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Abstract 

Stoichiometrically-controlled alkali-activated pastes containing calcium-(sodium) aluminosilicate 

hydrate (C-(N)-A-S-H) and sodium aluminosilicate hydrate (N-A-S-H) gels are produced by alkali-

activation of high-purity synthetic calcium aluminosilicate powders. These powders are chemically 

comparable to the glass in granulated blast furnace slag, but without interference from minor 

constituents. The physiochemical characteristics of these gels depend on precursor chemical 

composition. Increased Ca content of the precursor promotes formation of low-Al, high-Ca C-(N)-A-S-

H with lower mean chain length as determined by quantification of solid state nuclear magnetic 

resonance spectra, and less formation of calcium carboaluminate �Alumino-ferrite monosulfate� (AFm) 

phases. Increased Al content promotes Al inclusion and reduced crosslinking within C-(N)-A-S-H, 

increased formation of calcium carboaluminate AFm phases, and formation of an additional N-A-S-H 

gel. Small changes in precursor composition can induce significant changes in phase evolution, 

nanostructure and physical properties, providing a novel route to understand microstructural 

development in alkali-activated binders and address key related durability issues. 

http://dx.doi.org/10.1016/j.cemconres.2016.08.010
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1. Introduction 

Alkali-activated materials (AAMs) offer a viable low-CO2 alternative to Portland cement (PC) in 

numerous applications and exhibit desirable physical properties, as well as a potential reduction in 

CO2 emissions by as much as 80% [1]. Coexistence of both sodium- and aluminium-substituted calcium 

silicate hydrate (C-(N)-A-S-H) and sodium aluminosilicate hydrate (N-A-S-H) gels, the main reaction 

products in AAM, results in complex thermodynamic and chemical interactions which dictate material 

properties and performance. Despite numerous studies investigating the chemistry of AAM, the 

literature is often conflicting and experimental analysis involves many unconstrained parameters. For 

this reason, it is necessary to use a method to study these materials that permits strict control of the 

stoichiometry in order to investigate relationships between precursor chemical composition and the 

molecular interactions governing phase evolution in AAM [2]. 

Previous approaches to this problem have involved synthesis of AAM precursor powders and binder 

phases in the laboratory under controlled conditions [3-7]. Of these, most use a sol-gel procedure to 

form aluminosilicate or calcium-aluminosilicate gels designed to simulate AAM binder phases and 

investigate the effect of alkali cations, alkaline earth cations or aluminium on C-S-H or N-A-S-H gels. 

This is done by addition of these ions after formation of the gel (either by direct addition of an ion 

source or by mixing two different gels together), which restricts the control of stoichiometry and 

homogeneity in these systems, as well as possibly modifying the structural roles of the cations. 

Additionally, the use of high amounts of water and the presence of nitrates in these studies can lead 

to differences in alkalinity and thus significantly affect the mechanisms of dissolution, reaction and 

phase formation [8, 9]. In most AAM systems, reactive species are initially present and participate 

simultaneously in the reaction. This leads to possible differences in the structure of the binder gel 

http://dx.doi.org/10.1016/j.cemconres.2016.08.010
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networks formed when comparing the aforementioned synthetic gels to �real-world� AAM systems if 

the degree of approach to thermodynamic equilibrium is restricted by transport or kinetic limitations. 

Replication of the reaction conditions present during alkali-activation of reactive cementitious 

precursors has recently been achieved [10] by alkali-activation of high-purity synthetic aluminosilicate 

amorphous precursor powders synthesised via an organic steric entrapment solution-polymerisation 

route [11]. However, this has not previously been demonstrated for alkali-activation of calcium 

aluminosilicate precursors. Calcium is present to some extent in the majority of precursors used to 

produce AAMs, and is a primary constituent of blast furnace slag. Slag, however, contains significant 

quantities of MgO as well as numerous minor elements (e.g. Mn, Ti) which complicate dissolution and 

phase formation and possibly alter gel microstructure [12, 13]. Many slags also contain metal sulfides 

which can undergo redox processes and influence phase formation [14, 15]. Through the use of pure 

systems, key variables controlling phase formation can be isolated and controlled without the added 

complexity caused by the presence of additional minor constituents. Synthetic C-S-H and C-A-S-H 

systems have previously been produced via mixing CaO, SiO2 and CaO·Al2O3 in water and equilibrating 

over time [16-19], but to provide more accurate replication of the process of dissolution of chemical 

species from alkali-activated cement precursor particles, pure systems with lower water content must 

be examined.  

In order to accurately replicate the reaction conditions present during alkali-activation of reactive 

cementitious precursors, this study utilises high-purity synthetic calcium aluminosilicate amorphous 

precursor powders synthesised via an organic steric entrapment solution-polymerisation route as 

described in detail previously [11], to develop a novel method of stoichiometric control of AAMs, 

following presentation of limited preliminary results in [20]. These AAMs are synthesised from the 

powder precursors under the same physicochemical conditions which prevail during alkali-activation 

of commonly used calcium aluminosilicate precursors such as ground granulated blast furnace slag 

(GGBFS) (i.e. reaction of an aluminosilicate precursor with an alkaline solution).  The study presented 

http://dx.doi.org/10.1016/j.cemconres.2016.08.010


Preprint of a paper published in Cement and Concrete Research, 89(2016):120-135. Version of record 
is available at http://dx.doi.org/10.1016/j.cemconres.2016.08.010  

4 

here extends this work utilising advanced characterisation techniques including 1H, 29Si, 27Al, 23Na solid 

state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy to provide a new 

level of insight into the role of precursor chemistry in phase evolution of C-(N)-A-S-H and N-A-S-H 

frameworks, as well as a detailed discussion of implications of these findings for AAM mix design. 

 

2. Experimental Procedures 

2.1 Alkali-activated material synthesis 

Precursors were synthesised via an organic steric entrapment solution-polymerisation route [11], with 

compositions chosen to exhibit chemistry in regions of the quaternary CaO � Na2O � Al2O3 � SiO2 

system which are important for studying C-(N)-(A)-S-H gels (Table 1). In particular, the Al/Si ratios 

represent values expected for non-crosslinked C-(N)-A-S-H (approximately Al/Si ч 0.10) and 

crosslinked C-(N)-A-S-H gels (ĂƉƉƌŽǆŝŵĂƚĞůǇ Ϭ͘ϭϬ ч AůͬSŝ ч Ϭ͘ϮϬ) [21-23]. The Al/Si and Ca/(Al+Si) ratios 

in the samples investigated here also span the range of bulk Al/Si and Ca/(Al+Si) ratios observed in 

Na2O∙xSiO2∙yH2O ĂĐƚŝǀĂƚĞĚ ƐůĂŐƐ ;AůͬSŝ ч Ϭ͘Ϯϱ ĂŶĚ Ϭ͘ϲϳ ч CĂͬ;AůнSŝͿ ч ϭ͘ϮͿ [23-27] and laboratory 

synthesised C-A-S-H gels ;AůͬSŝ ч Ϭ͘Ϯ ĂŶĚ Ϭ͘ϱ ч CĂͬ;AůнSŝͿ ч ϭͿ [18, 21, 28-32]. The activating solution 

was prepared by dissolution of sodium hydroxide powder (AnalaR 99 wt %) in sodium silicate solution 

(N grade, 37.5 wt %, PQ Australia) and distilled water. Stoichiometry was designed to obtain an 

activating solution modulus of SiO2/Na2O = 1, with cation and water/solids (w/s) ratios as outlined in 

Table 1. The w/s ratios were chosen in order to achieve comparable paste consistency in all samples 

and setting within 3 days. 

