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Bearing Rigidity and Almost Global

Bearing-Only Formation Stabilization
Shiyu Zhao and Daniel Zelazo

Abstract—This paper studies the problem of distributed con-
trol of bearing-constrained multi-agent formations using bearing-
only measurements. In order to solve this problem, we first
propose a bearing rigidity theory that is applicable to arbitrary
dimensions. The proposed bearing rigidity theory is then applied
to solve two bearing-only formation control problems. In the first,
each agent can measure the relative bearings to their neighbors
in a global reference frame, while in the second problem, each
agent can only measure the bearings and relative orientations of
their neighbors in their local frames. For the two problems, we
propose distributed bearing-only control laws and prove almost
global formation stability.

Index Terms—Bearing rigidity, formation control, bearing-only
measurement, attitude synchronization, almost global input-to-
state stability

I. INTRODUCTION

Multi-agent formation control has been studied extensively

in recent years with distance-constrained formation control

taking a prominent role [1]–[6]. In this setting it is assumed

that the target formation is specified by inter-agent distances,

and each agent is able to measure relative positions of their

neighbors. Bearing-constrained formation control has also at-

tracted much attention recently [7]–[13]. Instead of distances,

the formation is specified by inter-agent bearings, and each

agent can measure the relative positions or bearings of their

neighbors. Bearing measurements are often cheaper and more

accessible than position measurements, spurring interest in

cooperative control using bearing-only measurements [8]–[17].

Bearing-based formation control can be potentially applied

to vision-based cooperative control of multi-vehicle systems

where each vehicle can measure the bearings of their neighbors

with a camera.

This paper studies a bearing-only formation control prob-

lem where the target formation is bearing-constrained and

each agent has access to the bearing-only measurements of

their neighbors. Relative position or distance measurements

are not available. Moreover, it is noted that while bearing

measurements can be used to estimate relative distances or

positions [15], [17], [18], such schemes may significantly

increase the complexity of the sensing system in terms of

both hardware and software. This then motivates our study

focusing on a pure bearing-only control scheme, where the

bearing measurements are directly applied in the formation

control and it is not required to estimate additional quantities

(e.g., relative position).
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Although bearing-only formation control has attracted much

interest in recent years, many problems on this topic remain

unsolved. The studies in [7], [10], [14] considered bearing-

constrained formation control in two-dimensional spaces, but

required access to position or other measurements in the

proposed control laws. The results reported in [15], [17] only

require bearing measurements, but the bearing measurements

are used to estimate additional relative-state information such

as distance ratios or scale-free coordinates. The works in

[8], [9], [11], [12] studied formation control with bearing

measurements directly applied in the control. However, these

results were applied to special formations, such as cyclic

formations, and may not be extendable to arbitrary formation

shapes. A very recent work reported in [13] solved bearing-

only formation control for arbitrary underlying sensing graphs.

This result, however, is valid only for two-dimensional forma-

tions. Bearing-only formation control in arbitrary dimensions

with general underlying sensing graphs still remains an open

problem.

It is well known that a central tool in the study of distance-

based formation control is distance rigidity theory. Similarly, a

central tool for analyzing bearing-based problems is bearing

rigidity theory (also referred to as parallel rigidity in some

literature). Up to now, the existing works on bearing rigidity

mainly focused on frameworks in two-dimensional ambient

spaces [7], [9], [18], [19]. The first contribution of our work,

therefore, is an extension of the existing bearing rigidity theory

to arbitrary dimensions. We also explore connections between

bearing rigidity and distance rigidity, and in particular show

that a framework in R
2 is infinitesimally bearing rigid if and

only if it is also infinitesimally distance rigid.

Based on the proposed bearing rigidity theory, we inves-

tigate distributed bearing-only formation control in arbitrary

dimensions in the presence of a global reference frame. We

propose a distributed bearing-only formation control law and

show by a Lyapunov approach that the control law can almost

globally stabilize infinitesimally bearing rigid formations. We

also provide a sufficient condition ensuring collision avoidance

between any pair of agents under the action of the control.

In the third part of the paper, we investigate bearing-

only formation control in three dimensions without a global

reference frame known to the agents. In this case, each agent

can only measure the bearings and relative orientations of

their neighbors in their local reference frames. We propose

a distributed control law to control both the position and the

orientation of each agent. It is shown that the orientation will

synchronize, and the target formation is almost globally stable.

Formation control of both positions and orientations (also
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known as formation control in SE(2) or SE(3)) has received

some attention very recently [18], [20]–[23]. As the position

and orientation dynamics usually forms a cascade system,

input-to-state stability (ISS) can be used to prove the formation

stability [22], [23]. While the conventional ISS is defined for

globally stable equilibriums, we employ the recently developed

almost global ISS [24] to prove the almost global formation

stability.

This paper is organized as follows. Section II presents

the bearing rigidity theory that is applicable to arbitrary

dimensions. Section III studies bearing-only formation control

in arbitrary dimensions in the presence of a global reference

frame, and Section IV studies the case without a global

reference frame. Simulation results are presented in Section V.

Conclusions and future works are given in Section VI.

Notations: Given Ai ∈ R
p×q for i = 1, . . . , n, denote

diag(Ai) , blkdiag{A1, . . . , An} ∈ R
np×nq . Let Null(·)

and Range(·) be the null space and range space of a matrix,

respectively. Denote Id ∈ R
d×d as the identity matrix, and

1 , [1, . . . , 1]T. Let ‖ · ‖ be the Euclidian norm of a

vector or the spectral norm of a matrix, and ⊗ the Kronecker

product. For any x = [x1, x2, x3]
T ∈ R

3, the associated skew-

symmetric matrix is denoted as

[x]× ,





0 −x3 x2

x3 0 −x1

−x2 x1 0



 . (1)

An undirected graph, denoted as G = (V, E), consists of

a vertex set V = {1, . . . , n} and an edge set E ⊆ V × V
with m = |E|. The set of neighbors of vertex i is denoted

as Ni , {j ∈ V : (i, j) ∈ E}. An orientation of an

undirected graph is the assignment of a direction to each edge.

An oriented graph is an undirected graph together with an

orientation. The incidence matrix H ∈ R
m×n of an oriented

graph is the {0,±1}-matrix with rows indexed by edges and

columns by vertices: [H]ki = 1 if vertex i is the head of edge

k, [H]ki = −1 if vertex i is the tail of edge k, and [H]ki = 0
otherwise. For a connected graph, one always has H1 = 0
and rank(H) = n− 1 [25].

II. BEARING RIGIDITY IN ARBITRARY DIMENSIONS

The basic problem that bearing rigidity theory studies is

whether a framework can be uniquely determined up to a

translation and a scaling factor given the bearings between

each pair of neighbors in the framework. This problem can be

equivalently stated as whether two frameworks with the same

inter-neighbor bearings have the same shape. The existing

bearing rigidity theory is developed mainly for two dimen-

sions. In this section, we propose a bearing rigidity theory

that is applicable to arbitrary dimensions.

We first define some necessary notations. Given a finite

collection of n points {pi}ni=1 in R
d (n ≥ 2, d ≥ 2), a

configuration is denoted as p = [pT1 , . . . , p
T
n ]

T ∈ R
dn. A

framework in R
d, denoted as G(p), is a combination of an

undirected graph G = (V, E) and a configuration p, where

vertex i ∈ V in the graph is mapped to the point pi in the

configuration. For a framework G(p), define the edge vector

0

x

y

Pxy

Fig. 1: The geometric interpretation of the orthogonal projection operator.

and the bearing, respectively, as

eij , pj − pi, gij , eij/‖eij‖, ∀(i, j) ∈ E . (2)

As defined in (2), the bearing between two points is repre-

sented by a unit vector. This is different from the conventional

representation where a bearing is described as one angle (az-

imuth) in two dimensions or two angles (azimuth and altitude)

in three dimensions. The unit-vector representation enables us

to conveniently describe bearings in arbitrary dimensions. Note

also that eij = −eji and gij = −gji.
We now introduce an important orthogonal projection op-

erator that will be widely used in this paper. For any nonzero

vector x ∈ R
d (d ≥ 2), define the operator P : Rd → R

d×d

as

P (x) , Id −
x

‖x‖
xT

‖x‖ .

For notational simplicity, denote Px = P (x). Note Px is an

orthogonal projection matrix which geometrically projects any

vector onto the orthogonal compliment of x (see Figure 1).

It can be verified that PT
x = Px, P 2

x = Px, and Px

is positive semi-definite. Moreover, Null(Px) = span{x}
and the eigenvalues of Px are {0, 1, . . . , 1}, where the zero

eigenvalue is simple and the multiplicity of the eigenvalue 1
is d− 1.

In the bearing rigidity theory, the relationship between any

two frameworks is evaluated by comparing their bearings. The

bearings of two vectors are the same only if they are parallel

to each other. As a result, the notion of parallel vectors is the

core concept for the development of the bearing rigidity theory.

The orthogonal projection operator can be used to characterize

if two vectors in an arbitrary dimension are parallel.

Lemma 1. Two nonzero vectors x, y ∈ R
d are parallel if and

only if Pxy = 0 (or equivalently Pyx = 0).

Proof. The result directly follows from the property

Null(Px) = span{x}.

Remark 1. The orthogonal projection operator provides a

more general way to characterize parallel vectors in arbitrary

dimensions. Many existing works use the notion of normal

vectors to describe parallel vectors in R
2 [7], [9], [19].

Specifically, given a nonzero vector x ∈ R
2, denote x⊥ ∈ R

2

as the normal vector satisfying xTx⊥ = 0. Then any vector

y ∈ R
2 is parallel to x if and only if (x⊥)Ty = 0.

This approach is applicable to two dimensional cases but

difficult to extend to arbitrary dimensions. Furthermore, it

is straightforward to show that the use of normal vectors

is equivalent to the use of the general orthogonal projection
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Fig. 2: The two frameworks are bearing equivalent but not bearing congruent.
That is because the bearings between (p1, p3) or (p2, p4) of the two
frameworks are different.

matrix in R
2. To see that, note

Px =
x⊥

‖x⊥‖
(x⊥)T

‖x⊥‖ , ∀x ∈ R
2 \ {0}. (3)

To prove (3), consider B = [x/‖x‖, x⊥/‖x⊥‖] ∈ R
2×2. Note

B is an orthogonal matrix. It follows from BBT = I2 that

xxT/‖x‖2 + x⊥(x⊥)T/‖x⊥‖2 = I2 leading to (3). It then

follows from (3) that

(x⊥)Ty = 0 ⇔ x⊥(x⊥)Ty/‖x⊥‖2 = 0 ⇔ Pxy = 0.

