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Abstract—In sparse reconstruction of the Doppler frequency,
the chirp atom approach has been shown to give a better
performance than its sinusoidal counterpart. Nevertheless, the
chirp atom has a relatively large dimension and so its computa-
tional load is much greater compared to the sinusoidal atom.
In this paper, we propose a simplified chirp dictionary that
obtains a satisfactory time-frequency signature approximation of
the signals, but with a computational load comparable to the
sinusoidal atom. We estimate the chirp rate through the DTFT
of the bilinear product at a certain lag, and the initial frequency
is solved in the time domain.

I. INTRODUCTION

Non-stationary signals are typically deployed to charac-
terize speech, biomedical signals, sonar, and radar returns
[1]–[3]. These signals’ frequencies can be a constant, or
linear/non-linear functions of time. In radar applications, they
are commonly referred to as Doppler and micro-Doppler
signals [4]–[7]. Being able to analyse these Doppler and micro-
Doppler frequencies correctly is extremely critical in the radar
field [8]–[12]. For example, we can measure the velocity and
direction of a bulk motion or the vibration of targets’ structures
by examining respectively the frequency shifts or frequency
modulations on the reflected signals.

There have been numerous methods of time-frequency
distribution (TFD) analysis proposed. The TFD can be ob-
tained by linear basis decomposition [13], [14] or quadratic
time-frequency distribution, generally referred to as Cohen’s
class [15], [16]. Recently, compressive sensing (CS) has at-
tracted much interest as a non-stationary signal reconstruction
method. It is based on the fact that non-stationary signals
are locally sparse in the TF domain [17]–[21]. Thus, data
segments can be recovered even with compressed observations,
under which previous methods fail to produce correct results.
Incomplete samples, or random sampling in the field of radar
can frequently happen due to range ambiguity, discarding
noisy measurements, hardware simplification, sampling fre-
quency limitations, or co-existence of various wireless services
with active or passive sensing models [22]–[24]. Therefore,
TFD approaches consistent with missing data are needed. A
straightforward approach is to perform sparse reconstruction
from windowed data in the time domain, deploying a partial
Fourier basis [18]. This is similar to the spectrogram but

compressive techniques are used and thus better results are
attained. However, this method suffers from the trade-off
between necessary measurements for accurate recovery and
sparsity when considering the window size, and also the picket
fence effect when there is a non-integer period in the analyzed
data segments. Thus, another measurement basis is required to
obtain more stable and reliable results.

In many situations, the frequency law of non-stationary
signal segments can be represented as a weighted sum of
piece-wise linear chirps, in which most of the parameter
coefficients are zero. In this respect, they are sparse in the joint
time-frequency domain. Thus, the segments’ time-frequency
signature can be recovered by sparse reconstruction with the
measurement dictionary being chirp atoms [25], [26]. Greedy
algorithms or convex optimization techniques are used to
obtain the sparsest chirp combination that best describes the
windowed signals. Compared with the sinusoidal dictionary
method, better performance is obtained under both full and
limited data because signals are more sparse in this represen-
tation, and longer windows can be employed without sensible
reduction in sparsity. It is also not susceptible to the picket
fence effect.

The chirp approach, nevertheless, deploys a very large
dimension measurement dictionary. Since there are two pa-
rameters to be estimated (i.e. the chirp rate and the initial
frequency), the dictionary dimension can be equal to the
square of the dimension when using the sinusoid atom. This
very large atom set leads to a much heavier computation
burden and a longer calculation time. Thus, in this paper, we
propose the simplified chirp atom method. We will estimate
the chirp rate (α, see in section II) through the DTFT of the
bilinear product at a certain time lag. The initial frequency
(β, see section II) is solved in time domain, with a lower
dimensional dictionary than the computationally complex full
chirp atom. The advantage of this approach is that we obtain
acceptable estimation of the TF features of the signal but with
computational complexity comparable to the sinusoidal atom.