 

http://dx.doi.org/10.1016/j.cemconres.2016.08.010
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Table 1: Empirical formula, Brunauer-Emmet-Teller surface area and D50 of the precursor (accurate to ± 2 m2/g) and 

reaction mixture molar ratios for each sample 

Precursor Reaction mixture 

Sample Empirical formula 
Surface area 

(m2/g) 

D50 

(µm) 
w/s Ca/(Al+Si) Al/Si Na/Al 

A 0.800CaO·SiO2·0.078Al2O3 2.90 23.7 0.75 0.67 0.15 0.50 

B 1.214CaO·SiO2·0.078Al2O3 3.82 40.1 1.00 1.00 0.15 0.50 

C 0.709CaO·SiO2·0.0255Al2O3 6.42 31.1 0.60 0.67 0.051 0.50 

D 1.104CaO·SiO2·0.0255Al2O3 3.58 36.7 0.75 1.00 0.051 0.50 

 

The activating solution was mixed with the precursor powder to form a homogeneous paste which 

was subsequently cast in sealed containers cured at ambient temperature for 3, 28 and 180 days. 

Previous work has shown that the difference in w/s ratios didn�t affect the degree of dissolution of 

the precursor powders [10, 20]. 

2.2 Characterisation 

For all characterisation techniques except environmental scanning electron microscopy/energy 

dispersive X-ray spectroscopy (ESEM/EDX), the hardened pastes were ground by hand using a mortar 

and pestle and immersed in acetone to remove loosely bound water and halt the alkali-activation 

reaction. This method does not induce any significant changes in the AAM gel structure [33]. 

X-ray diffraction (XRD) experiments were performed using a Bruker D8 Advance instrument with Cu 

Kɲ ƌĂĚŝĂƚŝŽŶ͕ Ă ŶŝĐŬĞů ĨŝůƚĞƌ͕ Ă ƐƚĞƉ ƐŝǌĞ ŽĨ Ϭ͘ϬϮϬº, dwell time of 3 seconds and a Ϯɽ ƌĂŶŐĞ ŽĨ ϯ - 70º. 

Environmental scanning electron microscopy (ESEM) was conducted using an FEI Quanta instrument 

with a 15 kV accelerating voltage and a working distance of 10 mm. To avoid the need to carbon coat 

the samples they were cut and immediately evaluated in low vacuum mode (0.5 mbar water pressure) 

http://dx.doi.org/10.1016/j.cemconres.2016.08.010
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using a backscatter detector. A Link-Isis (Oxford Instruments) X-ray energy dispersive (EDX) detector 

was used to determine chemical compositions. 

Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy experiments were 

performed using a Varian FTS 7000 spectrometer with a Specac MKII Golden Gate single reflectance 

ATR attachment with KRS-5 optics and a diamond ATR crystal, collecting 32 scans at a resolution of 4 

cm-1. 

Solid state single pulse 29Si, 27Al, 23Na and 1H MAS NMR spectra were collected on an Agilent VNMRS-

600 spectrometer at 14.1 T (B0) using a 4.0 mm triple resonance bioMAS probe. Parameters for each 

experiment are outlined in Table 2. 1H-29Si cross-polarisation (CP) MAS NMR experiments were 

collected on a Varian Infinity+ spectrometer at 7.05 T (B0) using a 7.0 mm double resonance probe 

ǇŝĞůĚŝŶŐ Ă ƐƉŝŶŶŝŶŐ ĨƌĞƋƵĞŶĐǇ ŽĨ ϱ ŬHǌ, a 29Si ͚ŶŽŶ ƐĞůĞĐƚŝǀĞ͛ ;ƐŽůŝĚͿ ʋͬϮ ƉƵůƐĞ width of 6.0 µs, an initial 

1H ʋͬϮ ƉƵůƐĞ ǁŝĚƚŚ ŽĨ Ϯ͘ϱ µs, a recycle delay of 4 s and Hartmann-Hahn contact periods of 4 ms. A 

nominal 1H ĚĞĐŽƵƉůŝŶŐ ĨŝĞůĚ ƐƚƌĞŶŐƚŚ ŽĨ ϴϬ ŬHǌ ǁas employed during acquisition, and at least 20,000 

transients were collected per experiment. 

Data collected on the VNMRS-600 spectrometer were processed using NMRPipe [34], while data 

collected on the Varian Infinity+ spectrometer were processed using Bruker TopSpin. Deconvolution 

of the 29Si MAS NMR spectra was performed using Gaussian peak profiles with assignments made with 

reference to the literature [35]. The minimum number of peaks possible was used to enable an 

accurate and meaningful interpretation of the spectra, and peak full width at half height was restricted 

ƚŽ ч ϰ ƉƉŵ͘ Intensities of peaks were required to be consistent with the structural constraints 

described by the �Crosslinked Substituted Tobermorite Model� (CSTM) for C-A-S-H products [23], and 

the thermodynamics of a statistical distribution of Si and Al sites within a Q4 aluminosilicate network 

for N-A-S-H products [36]. 

 

http://dx.doi.org/10.1016/j.cemconres.2016.08.010
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Table 2: Parameters for each single pulse MAS NMR experiment. Tetramethylsilane (TMS), powdered aluminium chloride 

hexahydrate (AlCl3·6H2O) and powdered sodium chloride (NaCl) were used as reference compounds, as marked. * 27Al MAS 

NMR experiments examining the precursors and alkali-activated material cured for 3 days were conducted with spinning 

speeds ŽĨ ϭϬŬHǌ͘ 

Nucleus 
Field 

strength (T) 

Transmitter 

frequency (MHz) 

ʋͬϮ pulse 

width (µs) 

Relaxation 

delay (s) 
Scans 

Spinning 

speed (kHz) 

Reference 

(ɷiso / ppm) 

29Si 14.1 119.14 7.0 120 1024 10.0 
TMS  

(0.0 ppm) 

27Al 14.1 156.26 4.0 2 1024 12.0* 
AlCl3.6H2O(s) 

(0.0 ppm) 

23Na 14.1 158.63 5.0 3 512 12.0 

NaCl(s)  

(7.2 ppm) 
[37] 

1H 14.1 599.70 2.7 3 32 12.0 
H2O(l)  

(4.7 ppm) 

  

http://dx.doi.org/10.1016/j.cemconres.2016.08.010


Preprint of a paper published in Cement and Concrete Research, 89(2016):120-135. Version of record 
is available at http://dx.doi.org/10.1016/j.cemconres.2016.08.010  

8 

3. Results and discussion 

3.1 X-ray Diffraction 

X-ray diffractograms of the precursor powders and AAMs cured for 3, 28 and 180 days are presented 

in Figure 1. Alkali-activation of all samples produces a broad feature centred at approximately 29º Ϯɽ͕ 

characteristic of AAM and indicating formation of a disordered reaction product consistent with that 

formed during alkali-activation of GGBFS [13, 27], and increasing in intensity with reaction time. A 

broad peak at approximately 29º Ϯɽ is assigned to a poorly crystalline C-(A)-S-H phase displaying some 

structural similarity with aluminium-containing tobermorite (PDF # 19-0052) [27], formed due to the 

dissolution and reaction of the amorphous phase from the precursor powder as well as C2S (Ca2SiO4, 

Powder Diffraction File (PDF) cards: β polymorph # 33-0302 and α�L polymorph PDF # 36-0642), C3A 

(Ca3Al2O6, cubic polymorph, PDF # 38-1429) and free lime (CaO, PDF # 48-1467) identified in the 

precursor powders. 

