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Abstract—Although visual surveillance has emerged as an effec-
tive technolody for public security, privacy has become an issue of
great concern in the transmission and distribution of surveillance
videos. For example, personal facial images should not be browsed
without permission. To cope with this issue, face image scrambling
has emerged as a simple solution for privacy-related applications.
Consequently, online facial biometric verification needs to be car-
ried out in the scrambled domain, thus bringing a new challenge
to face classification. In this paper, we investigate face verification
issues in the scrambled domain and propose a novel scheme to
handle this challenge. In our proposed method, to make feature
extraction from scrambled face images robust, a biased random
subspace sampling scheme is applied to construct fuzzy decision
trees from randomly selected features, and fuzzy forest decision us-
ing fuzzy memberships is then obtained from combining all fuzzy
tree decisions. In our experiment, we first estimated the optimal
parameters for the construction of the random forest and, then, ap-
plied the optimized model to the benchmark tests using three pub-
lically available face datasets. The experimental results validated
that our proposed scheme can robustly cope with the challenging
tests in the scrambled domain and achieved an improved accuracy
over all tests, making our method a promising candidate for the
emerging privacy-related facial biometric applications.

Index Terms—Chaotic pattern, ensemble learning, face
scrambling, facial biometrics, fuzzy random forest, privacy.

I. INTRODUCTION

DUE to the demands for greater public security over the
past decade, video surveillance has become a widely ap-

plied technology in the day-to-day life of public society. As a
result, privacy protection [1]–[7] has become a concern for the
public as well as for the legal authorities. Key information such
as facial images [1]–[3], [6], [7] in surveillance videos should
not be exposed when distributing videos over public networks.
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Face scrambling [1]–[3], [6], [7] has become a promising solu-
tion to this issue. By scrambling faces detected in surveillance
videos, the privacy of subjects under public surveillance can be
respected in modern security technology.

In comparison with encryption, image scrambling has two
apparent advantages. First, scrambling usually has much lower
computation cost than encryption, making it suitable for
computing-efficient network-targeted applications. Second, en-
cryption may undermine the purpose of public security control
because its decryption depends on acquiring the encryption key.
For example, a security guard who needs to check a key face in
a surveillance video may not be able to do so until he/she has
the decryption key. In comparison, scrambled faces using the
Arnold transform can be easily recovered by manual attempts
using the inverse Arnold transform with different parameters.

As a result, face scrambling becomes a compromised choice
because it does not really hide information, while unscrambling
is usually achievable by simple manual tries even though we
do not know all the parameters. It avoids exposing individual
biometric faces without really hiding anything from surveillance
video. As shown in [1]–[7], scrambling has recently become
popular in the research field of visual surveillance, where privacy
protection is needed as well as public security.

There are many ways to perform face scrambling. For exam-
ple, scrambling can be done simply by masking or cartooning
[8]. However, this kind of scrambling will simply lose the facial
information, and hence, face recognition becomes unsuccessful
in this case. In addition, for security reasons, it is obviously not
a good choice to really erase human faces from surveillance
video. In contrast, the Arnold transform [9], [10], as a step in
many encryption algorithms, is a kind of recoverable scrambling
method. Scrambled faces can be unscrambled by several manual
tries. Hence, in this study, we have chosen Arnold transform-
based scrambling as our specific test platform.

Automated surveillance systems are installed with online fa-
cial biometric verification. While it may not be permitted to
unscramble detected faces without authorization due to privacy-
protection policies, the ability to carry out facial biometric ver-
ification in the scrambled domain becomes desirable for many
emerging surveillance systems. Moreover, since unscrambling
may involve parameters that are usually unknown by the online
software, the need arises to carry out face recognition purely in
the scrambled domain.

The task of automatically recognizing various facial images is
usually a challenging task. As a result, face recognition has be-
come a prominent research topic in image indexing [6], human–
computer interaction [11]– [15], forensic biometrics [16], [17],
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Fig. 1. Typical face verification approaches using various 2-D/3-D facial mod-
els cannot be applied in the scrambled facial domain. (Left) Typical face image
with 3-D mesh model. (Right) Its scrambled image.

medical applications [18], and human cognition [19]. The chal-
lenge becomes even more substantial when such facial verifi-
cation is deployed in visual surveillance systems where videos
are usually captured and transmitted on an internet-based visual
sensor network. In these situations, face recognition can involve
third-party servers where personal privacy needs to be ensured.
Further, storage and distribution of recorded surveillance videos
are subject to legal constraints especially when human faces are
present in videos. As a result, face scrambling will likely be
adopted in these visual surveillance systems. The challenge,
hence, becomes a question of how to perform face recognition
in the scrambled domain without revealing the private contents
[1]–[7]. Consequently, automated facial biometric verification
has to be carried out in the scrambled domain. As shown in
Fig. 1, a scrambled face has a very different appearance from its
original facial image. The need for an effective method to handle
this new challenge comes along with the new security era.