The paper is organized as follows. Section II discusses
the computational requirement of the full chirp dictionary
approach. The simplified chirp atom method is then introduced
in section III. Section IV includes simulation results. Finally,



conclusions are given in section IV.

II. CALCULATION LOAD IN FULL CHIRP
DICTIONARY APPROACH

In the full chirp dictionary approach, a discrete signal
segment of length Nw is approximated as a sum of K(K ≥ 1)
chirps. This means that we have to the estimate chirp rates
(α) and the initial frequencies (β) of K chirps in each data
segment. This task is carried out by CS techniques with a full
chirp atom ΨF . The parameter space of interest is [25], [26]:

Ω = {(α, β) such that

|α| ≤ FmaxFs/Nw and |αNw/Fs + β| ≤ Fmax},
(1)

where Fmax is the maximum frequency of the signal, Fs(Fs =
2Fmax) is the sampling frequency. The matrix ΨF is designed
by uniformly sampling the 2D parameter space Ω. Let I denote
the total number of chirp rate values in the discrete dictionary
ΨF . For the ith chirp rate value in the dictionary, which we

denote as α̃i, let β̃i,j denote the corresponding possible values
for initial frequency, where j = 1, 2, ..., Ji. Note that the “˜”
refers to “dictionary values”. The full chirp dictionary ΨF is
defined as [25], [26]:

ΨF = [Ψ1,Ψ2, ...,ΨI ]

Ψi = [ψψψi,1,ψψψi,2, ...,ψψψi,Ji
]

ψψψi,j |n = exp

(

j2π(α̃i

n2

2F 2
s

+ β̃i,j
n

Fs

)

)

i = 1, ..., I, j = 1, ..., Ji, n = 0, 1, ..., Nw − 1.

(2)

From (2), it can be seen that for each value of αi, there are Ji
columns in the dictionary corresponding to Ji values of initial
frequency. Based on the parameter space Ω in (1), we choose
I = Fs + 1. Then, the dimension of the full chirp atom ΨF

is:

QΨF
= ⌊

3

4
(Fs + 1)2 +

1

4
⌋, (3)

where ⌊ . ⌋ is the “floor operator”. So, for each window,
K

(

3
4 (Fs + 1)2 + 1

4

)

calculations are implemented. Further-
more, as sliding windows are used, the chirp method faces
a large computational burden. With the same manner of oper-
ation, the sinusoidal dictionary method only requires O(KFs)
calculations, which gives it a big advantage over its chirp
counterpart when large amounts of data are concerned. So, in
this paper, we will propose a simplified chirp atom approach
which is computationally efficient and still possesses all the
strengths and advantages of the chirp dictionary method.

III. SIMPLIFIED DICTIONARY APPROACH

A. Chirp rate estimation

Consider an arbitrary continuous signal sc(t), which con-
sists of K(K ≥ 1) components:

sc(t) =

K
∑

k=1

Ak(t) exp(jφk(t)) + vc(t), (4)

where 0 ≤ t ≤ T , Ak(t), φk(t) are the time-varying amplitude
and phase of the kth component, and vc(t) is white Gaussian
noise. Sampling the continuous signal at the Nyquist rate

Fs(Fs = 2Fmax), where Fmax is the maximum frequency
of the signal sc(t), we have:

s(n) =

K
∑

k=1

Ak(nTs) exp(jφk(nTs)) + v(nTs), (5)

where n = 0, 1, ..., ⌊T/Ts⌋, and Ts = 1/Fs.

Similar to the full chirp atom approach, in this method,
observations inside a short-time window are also approximated
by the sum of piece-wise chirps. So breaking s(n) into Nw-

length blocks {sm(n)}Nw−1
n=0 , the mth block is calculated as:

sm(n− u(m− 1)) = s(n)h(n− u(m− 1)), (6)

where n = u(m− 1), u(m− 1) + 1, ..., u(m− 1) +Nw − 1,
u(1 ≤ u ≤ Nw) is the shift between two consecutive windows,
m(m = 1, 2, ...) is the window index, and h(n) is a rectangular
window which is non-zero only for 0 ≤ n ≤ Nw − 1.