AFm type phases in both the hemicarbonate (Hc, Ca4Al2(OH)13·0.5CO3·xH2O) and monocarbonate (Mc, 

Ca4Al2(OH)12·CO3·xH2O) forms are observed in alkali-activated samples A and B [38, 39], while the 

hydroxy-AFm phase (C4AH13) (PDF # 02-0077) forms in alkali-activated samples A, B and D. Small 

amounts of stilbite-Ca (NaCa2Al5Si13O36.14H2O) (PDF # 44-1479) are also evident in AAM A. Vaterite 

(PDF # 33-0268) is present in alkali-activated sample D cured at all ages, while calcite (PDF # 47-1743) 

contributes a reflection at approximately 29.3 Ϯɽ in the X-ray diffractograms of all the AAMs. 

The high calcium content in precursor B promotes the formation of portlandite (Ca(OH)2) (PDF # 44-

1481) as a reaction product, in addition to C-(A)-S-H, Hc/Mc and C4AH13 products, during early stages 

of the reaction. Alkali-activation of the high-Al, high-Ca containing precursor for sample C also results 

in the formation of a small amount of portlandite due to hydration of C2S which is largely consumed 

during the first 3 days of curing. Portlandite is progressively consumed as curing time increases and 

after 180 days reaction products (as observed by XRD) appear to be largely the same despite the initial 

http://dx.doi.org/10.1016/j.cemconres.2016.08.010
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differences in Ca content of the precursors. Consumption of portlandite is driven by the ƉŽǌǌŽůĂŶŝĐ 

reaction due to freely available silicon present in the reaction mixture, forming additional C-(A)-S-H 

[40]. 29Si MAS NMR data discussed below (section 3.4.2) indicate that dissolution of Si from remnant 

precursor particles continues for up to 180 days and is the most likely reason for the progressive 

decrease in portlandite in samples B and C. An increase in calcite in these samples over the same time 

period suggests that carbonation is also contributing to the decrease in portlandite in these samples. 

Alkali-activation of the Ca-rich, Al-deficient precursor (sample D) does not result in the formation of 

portlandite, attributed to the low consumption of C2S and free lime during alkali-activation of this 

precursor.  

Greater Al content in the precursors promotes the formation of the Al-containing AFm reaction 

products. The reflections due to C4AH13 and Mc in samples A and B decrease between 3 and 28 days 

of curing, and then increase significantly by 180 days of curing. The degree to which the intensity of 

these reflections changes with time is consistent for both samples, suggesting that similar reaction 

kinetics control phase evolution in each case. Formation of low Ca/Si C-(A)-S-H (due to release of Si 

from the precursor particles as discussed above) leads to a decrease in the level of dissolved Ca2+ ions, 

subsequent uptake of alkalis [40, 41] and a decrease in pH of the pore solution [42, 43] which results 

in destabilisation of Mc [44]. Replacement of C4AH13 and Mc by Hc due to through-solution ion 

exchange followed by subsequent reaction of Hc with CO3
2- to form Mc, as observed in fly ash/calcium 

aluminate cement blends [38, 45], will cause the observed changes in intensity of the C4AH13 and Mc 

reflections. These trends are consistent with experimental observations and thermodynamic 

modelling of AFm phase evolution within alkali-activated slag and PC systems [38, 46-48].  

Increased Ca content in the reaction mixture at Al/Si = 0.15 also promotes greater formation of C4AH13 

and Mc after 180 days. Greater calcium content in precursors with less Al content (Al/Si = 0.05) did 

not display this trend, with the only significant difference observable by XRD being a narrowing of the 

reflection of C-(A)-S-H. Reduced Al content in Ca-rich precursors has prevented the formation of 

http://dx.doi.org/10.1016/j.cemconres.2016.08.010
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calcium carboaluminate phases and simultaneously reduced the amount of freely available Al which 

can substitute for Si within the C-(A)-S-H gel, consequently increasing the degree of structural order 

exhibited by this phase. This correlation of increasing structural order with increasing bulk Al content 

is consistent with observations for synthetic C-(N)-A-S-H samples [16, 17]. 

The reflection attributed ƚŽ ĐůŝŶŽǌŽŝƐŝƚĞ (Ca2Al3(Si2O7)(SiO4)O(OH), PDF # 44-1400) in the precursors for 

samples C and D remains unchanged after alkali-activation and 180 days of curing, suggesting that this 

phase remains inert and does not participate in the alkali-activation reaction. The reflection due to 

pavlovskyite (Ca8Si5O18, PDF # 29-0368) identified in precursor C and D is absent from the AAMs, 

indicating dissolution of this phase upon alkali-activation. The reflection due to rosenhahnite 

(Ca3(Si3O8(OH2)), PDF # 29-0378) in the precursor of samples C and D increases upon alkali-activation 

and then remain unchanged beyond 3 days of curing. It is likely that the presence of rosenhahnite in 

the precursor has provided seed crystals and promoted nucleation to allow Ca2+ and silicates from the 

reaction mixture to participate in crystal growth during early stages of alkali-activation, after which 

growth is halted. Reflections due to stilbite do not appear to change between 3 and 180 days, 

suggesting that this phase does not participate in the reaction beyond 3 days.  

http://dx.doi.org/10.1016/j.cemconres.2016.08.010
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Figure 1: X-ray diffraction data for the precursor and alkali-activated material cured for 3, 28 and 180 days for samples A - D 

as marked.  

http://dx.doi.org/10.1016/j.cemconres.2016.08.010


Preprint of a paper published in Cement and Concrete Research, 89(2016):120-135. Version of record 
is available at http://dx.doi.org/10.1016/j.cemconres.2016.08.010  

13 

3.2 Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 

ATR-FTIR spectra collected for the AAMs are presented in Figure 2; full interpretation of ATR-FTIR 

spectra of the precursors is provided in Appendix B, Supporting Information. Alkali-activation 

produces a broad intense band at approximately 950 cm-1 in the spectra of all samples cured for 3 

days, attributed to asymmetric stretching vibrations of Si-O-T bonds (T: tetrahedral Si or Al) in the 

chain structure of C-(A)-S-H [5, 49, 50]. This band sharpens as curing time is increased, indicating that 

greater structural ordering of C-(A)-S-H evolves as the reaction proceeds. Increased curing time also 

sees a shift in this band to slightly lower wavenumbers in the spectra for samples A and B (Al/Si = 0.15) 

by 28 days, and then a shift to higher wavenumbers by 180 days. This indicates increased inclusion of 

Al within the C-(A)-S-H gel between 3 and 28 days followed by increased polymerisation and 

crosslinking of C-(A)-S-H, as well as a decrease in the Ca/Si ratio, between 28 and 180 days via 

condensation of tetrahedral species as a consequence of the increased Al content of the gel [51, 52].  

