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ABSTRACT While genotype–environment interaction is increasingly receiving attention by ecologists and evo-
lutionary biologists, such studies need genetically homogeneous replicates—a challenging hurdle in outcrossing
plants. This could be potentially overcome by using tissue culture techniques. However, plants regenerated from
tissue culture may show aberrant phenotypes and “somaclonal” variation. Here, we examined somaclonal variation
due to tissue culturing using the response to cold treatment of photosynthetic efficiency (chlorophyll fluorescence
measurements for Fv/Fm, Fv9/Fm9, andFPSII, representing maximum efficiency of photosynthesis for dark- and light-
adapted leaves, and the actual electron transport operating efficiency, respectively, which are reliable indicators of
photoinhibition and damage to the photosynthetic electron transport system). We compared this to variation
among half-sibling seedlings from three different families of Arabidopsis lyrata ssp. petraea. Somaclonal variation
was limited, and we could detect within-family variation in change in chlorophyll fluorescence due to cold shock
successfully with the help of tissue-culture derived replicates. Icelandic and Norwegian families exhibited higher
chlorophyll fluorescence, suggesting higher performance after cold shock, than a Swedish family. Although the
main effect of tissue culture on Fv/Fm, Fv9/Fm9, and FPSII was small, there were significant interactions between
tissue culture and family, suggesting that the effect of tissue culture is genotype-specific. Tissue-cultured plantlets
were less affected by cold treatment than seedlings, but to a different extent in each family. These interactive effects,
however, were comparable to, or much smaller than the single effect of family. These results suggest that tissue
culture is a useful method for obtaining genetically homogenous replicates for studying genotype–environment
interaction related to adaptively-relevant phenotypes, such as cold response, in nonmodel outcrossing plants.
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Genotype–environment interaction effects on a phenotype, or variation
in reaction norms, may modulate natural selection (Wright 1931;
Sultan 1987). The genetic basis of genotype–environment interaction

is increasingly receiving attention (El-Soda et al. 2014; Yap et al. 2011);
however, such advances have been concentrated in inbreeding organ-
isms such asArabidopsis thaliana (e.g., Bloomer et al. 2014; Sasaki et al.
2015; Stratton 1998; El-Soda et al. 2014) and Caenorhabditis elegans
(Gutteling et al. 2007), because genetically isogenic individuals derived
by repeated inbreeding permit a given genotype to be exactly repeated
in multiple environments. Recently, the wild relatives of model organ-
isms have increasingly been exploited by evolutionary biologists to
understand adaptation and speciation (Mitchell-Olds 2001; Clauss
and Koch 2006). However, one disadvantage of nonmodel plants with
outcrossing mating systems is that they cannot usually be exploited to
produce the genetically homogeneous or inbred recombinant lines that
enable researchers to study the reaction norms of single genotypes in
multiple environments (Dorn et al. 2000)or to map novel QTL in pre-
viously genotyped lines (Alonso-Blanco et al. 2005). This disadvantage
could be compensated for by using cutting techniques to produce mul-
tiple clones from single genotypes (Sultan and Bazzaz 1993; Waitt and
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Levin 1993;Wu 1998). This method is applicable only to plants capable
of vegetative propagation, and it also needs relatively large plant bodies
to produce many replicate clones. Another technique applicable to a
wider range of plants with relatively small starting plant material is
tissue culture (George and Sherrington 1984). However, tissue cul-
ture has been exploited only rarely for studies on the genetic basis of
genotype–environment interaction, and the few existing studies (Glock
and Gregorius 1986; Glock 1989) focused only on callus characteristics
as target phenotypes. One potential issue that should be considered
carefully is that tissue-culture derived microshoots can express pheno-
typic, “somaclonal” variation (Larkin and Scowcroft 1981), or may
sometimes show aberrant morphology and physiology in vitro (Joyce
et al. 2003). This somaclonal variation resembles that induced by phys-
ical mutagens, with elevated levels of chromosome breakage and re-
arrangement, polyploidy, aneuploidy, transposon activation, and point
mutation (D’Amato and Bayliss 1985). Therefore, with a view to ex-
ploiting the techniques of tissue culturing more widely in studies of
genotype–environment interaction in outcrossing plants, it is necessary
to extend our knowledge on how propagation by tissue culture gener-
ates variation in phenotypes that are relevant to adaptation in natural
environments, compared to other sources of genetically related repli-
cates such as outbred siblings.