Commonly in face recognition, dimensionality reduction [20]
has usually been considered as the central issue in this challeng-
ing task, and a number of methods have been introduced in
the last decade, including principal component analysis (PCA)
[19], independent component analysis (ICA) [21] and Fisher’s
linear discriminant analysis (FLD) [22]. Combined with kernel
methods [23], these methods can be extended to kernel Hilbert
space with a nonlinear mapping, and we then have their kernel
versions such as k-PCA, k-ICA, and k-FLD. These approaches
can also be applied with 2-D/3-D face modeling techniques
[24]–[27], combined with various facial features [28], [29], or
integrated with support vector machine (SVM) or boosting al-
gorithms. However, it is yet very challenging to construct 3-D
models automatically from 2-D images/views [30]. Besides,
for face recognition in the scrambled domain, one needs a ro-
bust approach to cope with the chaotic facial patterns typical in
surveillance applications.

The random forest method [31], [32] is well suited to handle
randomly distributed features and, hence, excels at noise-like
or chaotic pattern classification. Recent research [33] has also
demonstrated that random forests can be effectively applied to
the face pose normalization problem. However, in our literature
search, the advantage of the random forest method has not been

sufficiently exploited for face recognition, and to the best of
our knowledge, very few reports on utilizing random forests
for image-based face recognition are publically available. An
underlying reason is that a facial image cropped from videos
usually has a small number of pixels (such as 32 × 32), while
random subspace sampling requires a larger number of features
for sparse sampling.

In this paper, we propose a fuzzy forest learning (FFL) scheme
to tackle the scrambled face recognition challenge. In our pro-
posed scheme, a center-surround prior map is applied to guide
the random sampling in the scrambled domain, and a fuzzy
decision-making mechanism is introduced to weight tree deci-
sions via their fuzzy membership vectors. We then carried out
an experimental validation on several scrambled face databases
to show the effectiveness of our proposed fuzzy scheme over
scrambled facial images.

In the remainder of the paper, Section II introduces the basics
of facial biometric verification in the scrambled domain, Section
III proposes the construction of a fuzzy random forest, and
Section IV describes the fuzzy forest decision-making scheme.
Section V is a discussion of the parameters in the FFL, and
Section VI presents experimental results on three face datasets.
Conclusions are drawn in Section VII.

II. FACIAL BIOMETRIC VERIFICATION IN SCRAMBLED DOMAIN

A. Face Scrambling Using Arnold Transform

Digital image scrambling can turn an image into a chaotic and
meaningless pattern after transformation. It is a preprocessing
step for hiding the information of the digital image, which is
also known as information disguise. Image scrambling technol-
ogy depends on data hiding technology, which provides non-
password security algorithm for information hiding. The image
after scrambling is chaotic, and as a result, the visual informa-
tion is hidden from the public eye and privacy is then protected
to a degree even if the visual contents are browsed or distributed
over a public network.

Among the various image scrambling methods, the Arnold
scrambling algorithm has the properties of simplicity and pe-
riodicity. The Arnold transform [9], [10] was proposed by V.
I. Arnold in the research of ergodic theory; it was also called
cat-mapping before it was applied to digital images. It has been
popular in image scrambling because of its simplicity and ease
of use. In this paper, we use this scrambling method to set up the
test environment of our algorithm in the scrambled face domain.

In the Arnold transform, a pixel at the point (x, y) is shifted
to another point (x′, y′) as follows:
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which is called 2-D Arnold scrambling. The recursive and it-
erative application of the Arnold transform can be defined as
follows:

Pk+1
xy = APk

xy , P k
xy = (x, y)T . (2)

Here, the input is pixel (x, y)T after the kth Arnold transform,
Pk+1

xy on the left is the output for the (k+1)th Arnold transform.
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Fig. 2. Face scrambling by Arnold transform. (a) Semantic facial components.
(b) After one Arnold transform. (c) After two Arnold transforms. (d) After three
Arnold transforms.

k represents the number of iterations, where k = 0, 1, 2, and so
on.