A band at 666 cm-1 attributed to symmetrical stretching of Si-O-T bonds is observed in the spectra of 

the precursor (Appendix B, Supporting Information) and AAM for all samples, and remains unaltered 

over time. The sharp band at 870 cm-1 in the spectra of AAM A and B at all timepoints is associated 

with asymmetric stretching of AlO4
- groups in Al-O-Si bonds within the C-(A)-S-H gel [50, 53]. The shift 

in the band initially present at 462 cm-1 in all samples to 424 cm-1 in samples A and B (Al/Si = 0.15), 

and to 440 cm-1 in samples C and D (Al/Si = 0.051), also suggests greater Al content within the silica 

network. 

After 3 days of curing, the broad feature in the spectra of samples C and D (Al/Si = 0.15) attributed to 

asymmetric stretching vibrations of Si-O-T bonds in the chain structure of C-(A)-S-H is actually 

comprised of two bands (at 953 cm-1 and 928 cm-1 for sample C and 952 cm-1 and 928 cm-1 for sample 

D, see Appendix B, Supporting Information). This indicates a broad distribution of bond angles centred 

around two similar bond environments for each sample which can be attributed to Si-O-Si and Si-O-Al 

bonds, respectively [53, 54]. The sharpening of the vibration mode attributed to Si-O-T bonds within 

http://dx.doi.org/10.1016/j.cemconres.2016.08.010
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C-(A)-S-H with increased curing time in all samples indicates increasing order of 8this phase, consistent 

with XRD observations (section 3.1), and this will be further analysed by NMR spectroscopy below. 

Samples A and C, with lower calcium content, exhibit the highest wavenumbers for the band 

associated with Si-O-T bonds in the chain structure of C-(A)-S-H after 180 days of curing, suggesting 

that increased Al content within the reaction mixture increases the long term polymerisation and 

crosslinking of the C-(A)-S-H gel, consistent with thermodynamic modelling of sodium silicate-

activated slag systems [23]. 

http://dx.doi.org/10.1016/j.cemconres.2016.08.010


Preprint of a paper published in Cement and Concrete Research, 89(2016):120-135. Version of record 
is available at http://dx.doi.org/10.1016/j.cemconres.2016.08.010  

15 

 

 

Figure 2: Infrared spectra (transmittance) of the precursor and alkali-activated material cured 3, 28 and 180 days for sample 

A - D as marked. The series of wavenumber labels closest to the spectra represent bands observed in the spectra of the 

precursor, whilst the series of wavenumber labels furthest from the spectra represent bands observed in the spectra of the 

alkali-activated material. 
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3.3 Environmental scanning electron microscopy/energy dispersive X-ray spectroscopy 

Back-scattered electron (BSE) images for each sample (Figure 3 to 6) show a porous, particulate-

structured AAM binder. Crystals displaying a plate-like morphology and elemental composition 

characteristic of AFm phases [56] are also observed in the BSE images and elemental maps for samples 

A and B cured for 180 days (Figure 3 and Figure 4). 

The Mc phase previously identified by XRD is observed via elemental mapping of samples A and B at 

all ages, which show an Al-rich, Si- and Na- deficient crystalline phase containing a level of calcium 

which is not distinguishable from that of the background C-(A)-S-H (Figure 3 and Figure 4). No phases 

exhibiting similar morphology to known crystalline phases can be seen in the BSE image of sample C 

at any age. Some small (2 µm in length) plate-like crystals can be seen in the BSE images of sample D 

cured for 180 days (Figure 6). It is not possible to resolve the elemental composition of these crystals 

ďǇ EDX ĂƐ ƚŚĞŝƌ ƐŝǌĞ ŝƐ ůĞƐs than the depth of X-ray generation for the accelerating voltage used (15 

keV) [57]. Consequently, they do not display discernibly different chemistry from the C-(A)-S-H phase 

when elemental maps are examined. 
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Figure 3: ESEM back-scattered electron (BSE) images and elemental maps of the alkali-activated sample A cured for 180 
days.

 

Figure 4: ESEM back-scattered electron (BSE) images and elemental maps of the alkali-activated sample B cured for 180 
days.

 

Figure 5: ESEM back-scattered electron (BSE) images and elemental maps of the alkali-activated sample C cured for 180 
days.

 

Figure 6: ESEM back-scattered electron (BSE) images and elemental maps of the alkali-activated sample D cured for 180 

days. 
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The elemental composition of each sample as determined by ESEM � EDX is reported in Figure 7. The 

elemental composition is comparable with that of alkali-activated slag and slag/fly ash blends [52, 58] 

as well as that of synthetic C-(A)-S-H and N-A-S-H gels formed by a sol-gel method [6], and reveals 

important compositional changes induced by differences in reaction mix chemistry. 

The chemistry of sample A cured for 3 days lies within the region commonly associated with a C-(N)-

(A)-S-H) type gel, clustered along an imaginary line drawn between this region and the chemistry of 

AFm phases (Figure 7a i). At this age, the Na content is approximately the same for both samples A 

and B (Figure 7a ii and b ii), however sample B contains significantly greater Al content (Figure 7b i). 

Given that the reaction mixtures A and B contained equal amounts of Al, this suggests that distinct Al-

rich reaction products have formed to a much greater extent in sample B than sample A, and in sample 

A it is likely that much of the Al exists within the N-A-S-H gel after 3 days; this is consistent with 

observations from 29Si MAS NMR spectroscopy, see section 3.4.2. The higher bulk Ca content of sample 

B (Ca/(Al+Si) = 1.00) appears to have promoted greater formation of AFm phases and portlandite, in 

addition to C-(N)-A-S-H [6], consistent with XRD observations discussed in section 3.1, as well as 

greater inclusion of Al in the C-(N)-A-S-H binder [23, 29]. The lower bulk Ca content in the reaction 

mixture for sample A (Ca/(Al+Si) = 0.67) seems to promote formation of lower Ca, higher Na containing 

C-(N)-A-S-H. 29Si MAS NMR data (discussed below) show the presence of N-A-S-H in addition to the C-

(N)-A-S-H gel. This will be contributing to the reduction in bulk Ca content of the AAM in Figure 7. The 

main reaction product in both samples will be a mixture of C-(N)-A-S-H and N-A-S-H gels [23]; the low 

level of Ca in the reaction mixture will drive the substitution of Al and Na to form C-(N)-A-S-H gels to 

the maximum Al and Na incorporation that is thermodynamically stable [21, 23]. A decreased 

Ca/(Al+Si) ratio will drive the formation of N-A-S-H, while higher concentrations of Ca in the initial 

reaction mixture (as is the case for sample B) will drive further development of C-(N)-A-S-H. 