We are now ready to define the fundamental concepts in

bearing rigidity. These concepts are defined analogously to

those in the distance rigidity theory.

Definition 1 (Bearing Equivalency). Two frameworks G(p)
and G(p′) are bearing equivalent if P(pi−pj)(p

′
i − p′j) = 0 for

all (i, j) ∈ E .

Definition 2 (Bearing Congruency). Two frameworks G(p)
and G(p′) are bearing congruent if P(pi−pj)(p

′
i − p′j) = 0

for all i, j ∈ V .

By definition, bearing congruency implies bearing equiv-

alency. Figure 2 shows two frameworks that are bearing

equivalent but not bearing congruent.

Definition 3 (Bearing Rigidity). A framework G(p) is bearing

rigid if there exists a constant ǫ > 0 such that any framework

G(p′) that is bearing equivalent to G(p) and satisfies ‖p′ −
p‖ < ǫ is also bearing congruent to G(p).

Definition 4 (Global Bearing Rigidity). A framework G(p) is

globally bearing rigid if an arbitrary framework that is bearing

equivalent to G(p) is also bearing congruent to G(p).

By definition, global bearing rigidity implies bearing rigid-

ity. As will be shown later, the converse is also true.

We next define infinitesimal bearing rigidity, which is one

of the most important concepts in the bearing rigidity theory.

Recall the graph G is assumed to be undirected. Consider an

arbitrary oriented graph of G and denote

ek , pj − pi, gk , ek/‖ek‖, ∀k ∈ {1, . . . ,m} (4)

as the edge vector and the bearing for the kth directed edge.

Denote e = [eT1 , . . . , e
T
m]T and g = [gT1 , . . . , g

T
m]T. Note e

satisfies e = H̄p where H̄ = H ⊗ Id and H is the incidence

matrix. Define the bearing function FB : Rdn → R
dm as

FB(p) ,






g1
...

gm




 ∈ R

dm.

The bearing function describes all the bearings in the network.

The bearing rigidity matrix is defined as the Jacobian of the

bearing function,

R(p) ,
∂FB(p)

∂p
∈ R

dm×dn. (5)

Let δp be a variation of the configuration p. If R(p)δp =
0, then δp is called an infinitesimal bearing motion of G(p).
This is analogous to infinitesimal motions used in distance-

based rigidity. Distance preserving motions of a framework

include rigid-body translations and rotations, whereas bearing

preserving motions of a framework include translations and

scalings. An infinitesimal bearing motion is called trivial if

it corresponds to a translation and/or a scaling of the entire

framework.

Definition 5 (Infinitesimal Bearing Rigidity). A framework

is infinitesimally bearing rigid if all the infinitesimal bearing

motions are trivial.

Up to this point, we have introduced all the fundamental

concepts in the bearing rigidity theory. We next explore the

properties of these concepts. We first derive a useful expression

for the bearing rigidity matrix.

Lemma 2. The bearing rigidity matrix in (5) can be expressed

as

R(p) = diag

(
Pgk

‖ek‖

)

H̄. (6)

Proof. It follows from gk = ek/‖ek‖, ∀k ∈ {1, . . . ,m} that

∂gk
∂ek

=
1

‖ek‖

(

Id −
ek

‖ek‖
eTk
‖ek‖

)

=
1

‖ek‖
Pgk .

As a result, ∂FB(p)/∂e = diag (Pgk/‖ek‖) and consequently

R(p) =
∂FB(p)

∂p
=

∂FB(p)

∂e

∂e

∂p
= diag

(
Pgk

‖ek‖

)

H̄.

The expression (6) can be used to characterize the null space

and the rank of the bearing rigidity matrix.

Lemma 3. A framework G(p) in R
d always satisfies span{1⊗

Id, p} ⊆ Null(R(p)) and rank(R(p)) ≤ dn− d− 1.

Proof. First, it is clear that span{1 ⊗ Id} ⊆ Null(H̄) ⊆
Null(R(p)). Second, since Pekek = 0, we have R(p)p =
diag(Pek/‖ek‖)H̄p = diag(Pek/‖ek‖)e = 0 and hence

p ⊆ Null(R(p)). The inequality rank(R(p)) ≤ dn − d − 1
follows immediately from span{1⊗Id, p} ⊆ Null(R(p)).

For any undirected graph G = (V, E), denote Gκ as the

complete graph over the same vertex set V , and Rκ(p) as

the bearing rigidity matrix of the framework Gκ(p). The next
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result gives the necessary and sufficient conditions for bearing

equivalency and bearing congruency.

Theorem 1. Two frameworks G(p) and G(p′) are bearing

equivalent if and only if R(p)p′ = 0, and bearing congruent

if and only if Rκ(p)p′ = 0.

Proof. Since R(p)p′ = diag (Id/‖ek‖) diag (Pgk) H̄p′ =
diag (Id/‖ek‖) diag (Pgk) e

′, we have

R(p)p′ = 0 ⇔ Pgke
′
k = 0, ∀k ∈ {1, . . . ,m}.

Therefore, by the definition of bearing equivalency, the two

frameworks are bearing equivalent if and only if R(p)p′ = 0.

By the definition of bearing congruency, it can be analogously

proved that two frameworks are bearing equivalent if and only

if Rκ(p)p′ = 0.

One implication of Theorem 1 is that an infinitesimal

bearing motion is a motion that preserves the bearing between

each pair of neighbors in a framework. To see that, for any

infinitesimal motion δp ∈ Null(R(p)), we have R(p)δp =
0 ⇒ R(p)(p + δp) = 0 and hence G(p + δp) is bearing

equivalent to G(p) according to Theorem 1. As a result,

G(p+ δp) has the same inter-neighbor bearings as G(p).
We next give a useful lemma and then prove the necessary

and sufficient condition for global bearing rigidity.

Lemma 4. A framework G(p) in R
d always satisfies span{1⊗

Id, p} ⊆ Null(Rκ(p)) ⊆ Null(R(p)) and dn − d − 1 ≥
rank(Rκ(p)) ≥ rank(R(p)).

Proof. The results that span{1 ⊗ Id, p} ⊆ Null(Rκ(p)) and

dn − d − 1 ≥ rank(Rκ(p)) can be proved similarly as

Lemma 3. For any δp ∈ Null(Rκ(p)), we have Rκ(p)δp =
0 ⇒ Rκ(p)(p + δp) = 0. As a result, G(p + δp) is bearing

congruent to G(p) by Theorem 1. Since bearing congruency

implies bearing equivalency, we know R(p)(p+ δp) = 0 and

hence R(p)δp = 0. Therefore, any δp in Null(Rκ(p)) is also

in Null(R(p)) and thus Null(Rκ(p)) ⊆ Null(R(p)). Since

R(p) and Rκ(p) have the same column number, it follows

immediately that rank(Rκ(p)) ≥ rank(R(p)).

Remark 2. The intuition behind Lemma 4 is that any motion

δp that preserves the bearings between (pi, pj) for all i, j ∈ V
also preserves the bearings between (pi, pj) for all (i, j) ∈ E .

Theorem 2 (Condition for Global Bearing Rigidity). A frame-

work G(p) in R
d is globally bearing rigid if and only if

Null(Rκ(p)) = Null(R(p)) or equivalently rank(Rκ(p)) =
rank(R(p)).

Proof. (Necessity) Suppose the framework G(p) is globally

bearing rigid. We next show that Null(R(p)) ⊆ Null(Rκ(p)).
For any δp ∈ Null(R(p)), we have R(p)δp = 0 ⇒
R(p)(p + δp) = 0. As a result, G(p + δp) is bearing

equivalent to G(p) according to Theorem 1. Since G(p) is

globally bearing rigid, we further know that G(p+ δp) is also

bearing congruent to G(p), which means Rκ(p)(p + δp) =
0 ⇒ Rκ(p)δp = 0. Therefore, any δp in Null(R(p)) is

in Null(Rκ(p)) and thus Null(R(p)) ⊆ Null(Rκ(p)). Since

Null(Rκ(p)) ⊆ Null(R(p)) as shown in Lemma 4, we have

Null(R(p)) = Null(Rκ(p)).

(Sufficiency) Suppose Null(R(p)) = Null(Rκ(p)). Any

framework G(p′) that is bearing equivalent to G(p) satisfies

R(p)p′ = 0. It then follows from Null(R(p)) = Null(Rκ(p))
that Rκ(p)p′ = 0, which means G(p′) is also bearing congru-

ent to G(p). As a result, G(p) is globally bearing rigid.

Because R(p) and Rκ(p) have the same column number,

it follows immediately that Null(Rκ(p)) = Null(R(p)) if and

only if rank(Rκ(p)) = rank(R(p)).

The following result shows that bearing rigidity and global

bearing rigidity are actually equivalent notions.

Theorem 3. A framework G(p) in R
d is globally bearing rigid

if and only if it is bearing rigid.

Proof. By definition, global bearing rigidity implies bearing

rigidity. We next prove the converse is also true. Suppose the

framework G(p) is bearing rigid. By the definition of bearing

rigidity and Theorem 1, any framework satisfying R(p)p′ = 0
and ‖p′ − p‖ ≤ ǫ also satisfies Rκ(p)p′ = 0. We then have

R(p)(p+ δp) = 0 ⇒ Rκ(p)(p+ δp) = 0, ∀δp, ‖δp‖ ≤ ǫ,

where δp = p′ − p. Then, it follows from R(p)p = 0 and

Rκ(p)p = 0 that

R(p)δp = 0 ⇒ Rκ(p)δp = 0, ∀δp, ‖δp‖ ≤ ǫ,

which means Null(R(p)) ⊆ Null(Rκ(p)). Since

Null(Rκ(p)) ⊆ Null(R(p)) as shown in Lemma 4, we

further have Null(R(p)) = Null(Rκ(p)) and consequently

G(p) is global bearing rigid.

We next give the necessary and sufficient condition for

infinitesimal bearing rigidity.

Theorem 4 (Condition for Infinitesimal Bearing Rigidity). A

framework G(p) in R
d is infinitesimally bearing rigid if and

only if rank(R(p)) = dn− d− 1 or equivalently

Null(R(p)) = span{1⊗ Id, p} = span{1⊗ Id, p− 1⊗ p̄},
where p̄ = (1⊗ Id)

Tp/n is the centroid of {pi}i∈V .