Then the chirp-approximated mth signal segment of s(n)
is written as:

sm(n) ≈
K
∑

k=1

Ck,m exp

{

j2π

[

αk,m

n2

2F 2
s

+ βk,m
n

Fs

]}

+ vm(n) =

K
∑

k=1

sk,m + vm(n),

(7)

where 0 ≤ n ≤ Nw−1, Ck,m, αk,m, βk,m are respectively the
complex amplitude, the chirp rate, and the initial frequency of
the kth chirp over the mth window. Now sk,m is the chirp with
parameters specified by Ck,m, αk,m, βk,m. The instantaneous
autocorrelation function (IAF) of sm(n) is expressed as:

Csmsm(l, n) = sm(n+ l)s∗m(n− l)

=
K
∑

k=1

sk,m(n+ l)s∗k,m(n− l)

+
K
∑

i,j=1
i 6=j

si,m(n+ l)s∗j,m(n− l)

=
K
∑

k=1

ATk,m(l,m) +

K(K−1)
∑

g=1

CTg,m(l,m),

(8)

where l is time lag, ATk,m and CTg,m contain auto-terms and
cross-terms, respectively, and are expressed as:

ATk,m(l, n) = exp

(

j2π
2αk,ml

Fs

n

Fs

)

exp

(

j2π
2βk,ml

Fs

)

CTg,m(l, n) = exp

(

j2π(αi,m − αj,m)
n2

2F 2
s

)

exp

(

j2π
(αi,m + αj,m)l

Fs

n

Fs

)

exp

(

j2π(βi,m − βj,m)
n

Fs

)

exp

{

j2π

[

(αi,m − αj,m)l2

2F 2
s

+
(βi,m + βj,m)l

2F 2
s

]}

,

(9)

where i, j ∈ [1,K], i 6= j, g ∈ [1,K(K − 1)].
Let ATk,m(ν)|l=l1 , and CTk,m(ν)l=l1 be the DTFT of



ATk,m(l, n) and CTg,m(l, n) at l = l1, then:

|ATk,m(ν)|l=l1 | = δ

(

ν − 2αk,m

l1
Fs

)

|CTg,m(ν)|l=l1 | =W (ν) ∗ δ

(

ν −
l1(αi,m + αj,m)

Fs

)

∗

δ (ν − (βi,m − βj,m)) ,
(10)

where W (ν) is the DTFT of exp
(

j2π(αi,m − αj,m) n2

(2F 2
s )

)

.

Now (10) shows that the spectral representation of the auto-
terms are delta functions whose locations are determined by
only the chirp rates. So if νATk,m

corresponds to the frequency
location of the spectrum of the auto-terms then the chirp rates
are approximated by:

α̂k,m =
νATk,m

Fs

2l1
. (11)

In addition, (10) shows that while the cross-terms are mostly
located away from the origin ν = 0 Hz, the auto-terms are
clustered around ν = 0 Hz. Thus, most of the cross-terms
can be removed by a LPF without significantly altering the
auto-terms.

B. Simplified chirp dictionary algorithm

In the vector form, the signal over the mth window in (7)
can be expressed as:

Sm = ΨcXm +Vm (12)

where Sm = [sm(0), ..., sm(Nw − 1)]T , Vm =
[vm(0), ..., vm(Nw − 1)]T and Xm has K non-zero
components. The compact dictionary matrix, Ψc, is designed
for each signal component inside the windowed data. The
chirp rate value in Ψc is estimated by algorithm in III-A, and

denoted as α̂. Let β̃j denote the corresponding possible values
for initial frequency, where j = 1, 2, ..., J . The compact chirp
dictionary ΨΨΨc is defined as:

ΨΨΨc = [ψψψ1,ψψψ2, ...,ψψψJ ]

ψψψj |n = exp

(

j2π(α̂
n2

2F 2
s

+ β̃j
n

Fs

)

)

j = 1, ..., J, n = 0, ..., Nw − 1.