By replacing the discrete lattice for transplantation, the
Arnold transform produces a new image after all of the points of
the original image have been traversed. In addition to its simplic-
ity, Arnold scrambling also has the properties of being cyclic and
irreversible. This implies the facial information is kept entirely
after scrambling, even though it appears as a chaotic pattern.

Unlike encryption, scrambling does not really hide informa-
tion from access. In fact, for surveillance systems, encryption
is not encouraged because any unbreakable hiding of infor-
mation will undermine the purpose of security surveillance.
Hence, scrambling is more welcome than encryption in the pub-
lic surveillance paradigm, where privacy is concerned. It only
prevents unwanted exposure of individual faces.

Fig. 2(a) shows a face with its facial components (i.e., eyes,
nose, and mouth) circled by different colors. Fig. 2(b) shows
the scrambled face after one iteration of the Arnold transform,
where it can be seen that facial components have been drastically
distorted. Fig. 2(c) and (d) shows the scrambled faces after two
and three iterations of the Arnold transform. In comparison with
Fig. 2(b), the scrambled faces in (c) and (d) are more difficult to
identify by human eyes. In this study, we use three iterations of
the Arnold transform to scramble all faces.

B. Challenges in Scrambled Facial Biometric Verification

Classical face recognition algorithms usually can maximize
their performance by exploiting facial components. As shown in
Fig. 1(a), a face can be easily modeled by a 3-D mesh that can

Fig. 3. Although it is easy for a human eye to recognize a face from others,
it become extremely difficult in the scrambled domain. First row: three faces of
two subjects. Second row: their scrambled facial images.

help attain better face recognition accuracy. However, after a
face is scrambled, it is even barely recognizable by human eyes.
Fig. 3 shows such a case. Before scrambling, faces are easily
recognized by the human eye. After scrambling, faces become
extremely hard for the human eye to identify or recognize. It
is even impossible to find the eyes and mouth in the scrambled
patterns. Visual features are somehow randomly scattered in
the result space by the scrambling process. As a result, face
recognition has to be a pure data-driven classification issue,
without utilizing semantic facial components or applying 2-
D/3-D face models to the scrambled image.

To find an effective method for this randomly scattered distor-
tion, in this paper, we introduce a fuzzy random forest learning
scheme to cope with this challenge. In our method, a random
subspace sampling method is applied to extract a subset of fea-
tures for each fuzzy decision tree. Such random sampling is
expected to overcome the scattered distortion and effectively
carry out face recognition on a sparse set of features.

III. FOREST LEARNING OF SCRAMBLED FACIAL BIOMETRICS

A. Priori-Based Biased Subspace Sampling

Subspace sampling in random forest reconstruction aims to
improve accuracy by exploiting the power of multiple classifiers.
In the random subspace selection, a small number of dimensions
from a given feature space is selected in each pass, while each
classifier is based on the randomized selection of a lower di-
mensional subspace. With respect to a set of selected subspaces,
each tree generalizes its classification in the lower dimensional
subspace for both the training data and the test data.

If we select k dimensions out of n, there are K = n!/{k!(n-k)!}
such selections that can be made, and with each selection, a
decision tree can be constructed. While K can be a large num-
ber, for a practical random forest implementation, only a small
number of trees (for example 100) are randomly selected to
construct a forest. Unlike many other methods suffering from
the curse of dimensionality, the high dimensionality of a fea-
ture space provides more choices than are needed in practice.
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Fig. 4. Biased random sampling based on the center-biased prior map. (a)
Center-surround distribution of facial features. (b) Biased weighting in the
scrambled domain. (c) Hit map of biased random sampling by 100 trees.

Contrary to the well-known Occam’s Razor principle, random
forest can take advantage of high dimensionality, and it im-
proves the generalization accuracy as it grows in complexity.
Hence, a sophisticated strategy to construct a high-dimensional
feature space is usually favored by the random forest method.