Key plant properties that have attractedmarked attention in the field
of adaptation to various environments are stress tolerances (e.g.,
Quesada et al. 2002; Kwon et al. 2007; Zhang et al. 2004; Zhen and
Ungerer 2008; Steponkus et al. 1998; Hong and Vierling 2000; Lexer
et al. 2003). One trait that can be used to indicate tolerance against
various physical stressors in plants is photosynthetic performance.
Photosystem II (PSII) activity is sensitive to both biotic and abiotic
factors (Murchie and Lawson 2013). Chlorophyll fluorescence can be
used to determine the maximum efficiency with which light absorbed
by pigments of photosystem II (PSII) is used to drive photochemistry in
dark- (Fv/Fm) or light- (Fv9/Fm9) adapted material and the operating
efficiency of PSII (FPSII). It is a reliable indicator of photoinhibition and
damage to the photosynthetic electron transport system (Quick and
Stitt 1989; Maxwell and Johnson 2000). Changes in chlorophyll fluo-
rescence have been used in Arabidopsis thaliana to quantify tolerance
to cold and freezing temperatures. Ehlert and Hincha (2008) showed
that chlorophyll fluorescence imaging detected difference in freezing
tolerance between two A. thaliana lineages, both before and after cold
acclimation. Mishra et al. (2014) applied chlorophyll fluorescence im-
aging for nine A. thaliana lineages under cold and freezing tempera-
ture, and suggested that freezing tolerance of lineages could be screened
by chlorophyll fluorescence under cold (4�) conditionwithout exposing
plants to subzero temperature. Chlorophyll fluorescence has also been
used to study tolerance to drought (Woo et al. 2008; McAusland et al.
2013; Bresson et al. 2015), and salt and heavy-metal stress (Yuan et al.
2013), in A. thaliana, as well as in various other plants for tolerance or
response to cold and freezing temperatures (Baldi et al. 2011; Medeiros
et al. 2012; Xie et al. 2015; Khanal et al. 2015; Heo et al. 2014), drought
(Jansen et al. 2009), and salt (Yuan et al. 2013). If variation in chloro-
phyll fluorescence can be properly estimated using tissue-culture
derived clones, therefore, this method would enhance studies in
genotype–environment interaction for stress tolerance in outcrossing
plants.

To this end, we have studied change in chlorophyll fluorescence
following cold shock in a wild relative of a model plant species.A. lyrata
ssp. petraea is a close relative of the model species A. thaliana, but with
a different ecology, life history and population genetics (Charlesworth
et al. 2003; Davey et al. 2008, 2009; Kuittinen et al. 2008; Kunin et al.
2009). While A. thaliana is mainly selfing, with a low level of genetic

diversity within a population, A. lyrata ssp. petraea is outcrossing, with
a high level of genetic diversity even within a population (Clauss and
Mitchell-Olds 2006; Kunin et al. 2009; Heidel et al. 2006; Schierup et al.
2008). Further studies on genetic and phenotypic variation in spatially
distinct individuals and in closely related plants will clarify whether or
not locally advantageous alleles are fixed, and if local populations are in
evolutionary equilibrium, and are thus important in our understanding
of the evolutionary responses to environmental change. Distinguishing
phenotypic variation among closely related individuals from measure-
ment errors is difficult; however, this becomes possible if we can quan-
tify the error within the same genotype using tissue-cultured clones.

In this study, we measured the chlorophyll fluorescence parameters
Fv/Fm, Fv9/Fm9, and FPSII before and after cold shock, as an index of
cold response, for seedlings from three families from geographically
isolated populations of A. lyrata ssp. petraea, and tissue-cultured plant-
lets derived from several genotypes (seeds) in each of those families
(Table 1). In order to evaluate the usefulness of tissue culture for
obtaining genetically homogenous replicates and to assess how much
adaptively relevant variation exists within the species, we tested
whether (i) among-genotype phenotypic variation could be detected
with the help of replication of tissue cultured plantlets; (ii) somaclonal
variation would remain in the range of other components of variation,
such as within-family variation of seedlings; (iii) phenotypic varia-
tion in putatively adaptive traits would exist between families;
and (iv) tissue-culturing affected these measurements of chlorophyll
fluorescence.