Proof. Lemma 3 shows span{1 ⊗ Id, p} ⊆ Null(R(p)).
Observe 1⊗Id and p correspond to a rigid-body translation and

a scaling of the framework, respectively. The stated condition

directly follows from the definition of infinitesimal bearing

rigidity. Note also that {1 ⊗ Id, p − 1 ⊗ p̄} is an orthogonal

basis for span{1⊗ Id, p}.

The special cases of R2 and R
3 are of the most interests to

us. A framework G(p) is infinitesimally bearing rigid in R
2 if

and only if rank(R(p)) = 2n − 3, and in R
3 if and only if

rank(R(p)) = 3n−4. In addition, Theorem 4 does not require

n ≥ d.

The following result characterizes the relationship between

infinitesimal bearing rigidity and global bearing rigidity.

Theorem 5. Infinitesimal bearing rigidity implies global bear-

ing rigidity.

Proof. Infinitesimal bearing rigidity implies Null(R(p)) =
span{1 ⊗ Id, p}. Since span{1 ⊗ Id, p} ⊆ Null(Rκ(p)) ⊆
Null(R(p)) as shown in Lemma 4, it immediately follows
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from Null(R(p)) = span{1 ⊗ Id, p} that Null(Rκ(p)) =
Null(R(p)), which means G(p) is globally bearing rigid

according to Theorem 2.

We have at this point discussed three notions of bearing

rigidity: (i) bearing rigidity, (ii) global bearing rigidity, and

(iii) infinitesimal bearing rigidity. According to Theorem 3

and Theorem 5, the relationship between the three kinds of

bearing rigidity can be summarized as below:

bearing rigidity

m
global bearing rigidity

⇐ infinitesimal bearing rigidity

It is notable that (global) bearing rigidity does not imply

infinitesimal bearing rigidity. For example, the collinear frame-

work as shown in Figure 3(a) is globally bearing rigid but not

infinitesimally bearing rigid.

We now further explore some features of infinitesimal

bearing rigidity. The following theorem shows that infinites-

imal bearing rigidity can uniquely determine the shape of a

framework.

Theorem 6 (Unique Shape). An infinitesimally bearing rigid

framework can be globally and uniquely determined up to a

translation and a scaling factor.

Proof. Suppose G(p) is an infinitesimally bearing rigid frame-

work in R
d. Consider an arbitrary framework G(p′) that is

bearing equivalent to G(p). Our aim is to prove G(p′) is

different from G(p) only in a translation and a scaling factor.

The configuration p′ can always be decomposed as

p′ = cp+ 1⊗ η + q, (7)

where c ∈ R \ {0} stands for a scaling factor, η ∈ R
d denotes

a rigid-body translation of the framework, and q ∈ R
dn, which

satisfies q ⊥ span{1⊗Id, p}, represents a transformation other

than translation and scaling. We only need to prove q = 0.

Since infinitesimal bearing rigidity implies that Null(R(p)) =
span{1⊗ Id, p}, multiplying R(p) on both sides of (7) yields

R(p)p′ = R(p)q. (8)

Since G(p′) is bearing equivalent to G(p), we have R(p)p′ = 0
by Theorem 1. Therefore, (8) implies

R(p)q = 0.

Since q ⊥ span{1⊗ Id, p} = Null(R(p)), the above equation

suggests q = 0. As a result, p′ is different from p only in a

scaling factor c and a rigid-body translation η.

The following theorem shows that if a framework is in-

finitesimally bearing rigid in a lower dimension, it is still

infinitesimally bearing rigid when evaluated in a higher di-

mensional space.

Theorem 7 (Invariance to Dimension). Infinitesimal bearing

rigidity is invariant to space dimensions.

Proof. Consider a framework G(p) in R
d (n ≥ 2, d ≥ 2).

Suppose the framework becomes G(p̃) when the dimension is

(a) (b) (c) (d)

Fig. 3: Examples of non-infinitesimally bearing rigid frameworks.

(a) (b) (c)

Fig. 4: Examples of infinitesimally bearing rigid frameworks.

lifted from d to d̃ (d̃ > d). Our goal is to prove that

rank(R(p)) = dn− d− 1 ⇔ rank(R(p̃)) = d̃n− d̃− 1,

and consequently G(p̃) is infinitesimally bearing rigid in R
d̃

if and only if G(p) is infinitesimally bearing rigid in R
d.

First, consider an oriented graph and write the bearings of

G(p) and G(p̃) as {gk}mk=1 and {g̃k}mk=1, respectively. Since

p̃i is obtained from pi by lifting the dimension, without loss

of generality, assume p̃i = [pTi , 0]
T (∀i ∈ V) where the zero

vector is (d̃− d)-dimensional. Then,

g̃k =

[
gk
0

]

, Pg̃k =

[
Pgk 0
0 Id̃−d

]

, ∀k = {1, . . . ,m}.

The bearing rigidity matrix of G(p̃) is R(p̃) =
diag

(
Id̃/‖ek‖

)
diag (Pg̃k) (H ⊗ Id̃), where

diag (Pg̃k) (H ⊗ Id̃)

= diag

([
Pgk 0
0 Id̃−d

])

H ⊗
[

Id 0
0 Id̃−d

]

.

Permutate the rows of diag (Pg̃k) (H ⊗ Id̃) to obtain

A =

[
diag (Pgk)H ⊗

[
Id 0

]

I(d̃−d)mH ⊗
[
0 Id̃−d

]

]

,

[
A1

A2

]

.

Since the permutation of the rows does not change the

matrix rank, we have rank(R(p̃)) = rank(A). Because the

rows of A1 are orthogonal to the rows of A2, we have

rank(A) = rank(A1) + rank(A2). As a result, considering

rank(A1) = rank(diag (Pgk)H ⊗ Id) = rank(R(p)) and

rank(A2) = rank(H ⊗ Id̃−d) = (d̃− d)(n− 1), we have

rank(R(p̃)) = rank(R(p)) + (d̃− d)(n− 1).

It can be easily verified using the above equation that

rank(R(p̃)) = d̃n − d̃ − 1 if and only if rank(R(p)) =
dn− d− 1.

Some examples are given in Figure 3 and Figure 4 to

demonstrate infinitesimally bearing rigid frameworks. Figure 3

shows some non-infinitesimal bearing rigid frameworks. We
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can intuitively show that the frameworks in Figure 3 are

not infinitesimally bearing rigid by identifying the non-trivial

infinitesimal bearing motions. Specifically, for the collinear

framework in Figure 3(a), the middle point can be moved

along the line freely without changing any bearings. For the

rectangular framework in Figure 3(b), any edge can be moved

in the normal direction without changing any bearings. For

the framework in Figure 3(c), the inner and outer triangles

are concentric. We can change the scale of either the inner

or the outer triangle without affecting any bearings. For the

framework in Figure 3(d), the three horizontal edges are

parallel. We can move either the left or the right triangle in the

horizontal direction without changing any bearings. Therefore,

all the frameworks in Figure 3 have non-trivial infinitesimal

bearing motions and hence they are not infinitesimal bearing

rigid. Figure 4 shows some infinitesimally bearing rigid frame-

works. It can be verified that each of the frameworks satisfies

rank(R(p)) = dn− d− 1.

A. Connections to Distance Rigidity Theory

The bearing rigidity theory and the distance rigidity theory

study similar problems of whether the shape of a framework

can be uniquely determined by the inter-neighbor bearings

and inter-neighbor distances, respectively. It is meaningful

to study the connections between the two rigidity theories.

The following theorem establishes the equivalence between

infinitesimal bearing rigidity and infinitesimal distance rigidity

in R
2.

Theorem 8. In R
2, a framework is infinitesimally bearing

rigid if and only if it is infinitesimally distance rigid.

The proof of Theorem 8 requires some preliminaries to

distance rigidity theory and is given in Appendix A. We next

give two remarks on Theorem 8. Firstly, Theorem 8 cannot

be generalized to R
3 or higher dimensions. For example,

the coplanar and cubic frameworks as shown in Figure 4(b)-

(c) are infinitesimally bearing rigid but not distance rigid in

R
3. Secondly, Theorem 8 suggests that we can determine the

infinitesimal distance rigidity of a framework by examining its

infinitesimal bearing rigidity. For example, it may be tricky to

see the frameworks in Figure 3(c)-(d) are not infinitesimally

distance rigid while it is straightforward to find the non-trivial

infinitesimal bearing motions and hence conclude that the

frameworks are not infinitesimally bearing rigid.

To end this section, we briefly compare the proposed

bearing rigidity theory with the well-known distance rigidity

theory. In the distance rigidity theory, there are three kinds of

rigidity: (i) distance rigidity, (ii) global distance rigidity, and

(iii) infinitesimal distance rigidity. The relationship between

them is (ii)⇒(i) and (iii)⇒(i). Note (ii) and (iii) do not

imply each other. The global distance rigidity can uniquely

determine the shape of a framework, but it is usually difficult

to mathematically examine [26], [27]. Infinitesimal distance

rigidity can be conveniently examined by a rank condition (see

Lemma 14 in Appendix A), but it is not able to ensure a unique

shape. As a comparison, the proposed infinitesimal bearing

rigidity not only can be examined by a rank condition (Theo-

rem 4) but also can ensure the unique shape of a framework

1

2

1 2

(a)

1 2 3 4

1

2 3

4

(b)

Fig. 5: Target formation: black solid; initial formation: grey dotted. (a) The
bearing constraints for the target formation are g∗

12
= −g∗

21
= [1, 0]T. (b)

The bearing constraints for the target formation are g∗
12

= −g∗
21

= [0, 1]T,

g∗
23

= −g∗
32

= [1, 0]T, g∗
34

= −g∗
43

= [0,−1]T, g∗
41

= −g∗
14

= [−1, 0]T,

and g∗
13

= −g∗
31

= [
√
2/2,

√
2/2]T.

(Theorem 6). In addition, the rank condition for infinitesimal

distance rigidity requires to distinguish the cases of n ≥ d and

n < d (Lemma 14), while the rank condition for infinitesimal

bearing rigidity does not. Finally, an infinitesimally distance

rigid framework in a lower dimension may become non-rigid

in a higher dimension (see, for example, Figure 4(b)), while

infinitesimal bearing rigidity is invariant to dimensions. In

summary, the bearing rigidity theory possesses a number of

attractive features compared to the distance rigidity theory,

and as we will show in the sequel, it is a powerful tool for

analyzing problems of distributed control and estimation in

multi-agent systems.