For both samples C and D the chemistry of the AAMs lies within the region associated with C-(N)-A-S-

H gels [23, 58]. For both samples, the binder cured for 3 days is more Ca-rich while containing the 
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approximately the same Al content as the reaction mixture, suggesting faster dissolution of Ca-rich 

phases from the precursor. The bulk Ca content in the reaction mixture for these samples is reflected 

in the chemistry of the binder cured for 3 days, with sample C (reaction mixture Ca/(Al+Si) = 0.67) 

appearing to consist of a C-(A)-S-H gel with low levels of Si, while sample D (reaction mixture Ca/(Al+Si) 

= 1.00) appears to consist of a C-(A)-S-H gel with moderate levels of Si, consistent with observations 

from FTIR as discussed in section 3.2.  

After 28 days the chemistry of alkali-activated sample A is within the region associated with high Ca 

C-(N)-A-S-H gels (Figure 7a i), indicating a significant increase in Ca content consistent with further 

dissolution of C2S as observed by XRD. Some data points for this sample cured for 180 days lie along a 

line linking the region associated with C-(N)-(A)-S-H composition and the composition of AFm phases 

(although heavily weighted toward the composition of C-(N)-A-S-H), consistent with the observation 

of these phases by XRD (section 3.1). 

Curing for 28 days sees the chemistry of alkali-activated sample B shift to exhibit two distinct phases 

(Figure 7b); one exhibiting chemistry clustered along a line between C-(N)-A-S-H and the composition 

of AFm phases (heavily weighted towards C-(N)-A-S-H) and one exhibiting composition clustered along 

a line between C-(N)-(A)-S-H and the composition of portlandite (again heavily weighted towards C-

(N)-A-S-H). The intimate mixture of C-(N)-A-S-H and AFm phases contains slightly more Al and 

approximately twice as much Na compared to the regions containing portlandite. By 180 days of 

curing, this sample exhibits a gel composition falling within the region assigned to moderate-Ca gels 

of the C-(N)-A-S-H type. After 180 days of curing the only discernible difference between the elemental 

compositions of the gels in samples A and B is the higher Al and Na concentrations in sample A. 

Increased curing time does not significantly alter the elemental composition of the sample C and D 

(consistent with XRD observations, see section 3.1), however a narrowing of the compositional range 

exhibited by each binder is observed, suggesting that the reaction product in this sample after 180 

days is either a single phase exhibiting narrowly distributed elemental compositions similar to that of 
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tobermorite-like C-(N)-A-S-H, or a very intimate mixture of C-(N)-A-S-H and N-A-S-H, rather than 

distinct and separate phases. 

Overall, both low bulk Ca content (at constant Al/Si), and higher bulk Al content (at constant Ca/(Al+Si), 

promote increased formation of N-A-S-H and increased alkali uptake by C-(N)-A-S-H at early age, as 

indicated by Na/(Al+Si) ratio distributions on the Na2O�Al2O3�SiO2 ternary diagrams (Figure 7) and 

consistent with observations for synthetic C-(N)-A-S-H gels [16]. Increased Ca content in the precursor 

appears to impede formation of N-A-S-H and promote formation of Ca-rich C-(N)-A-S-H at early ages, 

with less formation of calcium carboaluminates, and little evolution of binder chemistry at late ages. 
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Figure 7: Projection of alkali-activated material chemistry onto the i) ternary CaO � Al2O3 � SiO2 system (neglecting Na2O 

content) and ii) ternary Na2O � Al2O3 � SiO2 system (neglecting CaO content) showing elemental composition of AAMs cured 

for 3, 28 and 180 days for samples A � D as marked, as determined by ESEM-EDX analysis. A random selection of points 

evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis. A total of 60 

individual points were collected per sample at each age. Approximate regions of C-S-H, C-(A)-S-H and C-(N)-A-S-H determined 

from [23] and [58]. 
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3.4 Solid state magic angle spinning nuclear magnetic resonance spectroscopy 

 

3.4.1 27Al MAS NMR 

The 27Al MAS NMR spectra for the precursors and AAMs for each sample are presented in Figure 8, 

and detailed characterisation of precursor powders has been previously reported [11]. The spectra of 

each precursor are very similar, displaying a broad tetrahedral AlO4 resonance centred at 

approximately 57 ppm attributed to a distribution of Al environments within the glassy phase of the 

precursor (as identified by XRD), similar to that observed for GGBFS [13, 27]. The spectra of each 

precursor display a low intensity resonance centred at approximately 0 ppm, partly overlapping the 

spinning side band of the main Al(IV) peak, attributed to octahedral AlO6. This is consistent with the 

small amount of C3A identified by XRD in samples A, B and D [59]; the presence of this resonance in 

the spectra of precursor C suggests the presence of a small amount of poorly crystalline C3A not 

identifiable by XRD.  

The 27Al MAS NMR spectra of each AAM cured for 3 days display a low intensity broad resonance 

spanning from 30 ppm to 70 ppm and centred at approximately 58 ppm, this is assigned to Al in a 

significantly distorted tetrahedral environment [25, 27, 60]. A low intensity narrow resonance at 

approximately 76 ppm assigned to Al in a well defined tetrahedral coordination, and a high intensity 

narrow resonance at approximately 11 ppm assigned to Al in a well defined octahedral coordination, 

are also observed in the spectra of the AAMs for samples A, B and D. Well structured crystalline C-(N)-

A-S-H identified in the AAMs for each of these samples by XRD and ESEM-EDX will contain Al 

substituted for Si bridging sites in a tetrahedrally coordinated environment, leading to the well defined 

resonance observed at 76 ppm, while poorly crystalline C-(N)-A-S-H and amorphous N-A-S-H will 

contain Al in significantly distorted tetrahedral environments, leading to the broad resonance centred 

at approximately 58 ppm [25, 27, 60]. The AFm reaction products are responsible for the narrow 

resonance observed at 11 ppm [60, 61].  
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The resonance due to distorted Al(IV) environments in samples A and B (Al/Si = 0.15) shifts to higher 

ppm between 3 and 28 days and then shifts to lower ppm between 28 and 180 days, consistent with 

observations by FTIR of increased Al incorporation within the C-(N)-A-S-H gel between 3 and 28 days 

followed by increased Si incorporation within the C-(N)-A-S-H gel between 28 and 180 days. Increased 

Al incorporation within the C-(N)-(A)-S-H gel at an early age is favoured due to the preference of Al to 

be located in crosslinked and polymerised sites. At later ages, condensation reactions between 

depolymerised Si species within the C-(N)-A-S-H gel will occur and lead to further crosslinking, 

increasing the Si/Al ratio of the gel. The incongruent dissolution of the precursor particles with 

preferential early Al release, as identified above, will also be contributing to these trends. 