MATERIALS AND METHODS

Plants
Seeds of A. l. petraea were collected from geographically separated
populations in Ardal (Norway) (61�19925$N, 7�50900$E, alt. 63 m),
Notsand (Sweden) (62�36931$N, 18�03937$E, alt. 3 m), and Sandfell
(Iceland) (64�04914$N, 21�41906$E, alt. 123 m). No specific permits
were required for the seed collection for this study because these loca-
tions were not privately owned or protected in anyway, and because the
species was not protected in these countries. The species is a perennial
herb, maintaining leaves throughout the year. We used a family of
seeds that were at least half-siblings, from one mother plant in each
population. We grew 28–40 seedlings per family, and, in each case,
derived 44–69 tissue-cultured plantlets from two to three seeds (one
genotype = cloned plantlets from one seed) of each family.

Tissue culture
Seeds were sterilized in 10% commercial bleach for 20 min, washed in
sterile water and stored at 4� overnight. The seeds were then placed
onto 50% strength Murashige and Skoog (MS) medium (Melford Lab-
oratories Ltd, Ipswich, UK), pH 5.7, supplemented with 1% sucrose,
5 mg/l silver thiosulfate, and solidified with 1% plant agar (Melford
Laboratories). The agar plates were held vertically, allowing for maxi-
mum recovery of root tissue. After 4 wk, the root systems were excised
and placed intact onto Callus Induction Medium (CIM) (Clarke et al.
1992) solidified with 0.55% plant agar. Plates were incubated at 23� for
3 d, then the roots were cut into 5 mm lengths and placed in bundles
on fresh CIM plates that were further incubated at 20� for 2–3 d. The
root sections from each plant were resuspended in 10 mlmolten Shoot
Overlay Medium (SOM) (Clarke et al. 1992), solidified with 0.8% low
gelling-temperature agarose, and poured over a single 90 mm plate of
Shoot Induction Medium (SIM) (Clarke et al. 1992) solidified with
0.55% plant agar and lacking antibiotics. The plates were incubated
at 20� under a 16-hr day length. Once shoots started to form from
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the calli, they were transferred to 50% strength MS medium, pH 5.7,
supplemented with 1% sucrose and solidified with 0.55% plant agar,
such that each plate contained nine clones of the same genotype. A total
of four to nine plantlets survived per plate. Each plate was treated as a
block in the following experiment.

Seedling growth
Seedswere sown in LevingtonM3 compost within individual plug trays.
Families were randomizedwithin each tray, and trayswere repositioned
randomly every other day. Plants were watered from the base of the pot
as required with reverse-osmosis (RO) purified water. No additional
nutrients were added to the soil or water. Plants were established to
the six- to eight-leaf stage in controlled-environment growth cabi-
nets (Conviron Controlled Environments Limited, Canada) set to a
12/12 hr day/night cycle, 20/15� d/night, 70% humidity; atmospheric
CO2 concentration was 400 ppm, and photosynthetically active radi-
ation 250 mmol m22 s21. Chlorophyll fluorescence measurements
were taken just prior to, and after, a 24-hr cold treatment in which
plants were exposed to the same conditions as above, apart from the
temperature being decreased to 3�. Four to eight seedlings from
the same family that were tested together were treated as a block in
the subsequent experiment.

Chlorophyll fluorescence
Precold and postcold treatment measurements of chlorophyll fluores-
cence were obtained using a chlorophyll fluorescence imager using
Fluorimager software (Technologica Ltd., Colchester, UK). Each block
of plants was dark-adapted for at least 15 min before the maximum
efficiency of photosystem II (Fv/Fm) was measured to a blue light pulse
at 3000 mmol m22 s21 for 200 msec. Following this pulse, the plants
were exposed to an actinic light of 150 mmol m22 s21 for 6 min,
followed by pulses of 3000 mmol m22 s21 for 200 msec to obtain
measures of maximum efficiency of photosystem II (Fv9/Fm9) of light-
adapted plant material and the operating efficiency of photosystem
II (FPSII) in light-adapted plant material. Mean values of Fv/Fm,
Fv9/Fm9, and FPSII for each plant were taken from the image of each
whole plant.