III. BEARING-ONLY FORMATION CONTROL WITH A

GLOBAL REFERENCE FRAME

In this section, we study bearing-only formation control of

multi-agent systems in arbitrary dimensions in the presence of

a global reference frame. Consider n agents in R
d (n ≥ 2 and

d ≥ 2). Note n ≥ d is not required. Assume there is a global

reference frame known to each agent. All the vector quantities

given in this section are expressed in this global frame. Denote

pi ∈ R
d as the position of agent i ∈ {1, . . . , n}. The dynamics

of agent i is

ṗi(t) = vi(t),

where vi(t) ∈ R
d is the velocity input to be designed. Denote

p = [pT1 , . . . , p
T
n ]

T ∈ R
dn and v = [vT1 , . . . , v

T
n ]

T ∈ R
dn.

The underlying sensing graph G = (V, E) is assumed to be

undirected and fixed, and the formation is denoted by G(p).
The edge vector eij and the bearing gij are defined as in

(2). Considering an arbitrary oriented graph, we can reexpress

the edge and bearing vectors as e = [eT1 , . . . , e
T
m]T and g =

[gT1 , . . . , g
T
m]T as defined in (4).

If (i, j) ∈ E , agent i can measure the relative bearing gij
of agent j. As a result, the bearing measurements obtained by

agent i at time t are {gij(t)}j∈Ni
. The constant bearing con-

straints for the target formation are specified as {g∗ij}(i,j)∈E

with g∗ij = −g∗ji. Figure 5 gives two examples to illustrate the

bearing constraints.

Definition 6 (Feasible Bearing Constraints). The bearing

constraints {g∗ij}(i,j)∈E are feasible if there exists a formation

G(p) that satisfies gij = g∗ij for all (i, j) ∈ E .
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gij

g∗

ij

Pgij
g∗

ij

−Pgij
g∗

ij

pi

pj

Fig. 6: The geometric interpretation of control law (9). The control term
−Pgij g

∗

ij is perpendicular to the bearing gij .

The bearing-only formation control problem to be solved in

this section is formally stated as below.

Problem 1. Given feasible constant bearing constraints

{g∗ij}(i,j)∈E and the initial formation G(p(0)), design vi(t)
for agent i ∈ V based only on the bearing measurements

{gij(t)}j∈Ni
such that gij(t) → g∗ij as t → ∞ for all

(i, j) ∈ E .

A. A Bearing-Only Control Law

The proposed nonlinear bearing-only formation control law

is

vi(t) = −
∑

j∈Ni

Pgij(t)g
∗
ij , ∀i ∈ V. (9)

The control law is distributed because the control of agent i
merely requires the bearing measurements {gij(t)}j∈Ni

from

its neighbors. The control law also has a clear geometric in-

terpretation illustrated in Figure 6. The control term −Pgijg
∗
ij

is perpendicular to gij since gTijPgijg
∗
ij = 0. As a result, the

control law attempts to reduce the bearing error of gij while

preserving the distance between agents i and j. This geometric

interpretation can be well demonstrated by the example shown

in Figure 5(a), where the bearing error is reduced to zero

while the inter-agent distance is preserved. In addition, similar

“projective” control laws have been used before in [28], [29]

for circular formation coordination control.

In order to analyze the proposed control law, we next rewrite

it in a matrix-vector form. Since g∗ij = −g∗ji, the bearing

constraints {g∗ij}(i,j)∈E can be reexpressed as {g∗k}mk=1 by

considering an oriented graph. Let g∗ = [(g∗1)
T, . . . , (g∗m)T]T,

then (9) can be written as

v = H̄Tdiag(Pgk)g
∗ , R̃T(p)g∗. (10)

It should be noted that the oriented graph is merely used

to obtain the matrix expression while the underlying sens-

ing graph of the formation is still the undirected graph G.

Moreover, it is worth mentioning that control law (10) is a

modified gradient control law. If we consider the bearing error
∑m

k=1 ‖gk−g∗k‖2, a short calculation shows the corresponding

gradient control law is u = H̄Tdiag(Pgk/‖ek‖)g∗, which is

exactly u = RT(p)g∗, where R(p) is the bearing rigidity ma-

trix. This gradient control law, however, requires the distance

measurement ‖ek‖. By removing the distance term ‖ek‖, we

can obtain the proposed control law (10).

We next examine some useful properties of the control

law. First of all, we show that both the centroid and scale

of the formation are invariant quantities under the action of

the control law. In this direction, define

p̄ ,
1

n

n∑

i=1

pi,

to be the centroid of the formation, and

s ,

√
√
√
√

1

n

n∑

i=1

‖pi − p̄‖2,

as the quadratic mean of the distances from the agents to the

centroid. The quantity s can be interpreted as the scale of the

formation.

Lemma 5. Under control law (10),

ṗ(t) ⊥ span {1⊗ Id, p(t)} .

Proof. The dynamics ṗ = R̃T(p)g∗ implies ṗ ∈
Range(R̃T(p)). Since Range(R̃T(p)) ⊥ Null(R̃(p)), we have

ṗ ⊥ Null(R̃(p)). Furthermore, Null(R̃(p)) = Null(R(p)) and

span{1 ⊗ Id, p} ⊆ Null(R(p)) by Lemma 3 conclude the

proof.

Theorem 9 (Centroid and Scale Invariance). The centroid p̄
and the scale s are invariant under the control law (10).

Proof. Since p̄ = (1⊗ Id)
Tp/n, we have ˙̄p = (1⊗ Id)

Tṗ/n.

It follows from ṗ ⊥ Range(1⊗Id) as shown in Lemma 5 that
˙̄p ≡ 0. Rewrite s as s = ‖p− 1⊗ p̄‖/√n. Then,

ṡ =
1√
n

(p− 1⊗ p̄)T

‖p− 1⊗ p̄‖ ṗ.

It follows from ṗ ⊥ p and ṗ ⊥ 1 ⊗ p̄ as shown in Lemma 5

that ṡ ≡ 0.

Theorem 9 can be well demonstrated by the simple simu-

lation example as shown in Figure 5(a). As can be seen, the

middle point (i.e., the centroid) and the distance (i.e., the scale)

of the two agents are invariant during the formation evolution.

The invariance of centroid and scale has also been observed

by [13] for bearing-only formation control in two-dimensional

cases.

The following results, which can be obtained from The-

orem 9, characterize the behavior of the formation tra-

jectories. In particular, we give bounds for the quantities

maxi∈V ‖pi(t)− p̄‖ and ‖pi(t)− pj(t)‖, ∀i, j ∈ V .

Corollary 1. The formation trajectory under the control law

(10) satisfies the following inequalities,

(a) s ≤ maxi∈V ‖pi(t)− p̄‖ ≤ s
√
n− 1, ∀t ≥ 0.

(b) ‖pi(t)− pj(t)‖ ≤ 2s
√
n− 1, ∀i, j ∈ V, ∀t ≥ 0.

Proof. (a) We first prove ‖pi − p̄‖ ≤ s
√
n− 1 for all i ∈

V . On one hand, the fact that
∑

j∈V(pj − p̄) = (pi − p̄) +
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∑

j∈V,j 6=i(pj − p̄) = 0 implies

‖pi − p̄‖2 ≤







∑

j∈V
j 6=i

‖pj − p̄‖







2

≤ (n− 1)
∑

j∈V,
j 6=i

‖pj − p̄‖2. (11)

On the other hand, scale invariance implies that ‖pi − p̄‖2 +
∑

j∈V,j 6=i ‖pj − p̄‖2 = ns2. Substituting this expression into

(11) gives ‖pi−p̄‖2 ≤ (n−1)(ns2−‖pi−p̄‖2), which implies

‖pi − p̄‖ ≤ s
√
n− 1.

We secondly prove s ≤ maxi∈V ‖pi − p̄‖. Since

maxi∈V ‖pi − p̄‖2 ≥ ‖pj − p̄‖2, we have n(maxi∈V ‖pi −
p̄‖2) ≥∑n

i=1 ‖pi − p̄‖2 = ns2, which implies maxi∈V ‖pi −
p̄‖ ≥ s.

(b) The inequality in (b) is obtained from ‖pi(t)−pj(t)‖ =
‖(pi(t) − p̄) − (pj(t) − p̄)‖ ≤ ‖pi(t) − p̄‖ + ‖pj(t) − p̄‖ ≤
2s
√
n− 1.

B. Formation Stability Analysis

In order to prove the formation stability, we adopt the

following rigidity assumption.

Assumption 1. Any formation that satisfies the bearing con-

straints {g∗ij}(i,j)∈E is infinitesimally bearing rigid.

Assumption 1 gives two conditions that will be useful for

the formation stability analysis. The first condition is that the

shape of any formation that satisfies the bearing constraints

is unique according to Theorem 6. The second condition is a

mathematical condition. More specifically, suppose G(p) is a

formation that satisfies the bearing constraints, then Assump-

tion 1 indicates that the bearing rigidity matrix R(p) satisfies

rank(R(p)) = dn− d− 1 and Null(R(p)) = span{1⊗ Id, p}
according to Theorem 4.

The basic idea of the formation stability proof is to show

that the formation converges from an initial formation G(p(0))
to a target formation G(p∗) as defined below.

Definition 7 (Target Formation). Let G(p∗) be a target forma-

tion satisfying

(a) Centroid: p̄∗ = p̄(0).
(b) Scale: s∗ = s(0).
(c) Bearing: (p∗j − p∗i )/‖p∗j − p∗i ‖ = g∗ij for all (i, j) ∈ E .

Lemma 6 (Existence and Uniqueness). The target formation

G(p∗) in Definition 7 always exists and is unique under

Assumption 1.

Proof. Since the bearing constraints are feasible, there exist

formations that satisfy the bearings. Due to the infinitesimal

bearing rigidity in Assumption 1, these formations including

G(p∗) can be uniquely determined up to translations and

scaling factors. Since G(p∗) additionally has the centroid and

the scale as p̄(0) and s(0), the translation and the scale

of G(p∗) can be uniquely determined. Therefore, the target

formation G(p∗) exists and is unique.

Remark 3. In fact, we are able to calculate the unique

value of p∗. Since G(p∗) is infinitesimally bearing rigid, the

bearing rigid matrix R(p∗) = diag(Pgk/‖ek‖)H̄ satisfies

−r∗

δ

δ‖

0

−2r∗

S

δ⊥

θ

Fig. 7: Geometric interpretation of δ which satisfies ‖δ + r∗‖ = ‖r∗‖.