For samples C and D (Al/Si = 0.05), increased curing time sees progressive deshielding of the distorted 

Al(IV) environments, indicating continued Al inclusion into C-(A)-S-H as the reaction progresses, 

consistent with more congruent dissolution of the Al and Si from the precursor. Early age preferential 

dissolution of Al appears to be promoted by increased Al content in the precursor [62]. In all samples, 

a narrowing of this resonance occurs with increased curing time, consistent with the rearrangement 

into a more ordered structure containing Al(IV) occurs as the reaction progresses. 

The peak assigned to Al(VI) in AFm phases in samples A, B and D shifts slightly to lower ppm between 

3 and 28 days (indicating increased electron density around the Al nucleus) and remains unaltered 

thereafter. A small resonance at 6 ppm is also observed in samples B and D (Ca/(Al+Si) = 1.00) cured 

for 28 and 180 days. The intensity of this resonance remains unaltered between 28 and 180 days in 

sample B and increases between 28 and 180 days in sample D. When this resonance is observed in PC 

hydrates, it is attributed to Al(VI) species within the �third aluminate hydrate� (TAH), an amorphous 

nanoscale aluminate hydrate phase precipitated at the surface of the C-S-H type gels [61, 63, 64], and 

which has also been noted in alkali-activated slags [27, 60, 65]. The presence of TAH in samples B and 

D (Ca/(Al+Si)=1.00) and absence in samples A and C (Ca/(Al+Si)=0.67) is consistent with stoichiometric 

arguments and thermodynamic modelling which suggest that the presence of TAH is likely to be linked 
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to high concentrations of available Ca and Al [8, 15, 66]. It is interesting to note that in the samples 

examined here, increased Al content does not appear to increase the proportion of Al(VI) within TAH 

but rather promotes increased formation of crystalline AFm phases (monocarbonate, hemicarbonate 

and C4AH13). This could be due to steric limitations on the amount of TAH which can precipitate at the 

gel surface, or to preferential formation of TAH when there are insufficient quantities of OH-, CO3
2- or 

silicate anions required to form AFm phases. 

Despite differing Al and Ca contents, the 27Al MAS NMR spectra for each sample appear very similar, 

however close examination allows some important trends to be identified. For all binders, when Si 

and Al content are held constant, increased Ca content results in increased Al incorporation within the 

C-(N)-(A)-S-H gel. When Si and Ca content are held constant (i.e. comparing sample A with C and 

sample B with D), increased Al content also results in deshielding of Al, indicating increased Al 

incorporation within the C-(A)-S-H gel. These trends are reflected in the chemical shift exhibited by 

the main distorted Al(IV) peak for each sample cured for 180 days - sample A: 60.5 ppm, sample B: 

64.5 ppm, sample C: 59.0 ppm, sample D: 63.0 ppm. 
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Figure 8: 27Al MAS ;ϭϮ ŬHǌͿ NMR spectra (ʆ0 = ϭϱϲ͘Ϯϲ MHǌͿ ŽĨ ƚŚĞ ƉƌĞĐƵƌƐŽƌ ĂŶĚ ĂůŬĂůŝ-activated material cured for 3, 28 and 

180 days as marked for a) sample A, b) sample B, c) sample C and d) sample D. Positions at which spinning side bands are 

expected are indicated by *. 

 

3.4.2 29Si MAS NMR 

The 29Si MAS NMR spectra for each precursor and AAM are presented in Figure 9. Deconvolutions of 

the precursor spectra have been previously reported [11] while deconvolutions of the AAM spectra 
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are summarised in Table 3 (full details provided in Appendix C, Supporting Information). Each 

precursor consists predominantly of Q2, Q2(1Al), Q3 and Q3(1Al) sites within a depolymerised calcium 

silicate phase as well as smaller amounts of Q4, Q4(1Al) and Q4(2Al) within a highly polymerised 

aluminosilicate phase [11]. Q0 and Q1 are also observed within low Al-containing precursors C and D 

and are attributed to C2S ĂŶĚ ĐůŝŶŽǌŽŝƐŝƚĞ͕ ƌĞƐƉĞĐƚŝǀĞůǇ [61]. 

Alkali-activation of each sample results in formation of six new Si environments indicated by peaks at 

approximately о76 ppm, о79 ppm, о82 ppm, о85 ppm, о88 ppm and о94 ppm, attributed to Q0, Q1, 

Q2(1Al), Q2, Q3(1Al), and Q3, respectively, within a C-(N)-A-S-H gel, with at least some degree of 

crosslinking occurring in each sample as evidenced by the Q3 and Q3(1Al) sites [8, 23, 27, 67]. In all 

samples alkali-activation results in a narrowing of the resonances attributed to Q2(1Al), Q2, Q3(1Al), 

and Q3 species, indicating that these environments are more ordered within the C-(N)-A-S-H gel than 

within the depolymerised calcium aluminosilicate phase of the precursors. For all samples, increased 

curing time results in a narrowing of the resonances attributed to Q1, Q2(1Al), Q2, and Q3(1Al) species, 

indicating increased ordering within C-(N)-(A)-S-H as the reaction proceeds. Formation of Q4(4Al) and 

Q4(3Al) sites within a polymerised Al-rich aluminosilicate phase is also observed upon alkali-activation 

of all samples, and is most pronounced in samples A and C (with Ca/(Al+Si)=0.67), as discussed in more 

detail below and in Appendix C, Supporting Information. 
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Figure 9: 29Si MAS ;ϭϬ ŬHǌͿ NMR spectra (ʆ0  =ϭϭϵ͘ϭϰ MHǌͿ ŽĨ ƚŚĞ ƉƌĞĐƵƌƐŽƌ ĂŶĚ ĂůŬĂůŝ-activated material for samples A-D 

cured for 3, 28 and 180 days as marked. 
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Table 3: Summary of Qn(mAl) Si coordination environments within the reaction product identified in the deconvoluted 29Si 

MAS NMR spectra for each AAM material as a function of curing time. Estimated uncertainty in absolute site percentages is 

± 2%. Absolute site percentages attributed to remnant precursor are omitted for clarity. 

Sample A Reaction products (%) 

Curing time 

(days) 
Q1 Q2(1Al) Q2 

Q3(1Al) + 

Q4(4Al) 
Q3 Q4(3Al) Q4(2Al) 

3 6 18 9 10 1 8 0 
28 8 13 19 8 1 11 0 

180 7 12 21 9 1 12 0 
        

Sample B Reaction products (%) 

Curing time 

(days) 
Q1 Q2(1Al) Q2 

Q3(1Al) + 

Q4(4Al) 
Q3 Q4(3Al) Q4(2Al) 

3 11 11 7 4 1 1 0 
28 18 12 17 5 1 3 0 

180 18 15 25 6 1 6 0 
        

Sample C Reaction products (%) 

Curing time 

(days) 
Q1 Q2(1Al) Q2 

Q3(1Al) + 

Q4(4Al) 
Q3 Q4(3Al) Q4(2Al) 

3 7 13 7 15 1 10 3 
28 7 14 10 14 1 9 3 

180 8 16 13 15 1 10 0 
        

Sample D Reaction products (%) 

Curing time 

(days) 
Q1 Q2(1Al) Q2 

Q3(1Al) + 

Q4(4Al) 
Q3 Q4(3Al) Q4(2Al) 

3 8 7 5 3 0 2 0 
28 13 10 13 8 1 2 0 

180 19 14 21 10 1 3 0 

 

Difference 29Si MAS NMR spectra for each AAM cured for 3 days, obtained by subtraction of the 

precursor spectra from those of the hardened products, are shown in Figure 10. This provides 

information about the net consumption (indicated by regions of negative intensity) and net 

production (indicated by regions of positive intensity) of different Si species during alkali-activation of 

each sample. 