Statistical analyses
To examine the relative importance of among-family and among-
genotype variation in cold response, we used nested ANOVA to partition
the total variance in the difference in each chlorophyll fluorescence
measurement (Fv/Fm, Fv9/Fm9, or FPSII) induced by cold shock:

P � Family=Genotype=Block

for tissue culture material, or

P � Family=Block

for seedlings, where P is the difference in each type of chlorophyll
fluorescence for a plant individual between two measurements (i.e.,
value after cold shock minus that before cold shock), the “/” symbol
implies nesting and terms were fitted as fixed effects. Variance in P
was partitioned such that:

Total  variance ¼ VðFamilyÞ þ VðGenotypeÞ þ VðBlockÞ
for tissue culture material, or

Total  variance ¼ VðFamilyÞ þ VðBlockÞ
for seedlings.

To evaluate variation in each natural and tissue-cultured condition,
we did this analysis separately for the tissue-cultured plants and
seedlings. We conducted these variance component analyses using
the varcomp function in the ape library, and the lme function in R
2.8.0 (R Development Core Team 2008).

We testedwhether variance in the change ofFv/Fm,Fv9/Fm9, orFPSII

due to cold shock among tissue-culture derived plantlets within each
genotype was different from that in seedlings of half-siblings of the
same family using Bartlett tests. Because the number of blocks differed
between seedlings and tissue-cultured plantlets (Table 1), we checked
first whether the difference in the number of blocks affected the vari-
ance, by resampling all possible combinations of four blocks from the
10 blocks of half-siblings in Ardal and Notsand. Reducing block num-
ber changed the original variance for 10 blocks only, 6 3% without
systematic bias.

Finally, we evaluated the effect of several factors on each type of
chlorophyll fluorescence measurement before and after cold treatment.
We constructed the following linearmixed-effect model, in which plant
individual was treated as a random effect:

CF ¼ IjB=PþCþTþFþC ·TþT · FþC · FþC ·T · F

where CFwas a single measurement of either Fv/Fm, Fv9/Fm9, orFPSII,
and I|B/P was the intercept with random effects of block, and indi-
vidual plant nested in each block, C was a categorical variable of cold
shock (cold-shocked or not), T was a categorical variable of tissue
culture (tissue-cultured or not), and F was a categorical variable of
family (three families), followed by the interaction terms among those
variables. The effect of each term was estimated by the lme function
using the statistical software R 2.8.0 (R Development Core Team
2008). Akaike’s Information Criterion (AIC) was compared between
the full model and a model lacking each term in a stepwise manner,
and the best model with the lowest AIC was selected, followed by
testing the significance of each selected parameter using theWald test.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article. All

n Table 1 Numbers of plants and blocks in each family (Ardal,
Notsand, and Sandfell)

Genotype 1 Genotype 2 Genotype 3
Half
Sibs

Ardal
Number of plants 33 36 – 40
Number of blocks 4 4 – 10
Plants/block

(min – max)
6–9 9–9 – 4–4

Notsand
Number of plants 13 31 – 40
Number of blocks 2 4 – 10
Plants/block

(min – max)
5–8 4–9 – 4–4

Sandfell
Number of plants 45 28 23 28
Number of blocks 5 4 3 4
Plants/block

(min – max)
9–9 5–9 5–9 5–8

Plants were either seedlings in a half-sibling family, or tissue-cultured clonal plantlets
from genotypes derived from a seed from each family. Block refers to the groups of
plantlets from each genotype, or groups of seedlings from the same family for half-
sibling families, that were treated and measured at the same time.
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phenotypic data are available inDryadDigital Repository: http://dx.doi.
org/10.5061/dryad.9gs8k.