Null(R(p∗)) = span{1 ⊗ Id, p
∗}. From the bearing con-

straints, construct R̃ , diag(Pg∗

k
)H̄ , which has the same

null space as R(p∗). We can calculate an orthogonal basis of

Null(R̃) as span{1⊗ Id, q} where q ⊥ Range(1⊗ Id). Since

p∗ ∈ Null(R̃), we can express p∗ as a linear combination of

1⊗ Id and q:

p∗ = 1⊗ x+ αq,

where x ∈ R
d and α ∈ R are the coefficients to be calculated.

Since p̄∗ = (1 ⊗ Id)
Tp∗/n = p̄(0) and s∗ = ‖p∗ − 1 ⊗

p̄∗‖/√n = s(0), a short calculation shows that x = p̄(0) and

α = ±s(0)
√
n/‖q‖. The correct sign of α can be determined

by comparing the signs of qj − qi and g∗ij . The calculation

of p∗ actually is a bearing-only network localization problem

(see [30] and the reference therein). It is noted that the specific

value of p∗ is not required for the formation stability proof.

The target formation G(p∗) has the same centroid and

scale as the initial formation. More importantly, the target

formation satisfies all the bearing constraints. Our stability

proof is to show that the formation converges to the target

formation and consequently the bearing errors converge to

zero. This idea was originally proposed by [13] to solve

bearing-only formation control in two dimensions. In this

direction, let δi = pi − p∗i and then δ̇i = fi(δ) = ṗi. Denote

δ = [δT1 , . . . , δ
T
n ]

T and f(δ) = [fT
1 (δ), . . . , fT

n (δ)]T. With

control law (10), the δ-dynamics is expressed as

δ̇(t) = f(δ) = H̄Tdiag(Pgk)g
∗. (12)

Our aim is to show δ(t) converges to zero. We next identify

the equilibriums of the δ-dynamics. Denote

r(t) , p(t)− (1⊗ p̄), r∗ , p∗ − (1⊗ p̄∗).

Note r(t) is obtained by moving the centroid of p(t) to the

origin. Due to the scale invariance, it can be verified that

‖r(t)‖ ≡ ‖r∗‖ =
√
ns for all t ≥ 0. Moreover, since p̄ = p̄∗,

we have δ(t) = r(t)− r∗.

Lemma 7. System (12) evolves on the surface of the sphere

S = {δ ∈ R
dn : ‖δ + r∗‖ = ‖r∗‖}.

Proof. It follows from δ(t) = r(t) − r∗ that ‖δ(t) + r∗‖ =
‖r(t)‖ = ‖r∗‖, where ‖r(t)‖ = ‖r∗‖ is due to the scale

invariance.

The state manifold S is illustrated by Figure 7. We next

introduce a useful lemma and then prove that system (12) has

two isolated equilibriums on S .



9

Lemma 8. Any two unit vectors g1, g2 ∈ R
d always satisfy

gT1 Pg2g1 = gT2 Pg1g2.

Proof. Since gT1 g1 = gT2 g2 = 1, we have gT1 Pg2g1 = gT1 (Id−
g2g

T
2 )g1 = gT1 g1−gT1 g2g

T
2 g1 = gT2 g2−gT2 g1g

T
1 g2 = gT2 (Id−

g1g
T
1 )g2 = gT2 Pg1g2.

Theorem 10 (Equilibrium). Under Assumption 1, system (12)

has two isolated equilibriums on S ,

(a) δ = 0,

(b) δ = −2r∗.

Proof. Any equilibrium δ ∈ S must satisfy f(δ) =
H̄Tdiag(Pgk)g

∗ = 0, which implies

0 = (p∗)TH̄Tdiag(Pgk)g
∗ = (e∗)Tdiag(Pgk)g

∗

=

m∑

k=1

(e∗k)
TPgkg

∗
k =

m∑

k=1

‖e∗k‖(g∗k)TPgkg
∗
k.

Since (g∗k)
TPgkg

∗
k ≥ 0, the above equation implies

(g∗k)
TPgkg

∗
k = 0 for all k. As a result, by Lemma 8, we have

gTk Pg∗

k
gk = 0 ⇒ eTk Pg∗

k
ek = 0 for all k and thus

0 = eTdiag
(
Pg∗

k

)
e = pT H̄Tdiag

(
Pg∗

k

)

︸ ︷︷ ︸

R̃T(p∗)

diag
(
Pg∗

k

)
H̄

︸ ︷︷ ︸

R̃(p∗)

p,

where the last equality is due to the facts that Pg∗

k
= P 2

g∗

k
and

e = H̄p. The above equation indicates

R̃(p∗)p = 0.

Observe R̃(p∗) = diag(Pg∗

k
)H̄ has the same null space as

the bearing rigidity matrix R(p∗) = diag(Pg∗

k
/‖e∗k‖)H̄ . Since

G(p∗) is infinitesimally bearing rigid by Assumption 1, it

follows from Theorem 4 that Null(R̃(p∗)) = span{1⊗Id, p
∗−

1 ⊗ p̄∗}. Considering R̃(p∗)p = 0 ⇔ R̃(p∗)(p − 1 ⊗ p̄) = 0,

we have

p− 1⊗ p̄ ∈ span{1⊗ Id, p
∗ − 1⊗ p̄∗}.

Because p−1⊗p̄ ⊥ Range(1⊗Id), we further know p−1⊗p̄ ∈
span{p∗−1⊗p̄∗}. Moreover, since ‖p−1⊗p̄‖ = ‖p∗−1⊗p̄∗‖
due to the scale invariance, we have

p− 1⊗ p̄ = ±(p∗ − 1⊗ p̄∗).

(i) In the case of p − 1 ⊗ p̄ = p∗ − 1 ⊗ p̄∗, we have p =
p∗ ⇔ δ = 0 and consequently gij = g∗ij for all (i, j) ∈ E .

(ii) In the case of p − 1 ⊗ p̄ = −(p∗ − 1 ⊗ p̄∗), we have

p = −p∗+2(1⊗p̄∗) ⇔ δ = −2(p∗−1⊗p̄∗), and consequently

gij = −g∗ij for all (i, j) ∈ E .

The equilibrium δ = 0 is desired, while the other one δ =
−2r∗ is undesired. As shown in the proof, the formation at

the undesired equilibrium is geometrically a point reflection

of the target formation about the centroid (see Figure 8 for

an illustration). As a result, the two formations at the two

equilibriums have the same centroid, scale, and shape, but they

have the opposite bearings.

Although we will present a nonlinear stability analysis of

the two equilibriums later, it is still meaningful to examine

the Jacobian matrices at the two equilibriums. Based on the

1

2

3

1

2

3

Fig. 8: An illustration of the two equilibriums. Solid line: target formation
where δ = 0 and gij = g∗ij , ∀(i, j) ∈ E . Dashed line: point reflection

of the target formation about the centroid where δ = −2r∗ and gij =
−g∗ij , ∀(i, j) ∈ E .

Jacobian matrices, we are able to conclude by Lyapunov’s

indirect method that the undesired equilibrium δ = −2r∗ is

unstable.

Proposition 1. Let

A =
∂f(δ)

∂δ

be the Jacobian of f(δ). At the desired equilibrium δ = 0, the

Jacobian matrix A|δ=0 is symmetric negative semi-definite.

At the undesired equilibrium δ = −2r∗, the Jacobian matrix

A|δ=−2r∗ is symmetric positive semi-definite and at least one

eigenvalue is positive. As a result, the undesired equilibrium

δ = −2r∗ is unstable.

Proof. Recall fi(δ) = −∑j∈Ni
Pgijg

∗
ij , ∀i ∈ V . For any j /∈

Ni, we have Aij = ∂fi/∂δj = 0. For any j ∈ Ni, we have

Aij =
∂fi
∂δj

= −∂Pgij

∂δj
g∗ij =

(

∂gij
∂δj

gTij + gij

(
∂gij
∂δj

)T
)

g∗ij

=
(

gTijg
∗
ijId + gijg

∗
ij

T
)

︸ ︷︷ ︸

Gij

∂gij
∂δj

= Gij

Pgij

‖eij‖
.

For any i ∈ V , we have

Aii = −
∑

j∈Ni

∂Pgij

∂δi
g∗ij =

∑

j∈Ni

Gij
∂gij
∂δi

= −
∑

j∈Ni

Gij

Pgij

‖eij‖
.

Observe Aii = −∑j∈Ni
Aij and Aij = Aji. Therefore, A

has a similar structure as graph Laplacian [25].

At the undesired equilibrium δ = −2r∗ where gij = −g∗ij
for all (i, j) ∈ E , we have

Aij |δ=−2r∗ = −
(

Id + g∗ijg
∗
ij

T
) Pg∗

ij

‖eij‖
= −

Pg∗

ij

‖e∗ij‖
≤ 0

for all j ∈ Ni. Similarly, we obtain

Aii|δ=−2r∗ =
∑

j∈Ni

Pg∗

ij

‖e∗ij‖
≥ 0, ∀i ∈ V.

Note A|δ=−2r∗ is positive semi-definite definite. To see that,

consider any vector y = [yT1 , . . . , y
T
n ]

T where yi ∈ R
d. Then,

yT(A|δ=−2r∗)y =
∑

(i,j)∈E(yi−yj)
TPg∗

ij
(yi−yj)/‖e∗ij‖ ≥ 0.

Thus, A|δ=−2r∗ has at least one positive eigenvalue and

consequently the undesired equilibrium δ = −2r∗ is unstable

by Lyapunov’s indirect method. Similarly, it can be shown that

A|δ=0 = − A|δ=−2r∗ ≤ 0. But the stability of the desired
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equilibrium δ = 0 cannot be straightforwardly determined

based on A|δ=0.

We next present a nonlinear stability analysis of the two

equilibriums of system (12). Choose the Lyapunov function

as

V =
1

2
‖δ‖2.

The next is the main stability result.

Theorem 11 (Almost Global Exponential Stability). Under

Assumption 1, the system trajectory δ(t) of (12) exponentially

converges to δ = 0 from any δ(0) ∈ S except δ(0) = −2r∗.

Remark 4. In terms of bearings, Theorem 11 indicates that

gij(t) converges to g∗ij for all (i, j) ∈ E from any initial

conditions except gij(0) = −g∗ij , ∀(i, j) ∈ E .

Proof. The derivative of V is V̇ = δTδ̇ = (p − p∗)Tṗ =
−(p∗)Tṗ. Substituting control law (10) into V̇ yields

V̇ = −(p∗)TH̄Tdiag(Pgk)g
∗ = −(e∗)Tdiag(Pgk)g

∗

= −
m∑

k=1

(e∗k)
TPgkg

∗
k = −

m∑

k=1

‖e∗k‖(g∗k)TPgkg
∗
k ≤ 0. (13)

Since V̇ ≤ 0, we have ‖δ(t)‖ ≤ ‖δ(0)‖ for all t ≥ 0.