In face recognition, human vision usually pays more atten-
tion to central features [34] (such as eyes and mouth regions
in facial images). As shown in Fig. 4(a), one can give central
features more weight, given that mostly central features form
the basic inference elements for human vision to recognize a
face. Naturally, in this paper, we consider a biazed random-
ization strategy toward the central facial features. Considering
the maximum multiplication factor as ωs , the repetition of each
feature is defined as

ωk = 1 + round
(
ωsexp

(
−

√
x2 + y2

))
. (3)

Here, ωs is a weighting factor, x and y are coordinates nor-
malized to the center of the image, and ωk is a center-surround
weighting map, as shown in the left image in Fig. 4(a). Fig. 4(b)
shows the scrambled weight map of the center-surround weight
map in Fig. 4(a).

Given the scrambled facial feature space F, and a scrambled
priori map ωk shown in Fig. 4(b), we can then construct a
new larger feature space by multiplying each feature according
to their importance. Then, we can have a new set of features
(pixels or data dimensions) as

Fnew =

⎧
⎨
⎩f1 , . . . , f1︸ ︷︷ ︸

ω1

, . . . , fk , . . . , fk , . . . . . .︸ ︷︷ ︸
ωk

⎫
⎬
⎭ . (4)

Then, randomization is applied to extract a subset of features
from the new feature space Fnew for each tree to form the forest.

In the random selection procedure, for each pixel, a higher
ωk means higher repetition in Fnew and so is more likely to be
included in each random tree. Fig. 4(c) gives an example of a
hit map in the construction of 100 trees, where jet color map is
used to visualize the hit map on features fk . Fig. 5 shows the
features randomly selected by 100 trees in the feature space,
where each row line stands for a tree, and blue dots denote the
selected features from the whole feature space for each tree.

B. Fuzzy Tree Construction in Random Forest

After the features are selected for each tree, we can then
construct a fuzzy decision tree based on the selected subspace.
For each tree τj , we apply a method called local sensitive dis-
criminant analysis (LSDA [35], an extended graph embedding
approach similar to LPP [36] and LFDA [37], [38]) to project
the selected facial feature space F {j} into an eigenvector-based
subspace. LSDA has been shown to be an effective method for
handling face classification [35]. Compared with LPP, LSDA
has fewer parameters to tune and, hence, is easier to use for our
purpose.

The decision tree is then constructed in the dimension-
reduced eigensubspace. The trees constructed in each selected
subspace are fully split using all training data. They are, there-
fore, perfectly correct on the training set by construction, as-
suming no intrinsic ambiguities in the samples. There are many
kinds of splitting functions for tree construction, such as average
mutual information [39], oblique hyperplanes [40], simulated
annealing [41], perceptron training [42], or SVM-based hyper-
plane [31]. Piecewise linear or nearest-neighbor splits can be
obtained by various kinds of supervised or unsupervised clus-
tering. There are also many variations of each popular method.
Each splitting function defines a model for projecting classifi-
cation from the training samples on to unclassified points in the
space.

In our fuzzy tree construction, we employ a simple piecewise
linear split, with a Voronoi tessellation of the feature space.
Samples are assigned based on nearest-neighbor matching to
chosen anchor points. The anchor points are selected as the
training samples that are closest to the class centroids. These
trees can have a large number of branches and can be very
shallow. The number of leaves is the same as the number of
training samples.

Fig. 6 illustrates the fuzzy tree constructed for this purpose.
In the fuzzy decision of each tree, the membership of a query
sample to each node is computed, and subsequently, a fuzzy
membership is computed with respect to every leaf (namely a
training sample), and the final output of a fuzzy tree is a vector of
memberships to all leaves, instead of a simple binary decision.
Consequently, for a fuzzy tree τj and an input x, there is an output
as a vector of membership; let the probability that x belongs to
class zk (zk = 1, 2, . . . ,Kc) be denoted by P̂ (zk |τj (x)); then,
the overall likelihood will be estimated as

α (zk |τj , x) =
P (zk |τj , x)∑
i

P (zi |τj , x)
. (5)
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Fig. 5. Example of random subspace selection of 100 trees in the scrambled facial feature space. Each tree selects 5% features only. Each row line stands for a
tree, and blue dots denote the selected features from the whole space for each tree.

Fig. 6. Fuzzy tree structure used in our forest learning.

which is the fraction of class c points over all points that are
assigned to τj (x) (in the training set), where zk denotes the kth
leaf in the decision tree.