RESULTS AND DISCUSSION

Variance components in cold-response of Fv/Fm, Fv9/
Fm9, and FPSII

In the seedlings, the changes in Fv/Fm, Fv9/Fm9, orFPSII following cold
treatment varied significantly among families, explaining 4.9–9.1% of
the total variance (Table 2). For the tissue-cultured plantlets, the change
in those indices following cold treatment did not vary significantly
among families, but did vary significantly among genotypes within
family, this component explaining 8.5–31.5% of the total variance.
The within-block (error) variance component for tissue-cultured plant-
lets was 61.7–81.8%, and tended to be smaller than this component for
seedlings (89.1–92.2%).

Evaluation of somaclonal variation in comparison to
within-family variation
Variances in the change of Fv/Fm, Fv9/Fm9, or FPSII among clones
within genotype were clearly smaller than those among half-siblings
of the same family in the Sandfell family. Most genotypes had signif-
icantly smaller variances in Fv/Fm, Fv9/Fm9, and FPSII than half-sibs as
shown by the Bartlett test (Figure 1). Similar patterns were observed in
Notsand and Ardal. No studied genotype had larger variance among
clones than the variance among half-siblings in any family.

Effects of cold shock, tissue culturing, and family on
Fv/Fm, Fv9/Fm9, and FPSII

All single effects of cold shock, tissue culture and family and all possible
interaction combinations among them affected Fv/Fm and Fv9/Fm9, and
all such effects except the three-way interaction between cold shock,
tissue culture and family affected FPSII, according to the best model
(Table 3) based on Akaike’s Information Criterion (AIC). Cold shock
and family were the strongest single effects. The interaction between
these two factors was also found to change all three measurements of
chlorophyll fluorescence, indicating that the effect of cold shock
depended on family. The effect of tissue culture was relatively small

and not significant for any of the chlorophyll fluorescence measures.
We found substantial interactions between tissue culture and family,
and interactions among cold shock, tissue culture, and family, indicat-
ing that the effect of tissue culture varied among families.

Among-genotype variance
We were able to test for among-genotype variance using replicates
generated by tissue culture within genotypes, and we detected such
variance in Fv/Fm, Fv9/Fm9, and FPSII measurements (Table 2). On the
other hand, we showed significant but low somaclonal variation. The
within-block (error) variance component for tissue-cultured plantlets
was relatively small compared to that for nontissue-cultured seedlings
(Table 2). The Bartlett tests showed that somaclonal variation was
smaller than, or at least remained within the range of, the within-family
variance, which is the smallest naturally observed component of vari-
ation in the hierarchy of genetic structure (Figure 1). In A. thaliana,
studies of natural variation have focused mainly on between-population
variation (e.g., Shindo et al. 2007). In contrast, A. lyrata has substan-
tial within-population variation, for example, in the composition of
glucosinolates (Clauss et al. 2006) or self-incompatibility genes
(Schierup et al. 2008). In this paper, we showed that there is within-
family as well as among-family, and thus among-population, genetic
variation in A. lyrata ssp. petraea. Within-family genetic variance was
relatively large in Sandfell (Iceland). The observed within-family genet-
ic variances in putatively adaptive traits highlight the wide potential for
evolutionary adaptation of the species, and further validate the useful-
ness of relatives of model organisms in evolutionary biology (Mitchell-
Olds 2001; Clauss and Koch 2006).

Among-family variance
Therewassignificantormarginally significantamong-familyvariance in
the change of Fv/Fm, Fv9/Fm9, andFPSII values following cold treatment
for seedlings (Table 2). We used different growth chambers for plant
growth and for cold shock, and therefore light condition for cold shock
inevitably differed from that for growth. Light and temperature are
difficult to disassociate in such a study system, and both the single effect
of cold treatment, and the light–temperature interaction, can be in-
volved in the effect of cold shock. In A. thaliana, the change in

n Table 2 Analysis of variance for change in Fv/Fm, Fv9/Fm9 andFPSII by cold treatment for nontissue-cultured seedlings and tissue-cultured
plantlets

Seedlings Tissue Cultures

Df Sum Sq Mean Sq F P
Variance

Component (%) Df Sum Sq Mean Sq F P
Variance

Component (%)

Fv/Fm
Family 2 0.027 0.013 2.84 0.081 4.9 2 0.002 0.001 0.06 0.946 0.0
Genotype 4 0.080 0.020 11.52 0.000 31.5
Block 21 0.098 0.005 1.11 0.351 6.1 19 0.033 0.002 1.91 0.016 6.8
Error 84 0.353 0.004 89.1 183 0.167 0.001 61.7