Furthermore, it follows from Lemma 8 that

(g∗k)
TPgkg

∗
k = gTk Pg∗

k
gk,

substituting which into (13) gives

V̇ = −
m∑

k=1

‖e∗k‖gTk Pg∗

k
gk = −

m∑

k=1

‖e∗k‖
‖ek‖2

eTk Pg∗

k
ek

≤ − mink=1,...,m ‖e∗k‖
4(n− 1)s2

︸ ︷︷ ︸

α

m∑

k=1

eTk Pg∗

k
ek, (14)

where the inequality uses the fact that ‖ek‖ ≤ 2
√
n− 1s as

given in Corollary 1(b). Inequality (14) can be further written

as

V̇ ≤ −αeTdiag(Pg∗

k
)e = −αpTH̄Tdiag(Pg∗

k
)H̄p

= −αδTH̄Tdiag(Pg∗

k
)H̄δ

(
due to diag(Pg∗

k
)H̄p∗ = 0

)

= −αδT H̄Tdiag(Pg∗

k
)

︸ ︷︷ ︸

R̃T(p∗)

diag(Pg∗

k
)H̄

︸ ︷︷ ︸

R̃(p∗)

δ. (15)

Observe R̃(p∗) has the same rank and null space as the

bearing rigidity matrix R(p∗). Under the assumption of

infinitesimal bearing rigidity, it follows from Theorem 4

that Null(R̃(p∗)) = span{1 ⊗ Id, p
∗} and rank(R̃(p∗)) =

dn − d − 1. As a result, the smallest d + 1 eigenvalues of

R̃T(p∗)R̃(p∗) are zero. Let the minimum positive eigenvalue

of R̃T(p∗)R̃(p∗) be λd+2. Decompose δ to δ = δ⊥+δ‖, where

δ⊥ ⊥ Null(R̃(p∗)) and δ‖ ∈ Null(R̃(p∗)). Then (15) implies

V̇ ≤ −αλd+2‖δ⊥‖2. (16)

Note δ‖ is the orthogonal projection of δ on Null(R̃(p∗)) =
span{1⊗ Id, r

∗}. Since δ ⊥ span{1⊗ Id}, we further know

that δ‖ is the orthogonal projection of δ on r∗ (see Figure 7).

Let θ be the angle between δ and −r∗. Thus, ‖δ⊥‖ = ‖δ‖ sin θ,

and (16) becomes

V̇ ≤ −αλd+2 sin
2 θ‖δ‖2. (17)

It can be seen from Figure 7 that θ ∈ [0, π/2). Let θ0 be the

value of θ at time t = 0. Since ‖δ(t)‖ ≤ ‖δ(0)‖ for all t, it is

clear from Figure 7 that θ(t) ≥ θ0. Then, (17) becomes

V̇ ≤ − 2αλd+2 sin
2 θ0

︸ ︷︷ ︸

K

V.

(i) If θ0 > 0, then K > 0. As a result, the error ‖δ(t)‖
decreases to zero exponentially fast. (ii) If θ0 = 0, it can be

seen from Figure 7 that δ(0) = −2r∗ which is the undesired

equilibrium. In summary, the system trajectory δ(t) converges

to δ = 0 exponentially fast from any initial points except

δ = −2r∗.

The behavior of the δ-dynamics is intuitively similar to

an inverse pendulum, which has one instable equilibrium at

the top and one stable equilibrium at the bottom. Moreover,

as shown in the proof, the eigenvalue λd+2 of R̃T(p∗)R̃(p∗)
affects the convergence rate of the system. Since λd+2 > 0
if and only if G(p∗) is infinitesimally bearing rigid, the

eigenvalue λd+2 can be viewed as a measure of the “degree

of infinitesimal bearing rigidity”. As shown in another work

of ours [30], the matrix R̃T(p∗)R̃(p∗) is a matrix-weighted

Laplacian (called bearing Laplacian), which plays important

roles in bearing-only network localization problems.

C. Collision Avoidance

It is worth noting that there is an implicit assumption in the

stability analysis in Theorem 11. That is, no two neighbors

collide with each other during the formation evolution. If

two neighbors collide, the bearing between them will be

mathematically invalid. As a result, without this assumption,

the stability result in Theorem 11 is merely valid until collision

happens. In fact, control law (10) is not able to globally

guarantee collision avoidance (see, for example, Figure 9).

In practice, the proposed control law may be implemented

together with some other mechanisms like artificial potentials

to guarantee collision avoidance. In this paper, we merely

give a sufficient theoretical condition to show that a minimum

distance between any agents (even if they are not neighbors)

can be ensured if the initial formation is sufficiently close to

the target formation.

Theorem 12. Under Assumption 1, given a minimum distance

γ satisfying 0 ≤ γ < mini,j∈V ‖pi(0) − pj(0)‖, it can be

guaranteed that

‖pi(t)− pj(t)‖ > γ, ∀i, j ∈ V, ∀t ≥ 0 (18)

if δ(0) satisfies

‖δ(0)‖ <
1

2
√
n

(

min
i,j∈V

‖pi(0)− pj(0)‖ − γ

)

. (19)

Proof. For any i, j ∈ V , since pi(t)−pj(t) ≡ [pi(t)−pi(0)]−
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1

2 3

(a) Initial formation

1

23

(b) Target formation

1

23

(c) Collision

Fig. 9: Control law (10) is not able to globally guarantee collision avoidance.
As can be seen, with the initial formation given in (a) and the target formation
given in (b), agents 2 and 3 will collide as shown in (c).

[pj(t)− pj(0)] + [pi(0)− pj(0)], we have

‖pi(t)− pj(t)‖
≥ ‖pi(0)− pj(0)‖ − ‖pi(t)− pi(0)‖ − ‖pj(t)− pj(0)‖

≥ ‖pi(0)− pj(0)‖ −
n∑

ℓ=1

‖pℓ(t)− pℓ(0)‖

≥ ‖pi(0)− pj(0)‖ −
√
n‖p(t)− p(0)‖, ∀t ≥ 0. (20)

Since δ(t) = p(t)− p∗ = [p(t)− p(0)]− [p∗ − p(0)], we have

‖p(t)− p(0)‖ ≤ ‖δ(t)‖+ ‖p∗ − p(0)‖
≤ ‖δ(0)‖+ ‖p(0)− p∗‖ = 2‖δ(0)‖, ∀t ≥ 0.

Substituting the above inequality into (20) yields

‖pi(t)− pj(t)‖ ≥ ‖pi(0)− pj(0)‖ − 2
√
n‖δ(0)‖, ∀t ≥ 0.

As a result, if (19) holds, we have (18).

The upper bound for ‖δ(0)‖ given Theorem 12 is inversely

proportional to
√
n. This is intuitively reasonable since the

chance for two agents colliding is high when the number of

the agents is large and consequently the initial error must be

small to avoid collision. In addition, the condition given in

Theorem 12 is conservative. However, extensive simulations

have shown that the proposed controller can avoid collisions

even if the above condition is not satisfied.

IV. BEARING-ONLY FORMATION CONTROL WITHOUT A

GLOBAL REFERENCE FRAME

In the previous section, we assumed a global reference

frame whose orientation is known to all agents. In this section,

we study the case where the global reference frame is unknown

to the agents and each agent can only measure the bearings

of their neighbors in their local reference frames.

Consider n ≥ 2 agents in R
3. Denote pi ∈ R

3, vi ∈ R
3, and

wi ∈ R
3 as the position, linear velocity, and angular velocity

of agent i ∈ V expressed in a global reference frame which is

unknown to each agent. There is a local reference frame fixed

on the body of each agent. We use the superscript b to indicate

a vector expressed in the local body frame. A vector quantity

without the superscript is expressed in the global frame. In

particular, vbi and wb
i represent the linear velocity and angular

velocity of agent i expressed in its own body frame. Let Qi ∈
SO(3) be the rotation form the body frame of agent i to the

global frame. Then, vi = Qiv
b
i and wi = Qiw

b
i . The position

and orientation dynamics of agent i is

ṗi = Qiv
b
i ,

Q̇i = Qi

[
wb

i

]

×
, (21)

where [ · ]× is the skew-symmetric matrix operator defined in

(1), and vbi and wb
i are the inputs to be designed.

Denote, as before, eij , pj − pi and gij , eij/‖eij‖ for

(i, j) ∈ E . Agent i can measure the bearings of its neighbors

in its local frame, {gbij}j∈Ni
, where gbij = QT

i gij . Moreover,

assume agent i can also measure the relative orientation of its

neighbors, {QT
i Qj}j∈Ni

. The bearing-only formation control

problem to be solved in this section is stated as below.

Problem 2. Given feasible constant bearing constraints

{g∗ij}(i,j)∈E and an initial formation G(p(0)) with agent orien-

tations as {Qi(0)}i∈V , design vbi (t) and wb
i (t) for agent i ∈ V

based only on the local bearing measurements {gbij(t)}j∈Ni

and relative orientation measurements {QT
i (t)Qj(t)}j∈Ni

such that {Qi(t)}i∈V converge to a common value and

gbij(t) → g∗ij as t → ∞ for all (i, j) ∈ E .

It is notable that there is an orientation synchronization

problem embedded in Problem 2. This scheme is inspired by

the works on formation control based on orientation align-

ment [21], [22]. Once the orientations of the agents have

synchronized, the synchronized local frames can be viewed

as a common frame where the bearing constraints should be

satisfied. It is worth mentioning that the value of the finally

synchronized orientation is not of our interest, and we only

care about the shape of the formation. If the final orientation

of the formation is desired in practice, one may introduce a

leader to control the value of the synchronized orientation and

the formation stability analysis presented in this section is still

valid in this case.

A. A Bearing-Only Control Law

The proposed position and orientation control laws are

vbi = −
∑

j∈Ni

Pgb
ij
(I3 +QT

i Qj)g
∗
ij , (22a)

[
wb

i

]

×
= −

∑

j∈Ni

(
QT

j Qi −QT
i Qj

)
. (22b)

The proposed control law is distributed and can be imple-

mented without the knowledge of the global frame. It only

requires local bearing measurements {gbij}j∈Ni
and relative

orientation measurements {QT
i Qj}j∈Ni

. Control law (22b)

actually is the orientation synchronization control proposed in

[31]. Substituting control law (22) into (21) gives the closed-

loop system dynamics with all vector quantities expressed in

the global frame as

ṗi = −
∑

j∈Ni

Pgij (Qi +Qj)g
∗
ij , (23a)

Q̇i = −
∑

j∈Ni

Qi

(
QT

j Qi −QT
i Qj

)
. (23b)

While deriving (23a), we use the fact that gij = Qig
b
ij and

QiPgb
ij
QT

i = Pgij .
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We next show that the centroid and the scale of the

formation are invariant under control law (22).