Alkali-activation of each precursor causes significant reduction in intensity of the Q0 and Q1 regions of 

the spectra (о65 ppm to о75 ppm) as well as a slight reduction in intensity in the region associated 

with Al-substituted Q4 silicon coordination environments (о88 ppm to о110 ppm) in samples A and B. 
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This suggests preferential dissolution of Q0 and Q1 environments from the depolymerised calcium 

silicate phase within the precursor has occurred during alkali-activation of these samples. A significant 

increase in intensity is observed between о75 ppm and о88 ppm, consistent with formation of the C-

(N)-A-S-H gel identified above. Low Al-substituted Q2 and Q3 species present within each precursor 

will also be consumed during alkali-activation, however this is not reflected by negative intensity 

within the region of these resonances in Figure 10, suggesting that the amount of new Q2, Q2(1Al), Q3 

and Q3(1Al) Si species produced during alkali-activation is likely to be significantly higher than is 

indicated by the net positive intensity these regions. 

 

Figure 10: Difference plots generated by subtracting the 29Si MAS NMR spectrum of each respective anhydrous precursor 

from the corresponding spectra of the alkali-activated materials cured for 3 days. Baselines are indicated by the grey dotted 

lines to allow identification of resonances with positive intensity (indicating net production of these species during alkali-

activation) and resonances with negative intensity (indicating net consumption of these species during alkali-activation). 

Single-pulse 29Si MAS NMR and 1H-29Si cross polarisation (CP) MAS NMR spectra of the precursor and 

AAM for sample A are shown in Figure 11. 1H-29Si CP MAS NMR spectra indicate the Si species closely 

associated with water (i.e. Si-OH linkages) that are likely to exist as part of the C-(N)-A-S-H gel  or AFm 

phases [8, 68]. The 1H-29Si CP MAS NMR spectrum exhibits greater relative intensity than the single-
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pulse 29Si MAS NMR spectrum in the region attributed to the hydrous Q1, Q2(1Al), Q2 and Q3(1Al) Si 

sites of the C-(N)-A-S-H gel (о75 ppm to о88 ppm). Conversely, the reduction in relative intensity of 

the 1H-29Si CP MAS NMR spectrum compared with the single-pulse 29Si MAS NMR spectrum in the 

region attributed to Al-substituted Q4 species (о88 ppm to о120 ppm) indicates that these 

environments are anhydrous. The trends observed for sample A during alkali-activation are likely to 

be occurring for all samples. 

 

Figure 11: Single-pulse 29Si (grey) and 1H - 29Si cross polarisation (CP) (blackͿ MAS NMR ƐƉĞĐƚƌĂ ;ĐŽůůĞĐƚĞĚ Ăƚ ϱϲ͘ϲϭ MHǌ ǁŝƚŚ 

Ă ƐƉŝŶŶŝŶŐ ƐƉĞĞĚ ŽĨ ϱ ŬHǌͿ ŽĨ ƚŚĞ ƉƌĞĐƵƌƐŽƌ ĂŶĚ ĂůŬĂůŝ-activated material cured for 3 days for sample A. All spectra are 

normalised to constant total intensity (area under the curve) from о50 to о150 ppm to enable relative comparison. 

 

Due to the presence of numerous phases within the precursors, as well as previous observations of 

preferential dissolution of Al over Si from aluminosilicate precursors produced using the same 

synthesis method [10], it is unlikely that congruent dissolution of the various Si coordination 

environments from the precursor will occur during alkali-activation. Rather, it is likely that dissolution 

of the depolymerised calcium silicate phase previously identified in the precursors [11] will occur 

faster than dissolution of the highly polymerised aluminosilicate phase. Using this observation, it is 
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thus possible to simulate the change in intensity of resonances in the 29Si MAS NMR spectra due to 

consumption of individual Si species from each precursor phase, and use Gaussian peak profiles to 

deconvolute the 29Si MAS NMR spectra of the AAMs. Relative quantification of each species identified 

in the deconvolutions at all timepoints is shown in Table 3. 

Upon alkali-activation of low-Ca precursors (samples A and C, Ca/(Al+Si)=0.67), increased Al content 

in the precursor of sample A results in a decrease in crosslinking species while exhibiting similar Al 

substitution within the C-(N)-A-S-H gel (Table 3). This can be attributed to the capacity for Al 

substitution into crosslinked species [21]. Consequently, increased Al content promotes the formation 

of non-crosslinking Q2(1Al) species within the C-(N)-A-S-H gel and results in an overall decrease in the 

extent of crosslinking. In both samples, increased curing time promotes greater polymerisation 

(increased Q2 sites) while the extents of crosslinking and Al substitution within the C-(N)-A-S-H gel 

remain largely the same. This is consistent with observations by FTIR (section 3.2) as well as 27Al MAS 

NMR (section 3.4.1) as discussed above, and is commonly observed for silicate-activated slag [21], 

however is contrary to observations for synthetic C-(N)-A-S-H [16].  

Alkali-activation of high-Ca precursors (sample B and D, Ca/(Al+Si)=1.00) results in formation of mainly 

Q1 and Q2(1Al) sites, with smaller amounts of Q2, Q3(1Al) and Q3. Continued curing sees significantly 

increased polymerisation in both samples, indicated by a large increase in Q2 sites. A decrease in Al 

substitution with time is observed in Sample B, while the Al content of the C-(N)-A-S-H gel remains 

largely unaltered in sample D (Table 3). After 180 days more Q2 species are observed in sample B than 

sample D, while the reverse is true for Q3(1Al) species. As in the low-Ca samples, increased precursor 

Al content in sample B results in decreased formation of crosslinking Q3(1Al) sites, but these do persist 

to later ages, consistent with thermodynamic modelling of tobermorite-like C-(N)-(A)-S-H in sodium 

silicate-activated slag [23]. 

Formation of the additional N-A-S-H gel increases with increased curing time in the Al-rich samples A 

and B but remains approximately constant low-Al samples C and D (Table 3). Formation of Al-rich N-
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A-S-H gel is promoted by increased Al content when Ca content is held constant (as seen in sample A 

compared with C, and in B compared with D) as well as by reduced Ca content when Al content is held 

constant (as seen in sample A compared with B, and C compared with D) (Table 3). This is consistent 

with 27Al MAS NMR observations (section 3.4.1), and also with the known structural limitations [23] 

on Al substitution within C-(N)-A-S-H gels as it will only substitute into bridging tetrahedral sites; once 

the Al/Ca ratio surpasses this threshold, the presence of excess Al can result in the formation of a 

discrete N-A-S-H phase if the Ca content is also not sufficient to accommodate the Al in AFm phases. 

