flows over arbitrary topography (peaks, trenches and their
combination) is introduced which offers substantial efficiency gains compared
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Fig. 3. Comparison between CPU times for adaptive and non-adaptive solution of
flow past a square trench.

to the non-adaptive approach. This offers the ability to create fine meshes
only in regions exhibiting large gradients in the free surface while allowing
coarser meshes to be used in the simpler flow regions.

The adaptive solver is an important development toward the production
of practically useful simulation tools that can solve real problems, for exam-
ple identifying the optimum secondary topography distribution or localised
heating sources needed as part of a manufacturing process to planarise free
surface flows over desirable topography [1].
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