An obvious merit of using this fuzziness is to avoid wrong
decisions being made at the early stage of a single tree, and it
gives more space for the optimal forest decision. Fig. 7 shows
an example of fuzzy tree decision. In the visualized image,
each column line stands for the computed fuzzy memberships
from a fuzzy tree. In total, 300 trees are displayed in the im-
age. The color stands for the value of the initial estimated fuzzy
membership to a class zk (corresponding to the vertical coor-
dinate) estimated by a tree τj (corresponding to the horizontal
coordinate).

IV. FUZZY FOREST DECISION

A. Weights of Fuzzy Tree Decision

The process of building a forest from the features leads to
many interesting theoretical questions, such as the number of
sub-spaces needed to achieve a certain accuracy, the number of
randomized trees needed to balance between speed and accu-
racy, and the way to combine all the trees together. Different

trees can be constructed if different feature dimensions are se-
lected at each split, while the use of randomization when select-
ing the dimensions is merely a convenient way to explore the
possibilities.

List I. Fuzzy Forest Learning
Train Procedure:
Input:

T: Scrambled train dataset;
L: Labels of the dataset;

Output:
F: Constructed forest of decision trees;

Process:
Construct a new feature space Fnew using center-biased
map multiplied with the weighting factor ωs ;
Loop for K trees

Randomly generate n index numbers;
Using the n index to subsample from Fnew ;
Learn discriminant features via LSDA;
Construct the tree in the dim-reduced subspace;

End Loop;
Test Procedure:
Input:

F: Constructed forest of decision trees;
Q: Scrambled query image;

Output:
z: the most likely label;
ϕ: the final fuzzy memberships to all classes;

Process:
Loop for K trees

Subsampling into the same subspaces for each tree;
Project features via LSDA eigenvectors;
Calculate the membership αk over all classes;

End Loop;
Compute wk of each tree using fuzzy membership;
Combine all trees according to their fuzzy weights;
Obtain the final ϕ and final decision z;
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Fig. 7. Fuzzy decisions by each tree in the forest. Each column line stands for the computed fuzzy memberships from a fuzzy tree.

Basically, in the construction of the random forest, an ensem-
ble learning algorithm needs to pay attention to two aspects:
1) how to select proper features/subspaces to generate random
trees; and 2) how to guarantee a good combination of tree de-
cisions, which means the decision from each tree needs to be
weighted in a rational and effective way.

To combine the decision trees in the random forest for face
recognition, we propose a method to weigh a tree via its cross
validation in the forest. Given N classes and K trees, the decision
from a tree can be repeated K/N times by random chance. We
can then estimate the confidence of a tree from its decision by
comparing against other trees in the forest by using Kullback–
Leibler divergence [14], [36]

wk =
∑

j

DKL (α (z|τi) ||α (z|τj )) (6)

where

DKL (αm ||αn ) =
∑

k

αm,k ln
αm,k

αn,k
. (7)

With the above formula, the trees having nonconsensus de-
cision will be given a reduced weight from cross validation via
Kullback–Leibler divergence.

B. Fuzzy Forest Decision

A motivation to build multiple classifiers originates from the
method of cross validation, where random subsets are selected
from the training set and a classifier is trained using each subset.
Such methods can help avoid the tantalizing problem of overfit-
ting to some extent by withholding part of the training data. A
similar idea has been exploited in bootstrapping [43] and boost-
ing [44]. In boosting, the creation of each subset is dependent
on previous classification results, and the final decision com-
bination is based on weighted individual classifiers. Similarly,
a random forest consists of a number of trees that need to be
combined.

The theory of stochastic discrimination [45] has suggested
that classifiers can be constructed by combining many compo-
nents of weak discriminative power with generalization. Classi-
fication accuracies are then related to the statistical properties of
the combination function. The capability to build classifiers of
arbitrary complexity while increasing generalization accuracy

is shared by all this type of methods, and decision forest is one
such method.

While the forest is based on random selection of subspaces,
it is difficult to determine those trees having better accuracies
than others, due to the nature of randomness. In our combination
procedure, we use the weighting function in (6), and the fuzzy
decision from each tree is then weighted as

P̃ (zk |τj , x) = wkα (zk |τj , x) . (8)

The final discriminant function is defined as

ϕ (zk |x) =
1
K

∑
k

P̃ (zk |τj (x)) (9)

and the decision rule is to assign x to class c for which ϕ is the
maximum:

z (x) = argmax
zk

ϕ (zk |x) . (10)

For a random forest, the forest decision is usually based on
a plurality vote among the classes decided by each tree. In our
scheme, the vote from each tree is fuzzy, and the forest decision
is based the combination of weighted memberships estimated
from each tree, where odd decisions are neutralized in the fuzzy
forest decision process.