(13)

As α̂ has only one value, the compact chirp dictionary only
has J columns, where from Ω in (1), J = ⌊Fs − |α̂|Tw + 1⌋.
We choose J = Fs+1, and thus the dimension of the compact
chirp atom now becomes:

QΨc
= J = Fs + 1. (14)

Thus, when using the simplified chirp dictionary, the number
of calculations is about O(K(Fs + 1)). Since K < Nw ≪ J ,
Xm is highly sparse and solving for Xm in equation (12)
becomes a sparse recovery (or CS) problem. The algorithm of
the simplified chirp dictionary used in this paper is based on
Orthogonal Matching Pursuit and has following steps:

INPUT:

• Signal s(n) of length L.
• Signal vector S = [s(0), ..., s(L− 1)]T .

• Windowed signal vector Sm = S((m −
1)u + n), 0 ≤ n ≤ Nw − 1. Initialize
m = 1.

• Lag value l = l1

OUTPUT:

• Matrix of selected chirp Φ.

PROCEDURE:

1) Initialize the residual r0 = Sm, matrix of
selected chirps Φi = ∅, and the iteration
counter i = 1.

2) Calculate IAF at l = l1 ( Criri(l, n)|l=l1 ).
3) Calculate DTFT of Criri . Estimate the

chirp rate and build the compact chirp
dictionary Ψc by (11) and (13).

4) Find the index λi, λi =
argmaxj=1,...,J | < ri−1,ψψψj > |.

5) Store the selected chirp ψψψλi
, Φi =

[Φi−1ψλi
].

6) Solve a least square problem to find the
residue after subtracting the chirp

xi = argmin
x

‖Φix− Sm‖2

ri = Sm −Φixi.

7) Increment i, and return to step 2 if i < K
or ‖ri‖2 > 0.05‖Sm‖2. The magnitude
of the selected chirps is stored in xi. If
i = K or‖ri‖2 ≤ 0.05‖Sm‖2, move to
the next windowed signal, increment m,
and return to step 1.

There is another way to estimate the initial frequencies after the
chirp rates are verified. According to (9), the initial frequencies
can be approximated by the magnitude of the auto-terms’
frequencies. However, this magnitude can be easily affected
by noise, and thus its results are unreliable. The drawback
of the simplified chirp dictionary method is that it does not
perform well if too much data (over 50% of observations) is
absent. This is because the missing samples in the IAF at any
time lag can be double the number of missing samples for
s(n) in the time domain.

IV. SIMULATION RESULTS

For illustration purposes, we use three examples with
different TFD methods including the Wigner-Ville distribution
(WVD), sinusoid, and two chirp dictionary approaches. The
WVD represents the quadratic TFD, which is vulnerable to
missing samples and cross-terms and so it is unable to deliver
an accurate TF estimation under compressed data. The WVD is
simulated in order to compare it with the CS-related methods.
The signals in each of the three cases are firstly sampled at the
Nyquist rate, and then some samples are randomly removed.
The sampling frequency is Fs = 256Hz, the total signal length
is L = 256, 60% of the data is used to obtain the time
frequency signature of the signal, and SNR = 20dB. The
chirp dictionary methods deploy a rectangular window, and
the sinusoidal atom method uses a Hanning window.

In the first example, the signal consists of two closely-



alligned chirps, which is expressed as:

s(n) = exp

{

j2π[(0.1Fs)
n

Fs

+ (0.3Fs)
n2

2F 2
s

]

}

+ exp

{

j2π[(0.13Fs)
n

Fs

+ (0.33Fs)
n2

2F 2
s

]

}

+ v(n),

(15)

where n = 0, 1, ..., L − 1. To capture enough data to resolve
the two close frequency-spaced chirps, the window size is set
to a large value, Nw = 100. The WVD gives a noisy TF
distribution due to the missing signal entries and it is obviously
plagued by cross-terms. These issues are mitigated when CS
related methods are used. However, Fig. 1(b) shows the failure
of local reconstruction of the sinusoidal method due to lack of
sparsity when employing a long window. The sparsity, on the
other hand, when chirp methods are in use, only depends on
the number of piece-wise chirps inside the considered segment.
Thus the two chirp dictionary methods are less sensitive to this
issue, and the signal is clearly resolved as shown in Fig. 1(c)
and Fig. 1(d).