Lemma 9. Under control law (22),

ṗ ⊥ span {1⊗ I3, p} . (24)

Proof. Let Qij , Qi +Qj . Then, ṗi = −∑j∈Ni
PgijQijg

∗
ij .

Consider an arbitrary oriented graph, the position dynam-

ics (23a) can be written in a matrix form as ṗ =
H̄Tdiag (Pgk) diag (Qk) g

∗. Because 1 ⊗ I3 and p are all in

the left null space of H̄Tdiag (Pgk), we obtain (24).

Theorem 13 (Centroid and Scale Invariance). The centroid p̄
and the scale s are invariant under control law (22).

Proof. With Lemma 5, the proof is similar to Theorem 9.

Remark 5. In fact, it can be easily verified that Lemma 9 and

Theorem 13 hold for any position control law that has the form

of ṗi = −∑n
i=1 Pgijyij where yij ∈ R

3 and yij = −yji.

The following results, which can be obtained from Theo-

rem 13, give bounds for maxi∈V ‖pi(t) − p̄‖ and ‖pi(t) −
pj(t)‖, ∀i, j ∈ V .

Corollary 2. The formation trajectory under the control law

(22) satisfies the following inequalities,

(a) s ≤ maxi∈V ‖pi(t)− p̄‖ ≤ s
√
n− 1, ∀t ≥ 0.

(b) ‖pi(t)− pj(t)‖ ≤ 2s
√
n− 1, ∀i, j ∈ V, ∀t ≥ 0.

Proof. The proof is similar to Corollary 1.

B. Formation Stability Analysis

In order to prove the formation stability, we adopt Assump-

tion 1 as well as the following assumption.

Assumption 2. In the initial formation, there exists Q0 ∈
SO(3) such that QT

0 Qi is (non-symmetric) positive definite

for all i ∈ V .

Remark 6. Assumption 2 has been widely adopted for atti-

tude synchronization control [31], [32]. Based on axis-angle

representation, a rotation matrix is positive definite if and only

if the rotation angle is in (−π/2, π/2). The existence of Q0

in Assumption 2 means there is a coordinate transformation

of the world frame such that all orientation matrices become

positive definite. Another interpretation is that there is a point

Q0 ∈ SO(3) such that {Qi}i∈V are contained within a ball

of radius less than π/2 in the SO(3) manifold [32].

The closed-loop system (23) is a cascade system: the dy-

namics of the orientation is independent to the dynamics of the

position, whereas the converse is not true. It has been proved

by [31] that the orientation of the agents will synchronize

under control law (22b).

Lemma 10 ([31, Thm 1]). Under Assumption 2, if the inter-

connection graph is fixed and strongly connected, the orienta-

tion control law (22b) guarantees orientation synchronization

in the sense that

lim
t→∞

QT
i Qj = I3, ∀i, j ∈ V.

Although the value of the final converged orientation is

not given, Lemma 10 indicates that there exists a unique

Q∗ ∈ SO(3) such that Qi (i ∈ V) converges to Q∗

asymptotically. The specific value of Q∗ is not of our interest

and it is not required to prove the formation stability. The

idea of the stability proof is similar to the case with a global

reference frame. We will prove that the formation converges

to a target formation as defined below.

Definition 8 (Target Formation). Let G(p∗) be the target

formation that satisfies

(a) Centroid: p̄∗ = p̄(0).
(b) Scale: s∗ = s(0).
(c) Bearing: (p∗j − p∗i )/‖p∗j − p∗i ‖ = Q∗g∗ij for all (i, j) ∈ E .

Lemma 11 (Existence and Uniqueness). The target formation

G(p∗) in Definition 8 always exists and is unique under

Assumptions 1 and 2.

Proof. The proof is similar to Lemma 6. But it should be noted

that the bearings of G(p∗) in Definition 8 are {Q∗g∗ij}(i,j)∈E

instead of {g∗ij}(i,j)∈E .

Let δi , pi − p∗i . It follows from the closed-loop position

dynamics (23a) that

δ̇i = −
∑

j∈Ni

Pgij (Qi +Qj)g
∗
ij

= −2
∑

j∈Ni

PgijQ
∗g∗ij

︸ ︷︷ ︸

fi(δ)

+
∑

j∈Ni

Pgij (2Q
∗ −Qi −Qj)g

∗
ij

︸ ︷︷ ︸

hi(t)

.

Denote δ = [δT1 , . . . , δ
T
n ]

T, f(δ) = [fT
1 (δ), . . . , fT

n (δ)]T, and

h(t) = [hT
1 (t), . . . , h

T
n (t)]

T. Then, the δ-dynamics is

δ̇ = f(δ) + h(t), (25)

where h(t) can be viewed as an input. It should be noted that

the autonomous system (i.e., system (25) with h(t) ≡ 0)

δ̇ = f(δ)

has already been well studied in Section III. For this au-

tonomous system, we can conclude based on Section III

that δ = 0 is an almost globally stable equilibrium and

gij(t) → Q∗g∗ij almost globally as t → ∞.

Lemma 12. The input h(t) converges to zero asymptotically.

Proof. Since ‖h(t)‖ ≤ ∑n
i=1 ‖hi(t)‖ ≤

∑n
i=1

∑

j∈Ni
‖Pgij‖‖2Q∗ −Qi −Qj‖‖g∗ij‖, where ‖Pgij‖ =

‖g∗ij‖ = 1 and ‖2Q∗ −Qi −Qj‖ ≤ ‖Qi −Q∗‖+ ‖Qj −Q∗‖,

we have ‖h(t)‖ ≤ 2
∑n

i=1 ‖Qi(t) −Q∗‖. Since Qi(t) → Q∗

asymptotically by Lemma 10, we have ‖h(t)‖ → 0 as

t → ∞.

We next identify the state manifold and the equilibriums of

the δ-dynamics (25). Denote, as before, r(t) = p(t) − 1 ⊗ p̄
and r∗ = p∗ − 1⊗ p̄∗.

Lemma 13. System (25) evolves on the surface of the sphere

S = {δ ∈ R
3n : ‖δ + r∗‖ = ‖r∗‖}.



13

Proof. It follows from δ(t) = r(t) − r∗ that ‖δ(t) + r∗‖ =
‖r(t)‖ = ‖r∗‖, where ‖r(t)‖ = ‖r∗‖ is due to the scale

invariance.

Theorem 14 (Equilibrium). Under Assumptions 1 and 2, the

closed-loop system (23) (i.e., the δ-dynamics together with the

orientation dynamics) has two equilibrium points,

(a) δ = 0 and Qi = Q∗, ∀i ∈ V ,

(b) δ = −2r∗ and Qi = Q∗, ∀i ∈ V .

Proof. Any equilibrium must satisfy
∑

j∈Ni

Pgij (Qi +Qj)g
∗
ij = 0, ∀i ∈ V. (26)

It follows from Lemma 10 that Qi = Q∗ (∀i ∈ V) is

the equilibrium for the orientation dynamics (23b) under

Assumption 2. Then, (26) becomes
∑

j∈Ni

PgijQ
∗g∗ij = 0, ∀i ∈ V.

Similar to the proof of Theorem 10, it can be shown that

the above equation suggests two equilibriums: δ = 0 and

δ = −2r∗. The bearings at the two equilibriums are gij =
Q∗g∗ij , ∀(i, j) ∈ E and gij = −Q∗g∗ij , ∀(i, j) ∈ E , respective-

ly.

The equilibrium δ = 0 is desired while the other one

δ = −2r∗ is undesired. The formations at the two equilibriums

have the same centroid, scale, and shape, but they have the

opposite bearings. We next present the main stability result

and show that the desired equilibrium δ = 0 is almost globally

stable. The idea of the proof is to show system (25) is almost

globally ISS [24]. Then, the almost global stability can be

concluded by limt→∞ h(t) = 0. The conventional ISS is not

applicable because it is defined for globally stable equilibriums

while the equilibrium δ = 0 of δ̇ = f(δ) is almost globally

stable. A review of the almost global ISS is presented in

Appendix B.

Theorem 15 (Almost Global Asymptotical Stability). Under

Assumptions 1 and 2, the system trajectory δ(t) of (25)

asymptotically converges to δ = 0 from any δ(0) ∈ S except

a set of measure zero.

Remark 7. In terms of bearings, Theorem 15 indicates that

gij(t) almost globally converges to Q∗g∗ij for all (i, j) ∈ E .

Consequently, giij(t) = QT
i (t)gij(t) → (Q∗)TQ∗g∗ij = g∗ij as

t → ∞. Therefore, control law (22) solves Problem 2.

Proof. We first prove system (25) fulfills the ultimate bound-

edness property with Lemma 15 (see Appendix B). Consider

the Lyapunov function V = ‖δ‖2/2. For the autonomous

system δ̇ = f(δ), we already know from the proof of

Theorem 11 that there exists a positive constant κ such that

∂V

∂δ
f(δ) ≤ −κ sin2 θ‖δ‖2 = −κ

(

1− ‖δ‖2
4‖r∗‖2

)

‖δ‖2.

The derivative of V along the trajectory of system (25) is

V̇=
∂V

∂δ
(f(δ) + h(t))≤−κ

(

1− ‖δ‖2
4‖r∗‖2

)

‖δ‖2 + ‖δ‖‖h(t)‖

= −κ‖δ‖2 + κ‖δ‖4
4‖r∗‖2 + ‖δ‖‖h(t)‖

≤ −2κV + 4κ‖r∗‖2 + 2‖r∗‖‖h(t)‖,
where the last inequality is due to ‖δ‖ ≤ 2‖r∗‖. By Lem-

ma 15, system (25) fulfills the ultimate boundedness property.

We next show system (25) satisfies all the three conditions

(a)-(c) in Lemma 16 (see Appendix B). First, the state of (25)

evolves on the sphere S which satisfies condition (a) in Lem-

ma 16. Second, consider V = ‖δ‖2/2. For the autonomous

system δ̇ = f(δ), we have (∂V/∂δ)f(δ) ≤ −κ sin2 θ‖δ‖2 < 0
for all δ ∈ S except the equilibriums δ = 0 and δ = −2r∗.