Fig. 7 shows an example of the initial estimated fuzzy mem-
bership vectors of 100 trees. Here, the membership is visualized
by “jet” colormap. Fig. 8(a) gives the weighting scores of all
25 trees computed from (6) using Kullback–Leibler divergence
among their membership vectors. Fig. 8(b) shows a case where
a direct average made a wrong decision and the proposed fuzzy
combination corrected it. Here, the test (see Section V) is based
on the Yale face dataset. By using the proposed fuzzy combi-
nation, the likelihood of the wrong choice at the 13th leaf in
the trees is decreased (shown as a red downward arrow) and
the correct choice at the 78th leaf is increased (shown as a red
upward arrow). As a result, the wrong decision is corrected from
the 13th label to the 78th label, thanks to the proposed fuzzy
combination.

C. Overview

Fig. 9 gives an overview of the proposed FFL scheme for the
scrambled facial verification. Given a training dataset, faces are
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Fig. 8. Fuzzy weights of trees estimated by KL divergence. (a) Computed
fuzzy weights of all trees in the forest. (b) Sample case of fuzzy decision versus
direct average.

Fig. 9. Schematic view of the proposed approach.

scrambled and forwarded to the FFL scheme. The procedure
then randomly selects the features from the scrambled domain
with biased weights toward central features, and a number of
fuzzy trees are constructed based on the selected features, where
LSDA is applied to further extract discriminant features from
randomly selected features.

After a scrambled face is input as a test, each tree computes a
fuzzy vector of membership and forwards it to the forest decision

process. The forest decision procedure then weighs each tree
via their total Kullback–Lieder divergences from all other trees,
while the final decision is based on a fuzzy combination of all
trees. List I gives the pseudocode of the proposed method.

V. PARAMETERS IN FUZZY FOREST LEARNING

Before we go further for experimental validation of our pro-
posed method, we need to answer several critical questions.
How many trees are we are going to use? How many features
should we select for a tree? What is the best value for the biased
factor ωs in (3)? Does the fuzzy decision via KL divergence
really work better than direct averaging? These questions could
be pursued to lead to deeper theoretical analysis. In this paper,
however, we instead treat these questions in a practical way, and
try to optimize these parameters using several experiments.

In our experiment, we ran our tests on the Yale dataset [22].
The Yale dataset has 15 subjects and each subject has six sample
faces. With this small dataset, we carried out the face verification
experiments by splitting the small dataset into training and test
datasets, where the training dataset has five facial images per
subject. We then varied the parameters and ran experiments to
see which parameter values gave the lowest error rates. Fig. 10
shows our experimental results.

In Fig. 10(a), the bias factor ωs is varied from 0 (no bias) to
5.5. Here, 100 trees are constructed and the sampling ratio is set
to 5%. It can be clearly seen that by increasing the bias factor,
the error rate is reduced from 12.0% to 8.8% around ωs = 3.25.
Obviously, from the test, it is shown that the biased sampling
did improve the classification accuracy.

In Fig. 10(b), the sample ratio is varied from 0.5% to 10.5%,
and it can be seen that the error rate decreases to 8.0% when the
sample ratio is tuned from 0.5% to 3.25%, and it then rises back
slowly toward the baseline (12%, the error rate for the original
LSDA method) when the sample ratio is increased. Here, 100
trees are generated to form the forest and ωs is set to 3.25. From
this experiment, we can also see that the random forest does not
necessarily work better than a single tree-based method if its
parameters are not selected properly.

Fig. 10(c) gives the experiment on varying the number of
trees. Setting the sample ratio to 3.25% and ωs to 3.25, the
number of trees was varied from 3 to 145. We can see that
the error rate tends to decrease when the number of trees is
increased, and its fluctuation becomes smaller as well. When
the number of trees is increased to 80, the error rate is further
reduced to 7.7%. Basically, more trees mean more computing
time. Provided we have a stable lowest error rate, using fewer
trees is usually a favorite choice.