(a) (b)

(c) (d)

Fig. 1: TF (frequency normalized) signature for s(n) in (15)
with 40% data missing: (a) WVD; (b) Sinusoidal dictionary;
(c) Chirp dictionary; (d) Simplified chirp dictionary.

In the second example, we use a three- component FM
signal, which is expressed as:

s(n) = exp

{

j(0.1Fs) cos(2π
n

Fs

+ π) + j2π(0.2Fs)
n

Fs

}

+ exp

{

j(0.1Fs) cos(2π
n

Fs

+ π) + j2π(0.3Fs)
n

Fs

}

+ exp

{

j2π[(0.1Fs)
n

Fs

+ (0.3Fs)
n2

2F 2
s

]

}

+ v(n),

(16)

where n = 0, 1, ..., L − 1. The window length is set to
Nw = 70. The results are given in Fig. 2. It is evident in

Fig. 2(a) that cross-terms and noise-like artifacts clutter the
signal component and hide the pertinent signal structure when
the WVD is employed. The sinusoidal dictionary approach
reveals inaccuracy in the TF signature estimation since besides
insufficient sparsity, it is vulnerable to the picket fence effect
[26], resulting in frequency contents at false locations. The
chirp dictionary approach can address this failure and the
instantaneous frequency laws are resolved as seen in Fig. 2(c),
and Fig. 2(d). The simplified chirp dictionary has some inaccu-
rate approximation due to limited samples in the instantaneous
autocorrelation domain, but the result is acceptable. Compared
with its sinusoidal counterpart, it gives a better performance
but with a similar calculation effort.

(a) (b)

(c) (d)

Fig. 2: TF signature (frequency normalized) for s(n) in (16)
when 40 % samples are missing: (a) WVD; (b) Sinusoidal
dictionary; (c) Chirp dictionary; (d) Simplified chirp dictionary.

In the third example, we use data from human gait radar
returns obtained at the Radar Imaging Lab of the Center
for Advanced Communications at Villanova University, USA.
The data is first uniformly sampled at the Nyquist rate with
Fs = 1000 Hz, and then thinned by randomly removing 40%
of samples. Sparsity level is assumed to be K = 30. The
window length is Nw = 128, and we only use 128 frequency
components to display the TF signature in order to zoom
in on the instantaneous frequencies, and so partly mitigate
drawbacks of the sinusoidal dictionary method. The results
in Fig. 3 show that the simplified chirp dictionary approach
can describe Micro-Doppler TF presentations of the torso and
limbs under compressed observations.

V. CONCLUSION

The accurate piece-wise chirp approximations to the time-
frequency signature of many Doppler and micro-Doppler sig-
nals motivate the use of the chirp dictionary for sparse recon-
struction of the signal’s local frequency structure under full



(a) (b)

(c) (d)

Fig. 3: TF (frequency normalized) signature of human gait
radar return with 40% data missing: (a) WVD; (b)Sinusoidal
dictionary; (b) Chirp dictionary; (c) Simplified chirp dictionary.

and incomplete data. Compared with the sinusoidal dictionary
method or WVD, the chirp atom generally achieves better
performance. The simplified chirp atom set helps reduce the
amount of calculation, and thus saves time. Although it is
quite vulnerable to incomplete samples, it provides satisfactory
results and an extra choice when analysing non-stationary
signals. When not many samples are absent, this method can
enjoy a much faster implementation compared with the full-
chirp dictionary method, and also a better performance in
comparison with the sinusoidal dictionary method.
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