Thus, condition (b) is fulfilled. Third, the unstable equilibrium

of the autonomous system δ̇ = f(δ) is δ = −2r∗. It is isolated.

Similar to the proof of Proposition 1, it can be shown that the

Jacobian A = ∂f/∂δ at δ = −2r∗ is positive semi-definite

and at least one eigenvalue is positive. As a result, condition

(c) is fulfilled.

Thus, it can be concluded from Lemma 16 that system

(25) is almost globally ISS. Furthermore, since the input h(t)
converges to zero as shown in Lemma 12, the equilibrium

δ = 0 is almost globally asymptotically stable. The trajectory

of (25) asymptotically converges to δ = 0 from any x(0) ∈ S
except a set of zero measure.

Remark 8. In Theorem 15, the set of measure zero, starting

from which δ(t) will converge to the undesired equilibrium δ =
−2r∗, is affected by the initial values of the agent positions

and orientations. This set of measure zero is not specifically

identified in Theorem 15. In addition, the formation at the

equilibrium δ = −2r∗ may be desirable in practical tasks

where we only care about the shape of the formation. In this

case, the equilibriums δ = 0 and δ = −2r∗ are both desired

and the formation becomes globally stable.

V. SIMULATION EXAMPLES

A. Formation Control with a Global Reference Frame

We have already presented two simulation examples in

Figure 5. It is worth noting that collinear initial formations

may cause troubles for distance-based formation control, but

as shown in Figure 5(b) it is not a problem for bearing-only

formation control. Two more simulation examples are shown

in Figures 10 and 11, respectively. The initial formations are

generated randomly. It is shown that control law (10) can steer

the agents to a formation that satisfies the bearing constraints.

B. Formation Control without a Global Reference Frame

Three simulation examples are shown in Figures 12, 13, and

14, respectively. The local frame for each agent is represented

by the line segments in red, green, and blue in the figures. The

initial positions and orientations of the agents are generated

randomly. The target formations in Figures 12, 13, and 14

have the same shape as those in Figures 5(b), 10 and 11,

respectively. As can be seen, the orientations of the agents
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(a) Initial formation (b) Final formation

Fig. 10: The case with a global reference frame: a two-dimensional formation
with n = 8, m = 16.

(a) Initial formation (b) Final formation

Fig. 11: The case with a global reference frame: a three-dimensional formation
with n = 8, m = 13.

finally synchronize, and the bearing constraints are satisfied

in the synchronized frames.

VI. CONCLUSIONS AND FUTURE WORKS

The first contribution of this paper is to propose a bearing

rigidity theory that is applicable to arbitrary dimensions. We

showed that the infinitesimal bearing rigidity not only can

ensure the unique shape of a framework and but also can

be conveniently examined by a mathematical condition. We

also explored the connection between the proposed bearing

rigidity and the well-known distance rigidity, and showed

that a framework in R
2 is infinitesimally bearing rigid if

and only if it is also infinitesimally distance rigid. Based

on the bearing rigidity theory, we studied two bearing-only

formation control problems with and without global reference

frames, respectively. We proposed two distributed control laws

to solve the two problems, respectively. It has been proved that

the control laws can almost globally stabilize infinitesimally

bearing rigid target formations.

Bearing-only formation control is a research topic highly

motivated by practical vision-based cooperative control tasks.

There exist many future research directions from both of

theoretical and practical perspectives. For example, this pa-

per only considered undirected and fixed underlying sensing

graphs. It is meaningful to investigate the case with directed

and switching graphs. Second, vision-based identification of

a group of agents usually requires visual tagging which

may make the vision system complicated. Motivated by that,

formation control with anonymous bearing measurements is

a meaningful topic for future research. Third, bearing-only

formation control with leaders and followers or with human-

agent interaction control [13], [15] should also be studied.

(a) Initial formation (b) Final formation

Fig. 12: The case without a global reference frame: a two-dimensional
formation with n = 4, m = 5.

(a) Initial formation (b) Final formation

Fig. 13: The case without a global reference frame: a three-dimensional
formation with n = 8, m = 18. The target formation is coplanar.

APPENDIX

A. Proof of Theorem 8

In order to prove Theorem 8, we need introduce some

concepts and results in the distance rigidity theory [26], [27].

Define the distance function for a framework G(p) as

FD(p) ,
1

2

[
· · · ‖pj − pi‖2 · · ·

]T ∈ R
m. (27)

Each entry of FD(p) corresponds to the length of an edge of

the framework. The distance rigidity matrix is defined as the

Jacobian of the distance function,

RD(p) ,
∂FD(p)

∂p
∈ R

m×dn.

We use the subscript D to distinguish the distance rigidity

matrix RD(p) from the bearing rigidity matrix R(p). Let

δp be a variation of p. If RD(p)δp = 0, then δp is called

an infinitesimal distance motion of G(p). A framework is

infinitesimally distance rigid if the infinitesimal motion only

corresponds to rigid-body rotations and translations.

Lemma 14 ([26]). A framework G(p) in R
d is infinitesimally

distance rigid if and only if

rank(RD(p)) =

{
dn− d(d+ 1)/2 if n ≥ d,
n(n− 1)/2 if n < d.

By Lemma 14, in the case of n ≥ d, the framework

G(p) is infinitesimally distance rigid in R
2 if and only

if rank(RD(p)) = 2n − 3, and in R
3 if and only if

rank(RD(p)) = 3n− 6.

To prove Theorem 8, we first prove the following result.

Proposition 2. A framework G(p) in R
2 always satisfies

rank(R(p)) = rank(RD(p)).
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(a) Initial formation (b) Final formation

Fig. 14: The case without a global reference frame: a three-dimensional
formation with n = 8, m = 13.

Proof. Consider an oriented graph and write the bearings of

the framework as {gk}mk=1. Let Qπ/2 be a 2×2 rotation matrix

that rotates any vector π/2 counterclockwise. Denote g⊥k ,

Qπ/2gk. Then, g⊥k ⊥ gk and ‖g⊥k ‖ = ‖gk‖ = 1. Since Pgk =
g⊥k (g

⊥
k )

T by (3), the bearing rigidity matrix can be rewritten

as

R(p) = diag

(
Pgk

‖ek‖

)

H̄ = diag

(
g⊥k
‖ek‖

)

diag
(
(g⊥k )

T
)
H̄.

The matrix diag
(
(g⊥k )

T
)
H̄ can be further written as

diag
(
(g⊥k )

T
)
H̄ = diag

(

gTk Q
T
π/2

)

H̄

= diag
(
gTk
)
(Im ⊗QT

π/2)(H ⊗ I2)

= diag
(
gTk
)
(H ⊗QT

π/2) = diag
(
gTk
)
H̄(In ⊗QT

π/2).

Furthermore, the distance rigidity matrix can be expressed

as RD(p) = diag
(
eTk
)
H̄ (this expression can be obtained

by calculating the Jacobian of the distance function (27)).

As a result, we have diag
(
gTk
)
H̄ = diag (1/‖ek‖)RD(p).

Therefore, R(p) can be expressed by

R(p) = diag

(
g⊥k

‖ek‖2
)

RD(p)
(

In ⊗QT
π/2

)

.

Since diag
(
g⊥k /‖ek‖2

)
has full column rank and In ⊗ QT

π/2

is invertible, we have rank(R(p)) = rank(RD(p)).

Proof of Theorem 8. By Theorem 4, a framework G(p) in R
2

is infinitesimally bearing rigid if and only if rank(R(p)) =
2n − 3. By Lemma 14, a framework is infinitesimally dis-

tance rigid if and only if rank(RD(p)) = 2n − 3. Since

rank(R(p)) = rank(RD(p)) as proved in Proposition 2, we

know rank(R(p)) = 2n − 3 if and only if rank(RD(p)) =
2n− 3, which concludes the theorem.

B. Preliminaries to Almost Global Input-to-State Stability

We review some results on almost global ISS [24]. These

results are used to prove the almost global stability of bearing-

only formation control without a global reference frame.

Consider a nonlinear system evolving on a smooth manifold

M and subject to input disturbance:

ẋ = f(x, u), (28)

where x ∈ M is the state, u ∈ U is the input, and

f : M × U → TM is a locally Lipschitz manifold map

satisfying f(x, u) ∈ TxM for all x ∈ M and all u ∈ U (TM
and TxM denotes the tangent space of M and the tangent

space of M at x, respectively).

Definition 9 (Almost Global ISS). System (28) is almost

globally ISS with respect to an equilibrium point xe if xe is

locally asymptotically stable for u ≡ 0, and for all u and

almost all x(t0) ∈ M the following inequality holds,

lim sup
t→∞

|x(t, t0, u)|xe
≤ γ(‖u‖∞), (29)

where γ is a class K function, ‖u‖∞ , supt0≤τ≤∞ ‖u(τ)‖,

and | · |xe
denotes the distance to xe.

Remark 9. Since inequality (29) holds for all t0, it is easy

to see almost global ISS implies almost global asymptotic

stability when u(t) converges to zero as t → ∞.

Definition 10 (Ultimate Boundedness). System (28) fulfills the

ultimate boundedness property if there exists a point ξ ∈ M
and for all u ∈ U and all x(t0) ∈ M, the system trajectory

x(t, x(t0), u) is defined on [t0,∞) and eventually confined to

{z ∈ M : |z|ξ ≤ γ(‖u‖∞) + c} ,
where γ is a class K function and c ∈ R is a constant, and

| · |ξ denotes the distance to ξ.

Lemma 15 ([24]). For system (28), if there exists a nonneg-

ative and proper C1 function V : M → R≥0 such that the

derivative of V along the trajectory of system (28) satisfies

∀u, ∀x, V̇ ≤ −β(V ) + c+ γ(‖u‖),
where β and γ are class K functions, and c ∈ R is a constant,

then system (28) fulfills the ultimate boundedness property.

Lemma 16 ([24]). Assume (28) satisfies the following prop-

erties:

(a) M is a C2 connected, orientable manifold without bound-

ary.

(b) There exists a nonnegative and proper C1 function V :
M → R≥0 such that the derivative of V along the system

trajectory of ẋ = f(x, 0) satisfies V̇ < 0 for all x ∈ M
and f(x, 0) 6= 0.

(c) Any equilibrium xℓ which is not asymptotically stable,

is isolated and at least one eigenvalue of the Jacobian

∂f(x, 0)/∂x|xℓ
has strictly positive real part.

Assume the equilibrium xe for ẋ = f(x, 0) is asymptotically

stable. If ultimate boundedness holds, then, (28) is almost

globally ISS with respect to xe.
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