Fig. 10(c) also shows a comparison between direct average
(the blue curve) and fuzzy combination (the red curve). It can be
seen that fuzzy combination can attain better accuracy consis-
tently in the tests. Fig. 8(b) illustrates how this can be achieved
by showing one case in the test of Fig. 10(c). Using the proper
fuzzy combination, the likelihood is reduced with respect to the
wrong choice (the 13th leaf) and increased with respect to the
correct choice (the 78th leaf). Consequently, a correct decision
is attained by the fuzzy combination.
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Fig. 10. Learning parameters in our proposed FFL scheme. (a) Effect of
varying the biased sampling factor ωs . (b) Effect of varying the sampling ratio
in FFL. (c) Results for different numbers of trees in FFL.

VI. EXPERIMENTAL RESULTS

A. Experimental Conditions

To investigate the performance of the proposed scheme, we
have carried out systematic experiments on three databases:
ORL database [46], PIE database [47], and PUBFIG wild face
database [48]. Fig. 11 shows typical faces in these databases
and their scrambled images. The ORL database has 40 subjects
with ten faces each at different poses. The CMU PIE database
has 41 368 faces, comprising 68 classes with about 170 faces

Fig. 11. Three face databases used in our benchmark test. (a) Subjects in the
ORL database. (b) Subjects in the PIE database. (c) Subjects in the CK+ dataset.

per class (we use 100 faces per subject, similar to [36]). PUB-
FIG database [48] contains wild faces selected from internet. It
is very similar to LFW database [49], but it provides standard
cropped faces. As has been shown [49], background textures
in LFW can help achieve a higher accuracy. While we con-
sider facial region recognition only, PUBFIG fits better with our
purpose.

In our experiment, all code was implemented in MATLAB,
and ran on a PC with 2.7-GHz dual-core Intel CPU. In our
experiment, we have used a test scheme called leave-k-out [50].
If each subject has N faces in a dataset, we leave k faces out of the
training dataset for testing. As a result, the benchmark test will
have (N – k) training faces per subject. Selecting k samples from
N faces will have Ck

N choices. To make it feasible, we just chose
consecutive k faces from N samples, and then, we have N tests in
turn for a leave-k-out experiment. The accuracy is the average of
all N tests. It is noted that the consecutive splitting will usually
have a large difference between test and train datasets, because
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Fig. 12. Test results on the ORL dataset. (a) Leave-k-out tests. (b) Overall
accuracy of all k tests.

faces in datasets usually change consecutively, and the first k
faces are usually very different from the last (N – k) faces.

Our benchmark tests aim to verify whether or not our pro-
posed fuzzy random forest learning scheme can enhance the ac-
curacy of face recognition. In our approach, we have proposed
a computing-efficient data-driven facial biometric classification
method. Hence, we compare our approach with a number of
typical data-driven methods, including PCA [21], LDA [22],
kPCA [23], kLDA [23], LPP [36], and LSDA [35].

Because random forest is based on random feature selection,
it may give a different accuracy each time. As a result, we
ran each test ten times and recorded the average (FFL-Mean)
and maximum (FFL-Best) accuracies for comparison. It is also
noted that for each test, there were N subtests due to the different
selection of the leave-k-out scheme. Therefore, in total, we have
10 × N subtests for each leave-k-out test.

B. Validation on ORL Dataset

The ORL database has ten faces per subject. In our leave-
k-out test, k varies from 2 to 6. In total, we have five k-tests,
where each k-test has 10 × 10 subtests. The final accuracy is the
average on all 100 subtests.

Fig. 12(a) shows all leave-k-out tests, where k varied from 2
to 6. We can see that our proposed FFL method attained the best
accuracy in all k tests. It is also observed that FFL-mean is very
close to FFL-best. In our test, each forest has nearly 80 trees,
and such a large number of trees can effectively quench the
stochastic fluctuation in the random feature selection. Besides,
each k-test has 10 × 10 subtests, making it statistically similar.

Fig. 12(b) lists the overall accuracy by averaging all k tests.
Here, we included PCA, LDA, kPCA, kLDA, LPP, and LSDA
for comparison because they are typical data-driven face recog-
nition technology. We can see that our FFL attained the best
accuracy over all k-tests—around 98%, while LPP came sec-
ond to this at 96.8%. kLDA and LDA attained similar accuracy
around 96.2%, LSDA attained 94.1%, and kPCA and PCA had
an accuracy of 90.7%.

Fig. 13. Test results on the PIE dataset. (a) Leave-k-out tests. (b) Over all
accuracy of all k tests.