Fv9/Fm9
Family 2 0.081 0.041 10.01 0.001 7.8 0.005 0.002 0.24 0.798 0.0
Genotype 4 0.041 0.010 3.27 0.034 10.9
Block 21 0.085 0.004 0.33 0.997 0.0 19 0.059 0.003 2.54 0.001 14.1
Error 84 1.048 0.012 92.2 183 0.225 0.001 74.9

ФPSII

Family 2 0.026 0.013 8.44 0.002 9.1 2 0.044 0.022 2.81 0.173 7.7
Genotype 4 0.031 0.008 3.37 0.030 8.5
Block 21 0.032 0.002 0.45 0.978 0.0 19 0.044 0.002 1.23 0.241 2.0
Error 84 0.282 0.003 90.9 183 0.349 0.002 81.8

Family and Block refer to variation among families and among blocks within families, respectively. Each Block was a group of seedlings from the same family for
Seedling or group of plantlets from the same genotype for Tissue cultures. Error refers to variation among plants within blocks.
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chlorophyll fluorescence from before to after cold shock correlates
with tolerance to subzero temperatures measured by electrolyte leak-
age, and, therefore, this is regarded as an indicator of cold tolerance or
response (Ehlert and Hincha 2008; Mishra et al. 2014). Therefore, our
result also represents evidence for among-family (thus possibly among-
population) variance in cold response.

Effects of tissue culturing
Wedetected genotype-specific effects of tissue culture onFv/Fm,Fv9/Fm9,
and FPSII (Table 3, and Supplemental Material, Table S1). This is
consistent with a previous report of a genotype-specific effects on callus
characteristics (Glock and Gregorius 1986; Glock 1989). The three
measured parameters of chlorophyll fluorescence all decreased after
the cold shock (the effects of cold shock in Table 3 are all negative
for Fv/Fm, Fv9/Fm9, andFPSII), indicating a decrease in photosystem II
activity, as reported in previous studies (Finazzi et al. 2006). A positive
effect of interaction between tissue culture and cold shock for FPSII

suggests that tissue-cultured plants were less affected by cold shock
than seedlings, and an interaction between tissue culture, cold shock,
and family suggests that the extent to which tissue-cultured plants were
less affected by cold shock differed among families. Any differences
among families in traits related to responses to the tissue-culture envi-
ronment, including root-cutting, callus formation, and growth on me-
dium, might explain these observed interactions between tissue culture
and family. This finding is consistent with the report that somaclonal
variation is genotype-dependent, and influenced by both the explant
source and the tissue-culture protocol (George and Sherrington 1984),

and with a recent study showing that the effect of tissue culture on
somatic mutations depended on genotype (Zhang et al. 2010). The
effects of tissue culture–genotype interaction, however, were compara-
ble to, or much smaller than, the single effect of family (Table 3), in-
dicating that such interactions would not mask the single effect of
genotype. The interaction effect between tissue culture and family
wasmuch smaller inFPSII than in Fv/Fm or Fv9/Fm9 [the ranges between
maximum and minimum estimates were 0.043 2 (20.005) = 0.048,
0.082 2 0 = 0.082 and 0.1812 0 = 0.181, respectively; Table 3].
An interaction between cold shock, tissue culture, and family was
detected only in Fv/Fm and Fv9/Fm9. Also, the relative impact of

n Table 3 The best linear mixed models for Fv/Fm, Fv9/Fm9 and
FPSII, based on AIC

Estimates SE DF t P

Fv/Fm
Intercept 0.787 0.011 311 71.3 ,0.001
Cold shock 20.122 0.008 311 215.9 ,0.001
Tissue culture 20.017 0.015 302 21.1 0.252
Fam A 20.026 0.015 302 21.7 0.093
Fam S 20.091 0.017 302 25.4 ,0.001
Cold shock · Tissue

culture
20.007 0.011 311 20.7 0.506

Cold shock · Fam A 20.035 0.011 311 23.2 0.002
Cold shock · Fam S 20.007 0.012 311 20.5 0.584
Tissue culture · Fam A 0.029 0.020 302 1.5 0.147
Tissue culture · Fam S 0.082 0.021 302 3.9 ,0.001
Cold shock · Tissue

culture · Fam A
0.043 0.014 311 3.0 0.003

Cold shock · Tissue
culture · Fam S

0.015 0.015 311 1.0 0.327

Fv9/Fm9
Intercept 0.695 0.014 311 50.9 ,0.001
Cold shock 20.131 0.011 311 212.1 ,0.001
Tissue culture 20.019 0.019 302 21.0 0.304
Fam A 20.050 0.019 302 22.6 0.009
Fam S 20.167 0.021 302 27.9 ,0.001
Cold shock · Tissue

culture
0.011 0.015 311 0.8 0.446

Cold shock · Fam A 0.015 0.015 311 0.9 0.345
Cold shock · Fam S 0.068 0.017 311 4.0 ,0.001
Tissue culture · Fam A 0.070 0.025 302 2.8 0.006
Tissue culture · Fam S 0.181 0.026 302 6.9 ,0.001
Cold shock · Tissue

culture · Fam A
20.013 0.020 311 20.7 0.514

Cold shock · Tissue
culture · Fam S

20.077 0.021 311 23.7 ,0.001

ФPSII

Intercept 0.403 0.012 313 34.2 ,0.001
Cold shock 20.047 0.006 313 27.7 ,0.001
Tissue culture 20.027 0.016 302 21.7 0.090
Fam A 20.029 0.016 302 21.8 0.081
Fam S 20.086 0.018 302 24.7 ,0.001
Cold shock · Tissue

culture
0.034 0.006 313 5.8 ,0.001

Cold shock · Fam A 20.004 0.007 313 20.5 0.610
Cold shock · Fam S 0.028 0.007 313 3.9 ,0.001
Tissue culture · Fam A 20.005 0.021 302 20.2 0.822
Tissue culture · Fam S 0.043 0.022 302 2.0 0.051

Fam A and Fam S refer to families Ardal and Sandfell, respectively. Intercepts
represent the combination of background conditions, i.e., not cold shocked, not
tissue cultured, and family Notsand. All effects are for family Notsand unless
another family name was shown. Effects for the other families are shown as
differences from the background effect of family Notsand.

Figure 1 Change in chlorophyll fluorescence (Fv/Fm, Fv9/Fm9, and
FPSII) in seedlings or plantlets originating from Norway (Ardel), Swe-
den (Notsand), and Iceland (Sandfell) after cold-treatment (values
after shock – those before shock). � = P , 0.05, �� = P , 0.01,
and ��� = P , 0.001 (Bartlett test) indicate a significantly lower vari-
ance of the genotype than among half-siblings in the same family.
Three Fv/Fm values (0.340, 0.375, and 0.592), and an Fv9/Fm9 value
(0.354) in Sandfell half-siblings were out of the vertical ranges shown,
but were included in the statistical tests.
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among-genotype variance was smaller for FPSII (8.5% of the total var-
iance, Table 2) than for Fv/Fm (31.5%) or Fv9/Fm9 (10.9%). These results
imply that, although the maximum efficiencies of photosynthesis for
dark- (Fv/Fm) and light-adapted leaves (Fv9/Fm9) were affected by tissue
culturing in genotype-specific ways, the actual electron transport op-
erating efficiency (FPSII) was less affected by tissue culture.

Conclusion
Overall, we successfully detected among-genotype variance, with low
somaclonal variation, indicating that the advantage of tissue culturing in
generating genetically isogenic replicates exceeded its disadvantage in
amplifying somaclonal variation in our study system. We detected
interaction effects of tissue culturewith genotype for aputatively adaptive
trait, cold response; however, such variation would not mask the single
effect of genotype. Therefore, although one should consider effects of
tissue culturing carefully when interpreting any results relying on the
technique, tissue culturing is a useful method for obtaining genetically
homogenous replicates in this, andprobablyother, nonmodelorganisms.
It can provide critical additional power when studying phenotypes such
as cold response related to adaptation in natural environments, the
variation in the phenotypes among families or populations, the reaction
norms of a genotype, or the QTL accounting for phenotypes.
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