C. Validation on PIE Dataset

In this benchmark test, 50 faces per subject and in total 3350
faces from the PIE dataset were used. In the test scheme, k faces
from 50 samples per subject are selected as test samples, and
the rest are used as training samples. In our experiment, we
repeatedly selected k faces (consecutively) from 50 samples ten
times and carried out ten subtests per k test. Random forest can
vary from time to time due to its random mechanism. As before,
for each subtest, we ran ten times and used both average and
best accuracy to evaluate our FFL classifier.

Fig. 13(a) shows all leave-k-out tests on the PIE dataset, where
k varied from 5 to 25. We can see that our proposed FFL method
attained the best accuracy in all k tests. It is also observed that
FFL-mean is very close to FFL-best. It is also noticed that when
k rises to 25, LSDA, LDA, and kLDA have the largest drop
in accuracy. In comparison, the proposed FFL method attained
steady performance even when the number of available training
samples is reduced.

Fig. 13(b) lists the overall accuracy by averaging all k tests.
We can see that PCA and kPCA have the lowest accuracy of
around 65%, LSDA has an accuracy around 67.7%, LDA and
kLDA attained similar accuracy around 74%, and LPP attained
an accuracy at 78.5%. In comparison, our FFL method attains a
far better accuracy of around 85% in this test.

D. Validation on PUBFIG Dataset

The PUBFIG dataset has been developed for benchmark tests
to compare various algorithms against the human vision system.
Its typical benchmark test can have as many as 20 000 pairs
of faces for comparison. However, in the surveillance-targeted
scrambled domain, human perception can barely recognize any
scrambled faces, making it meaningless to carry out this human-
targeted comparison test. On the other hand, in surveillance
applications, users (such as police) usually have a set of wanted
faces in their training datasets on the server side, making it more
like a leave-k-out experiment. For this reason, we need to design
a suitable evaluation scheme for this work.
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Fig. 14. Test results on PUBFIG wild faces. (a) TPR-FPR curves. (b) TPR at
FPR = 20%.

In our experiments, we have selected 52 subjects with 60 faces
each and split them randomly into test and training datasets, with
each having 30 × 52 = 1560 faces. We have then test all data-
driven methods by comparing each test face against all training
faces. In total, we have 1560 × 1560 = 2.4 million pairs of
estimated likelihood values, which form a likelihood matrix of
1560 × 1560 elements. Then, we have varied the thresholds on
the likelihood matrix and counted how many pairs below the
threshold are false positive and/or true positive. False positive
rates (FPR) and true positive rates (TPR) can then be computed
accordingly, and we can have the ROC curves (FP versus TP)
as our evaluation criteria.

Fig. 14(a) gives our test results on all methods. It is observed
that PCA has given worse performance than it did on LFW
[49]. This implies that this test is even harder than the stan-
dard LFW test in [48] (at least it is true for eigenfaces). From
the comparison results, we can clearly see that the proposed
FFL method appears to have better performance in this test on
real-world faces, with significantly better TPR consistently over
other data-driven methods. Fig. 14(b) gives the TPR at FPR =
20%. PCA and kPCA attain a low accuracy of around only
30%, while FFL attains an accuracy of around 76.6%, about
20% higher than LSDA, LPP, LDA, and kLDA.

VII. CONCLUSION

In this paper, we have successfully developed a robust FFL
scheme for facial biometric verification in the scrambled do-

main. In our proposed scheme, to extract the features from
scrambled face images robust, a biased random subspace sam-
pling scheme is applied to construct fuzzy decision trees from
randomly selected features. Then, a fuzzy forest decision is ob-
tained from all fuzzy trees by the weighted combination of their
fuzzy decision vectors of membership. Our experiments using
three public datasets have successfully validated that the pro-
posed FFL scheme can robustly cope with challenging tests in
the scrambled domain, and it consistently attained the best ac-
curacy over all datasets, making our method a promising candi-
date for emerging privacy-related facial biometric applications,
especially for public visual surveillance systems where face
scrambling is applied.

It is worth highlighting that our approach is not dependent
on any semantic face models or 3-D templates. Although face
specific features targeted toward semantic/3-D face modeling
can enhance accuracy, face modeling from images and facial
component detection needs extra computation time and can also
easily introduce extra errors. Instead, our approach is based
purely on data-driven classification and can easily be applied to
other similar chaotic pattern classification cases, such as texture
classification in image analysis or factor analysis of stock prices.
In our future work, we plan to investigate the use of our method
in these applications.
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