The Qn(mAl) site fractions, MCL, Al/Si ratio and Ca/(Al+Si) ratio of the C-(N)-A-S-H gel formed in each 

sample can be calculated using the CSTM structural description [23] and are shown in Figure 12 (full 

details provided in Appendix C, Supporting Information). The MCL (Figure 12a) in samples A and B 

(bulk Al/Si = 0.15) decreases between 3 and 28 days, and then increases slightly by 180 days. Increased 

Ca content promotes lower MCL at all ages, consistent with observations for synthetic C-(N)-A-S-H 

[16]. The MCL in samples C and D (bulk Al/Si = 0.051) increases between 3 and 28 days, and then 

increases slightly by 180 days in sample C and remains constant in sample D. Increased Ca content 

again promotes lower MCL at all ages for these low-Al samples. 

The Al/Si ratio of C-(N)-A-S-H (Figure 12b) decreases between 3 and 28 days for all samples; increased 

bulk Al content means that this occurs more rapidly. After 28 days, Al/Si ratio decreases slightly or 

remains unaltered for samples A and D, whereas it increases for samples B and C, again suggesting an 

optimum Al/Ca ratio for Al inclusion within the C-(N)-A-S-H gel. Higher bulk Ca content results in 

reduced Al/Si ratio within the gel at corresponding ages, consistent with FTIR and SEM-EDX 

observations but contrasting with observations for sodium metasilicate activated slag [21]. Increased 

bulk Ca content then promotes increased Al/Si ratios within C-(N)-A-S-H at later ages, possibly due to 

a relative increase in formation of Q2 and Q3 type sites which can accommodate more Al inclusion. 
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Figure 12: a) Mean chain length and b) Al/Si ratio of the C-(N)-A-S-H gel in each sample calculated from [23]. The estimated 

uncertainty depicted as error bars is ± 10 % and is due to uncertainty in the absolute site percentages of the 29Si MAS NMR 

deconvolutions. 

 

3.4.3 23Na MAS NMR 

The 23Na MAS NMR spectra for each AAM exhibit a single broad resonance at approximately о3 ppm 

(Figure 13). Due to the broad nature of this peak it is attributed to Na+ cations associated with 

aluminium-centred tetrahedra in a charge balancing role within both C-(N)-A-S-H [60, 69] and N-A-S-

H gel frameworks [10, 70]. This resonance is observed in the spectra of each AAM at all ages, indicating 

no obvious observable variation in the environments of the charge-balancing Na+ cations in these 

binders. A small shoulder at approximately о18 ppm is observed in the 23Na MAS NMR spectra of 

samples C and D at all timepoints, and is much more pronounced at 28 and 180 days. The position and 

broad nature of this resonance suggests the presence of Na experiencing much greater electron 

density than that at о3 ppm, within a very disordered phase, or sorbed to the surfaces of the 

nanostructured gel. 
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Figure 13: 23Na MAS (12 ŬHǌͿ NMR ;ʆ0 = 158.63 MHǌͿ spectra of the alkali-activated material for a) sample A, b) sample B, c) 

sample C and d) sample D cured for 3, 28 and 180 days as marked. 

 

3.4.4 1H MAS NMR 

The 1H MAS NMR spectra for each sample exhibit broad resonances at approximately 4.5 ppm 

attributed to intralayer protons within C-(N)-A-S-H (Si-O-H species) [71-73], as well as a low intensity 

sharp resonance at approximately 0.75 ppm which will contain contributions from resonances due to 

protons in both portlandite and C-(N)-A-S-H (CaO-H species) [72, 74]. The broad resonance will also 
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contain a contribution from molecular H2O adsorbed from the atmosphere [72, 74]. Electron densities 

surrounding protons within the aluminate hydrates Mc, Hc and C4AH13 will be very similar and 

consequently these protons are expected to resonate at very similar frequencies. Therefore, the 

intense, sharp resonance at approximately 1.7 ppm observed in each sample is attributed to protons 

within chemically bound water in these AFm phases. Although the intensity of this resonance is very 

small in the spectra for sample C, its presence at all ages indicates that a small amount of an AFm type 

phase has formed, which was not detectable by XRD or 27Al MAS NMR. 

Increased curing time induces an increase in the intensity of the resonance assigned to intralayer 

protons in C-(N)-A-S-H in all samples, consistent with increased formation of this gel. In samples A, B 

and D the intensity of the resonance due to the AFm type phases increases significantly at each age of 

curing, indicating continued formation of these phases and inclusion of water as the reaction 

progresses, consistent with observations by XRD (section 3.1).  
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Figure 14: 1H MAS (12 ŬHǌͿ NMR ;ʆ0 = 599.70 MHǌͿ spectra of the alkali-activated material for a) sample A, b) sample B, c) 

sample C and d) sample D cured for 28 and 180 days as marked. 

 

4. Perspectives and Conclusions 

Stoichiometrically controlled AAMs were synthesised via alkali-activation of high-purity calcium 

aluminosilicate precursors which are chemically comparable to the glass in GGBFS. The main reaction 

product in all samples was a mixed crosslinked/non-crosslinked tobermorite-like C-(N)-A-S-H gel 

containing varying levels of Al and Na, while additional reaction products were N-A-S-H, 
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monocarbonate AFm, hemicarbonate AFm, hydroxy-AFm (C4AH13), the �third aluminate hydrate� and 

portlandite. Al within the C-(N)-A-S-H gel substitutes for bridging Si while Na is found in the interlayer, 

charge-balancing the AlO4
о tetrahedra and sorbed to the gel surface. 

The C-(N)-(A)-S-H and N-A-S-H gel reaction products within these AAMs are chemically and physically 

similar to those formed within alkali-activated GGBFS, however notable differences in composition 

and structure of these gels are identified, and correlate strongly with precursor chemical composition. 

This has important implications when considering alkali-activated binder mix design, particularly when 

tailoring of physical properties is desired. 

Increased Ca content within the reaction mixture promotes greater formation of low-Al, high-Ca 

containing C-(N)-A-S-H with lower MCL, as well as less formation of AFm type phases, and little 

evolution of binder chemistry at later ages. The lower Al-binding capacity of crosslinked species led to 

a decrease in gel crosslinking with increased bulk Al content. 

Reduced Ca content and increased Al content in the reaction mixture promote formation of N-A-S-H, 

in addition to C-(N)-A-S-H and AFm type phases, which exist both as an intimate mixture with C-(N)-A-

S-H and as a discrete phase. Increased Al content within C-(N)-A-S-H also results in a decrease in the 

Ca/Si ratio of the C-(N)-A-S-H gel, and there exists a complex relationship between bulk Ca and Al 

content and the Al/Si ratio of the C-(N)-A-S-H gel. In general, increased Ca content in the precursor 

appears to impede formation of N-A-S-H and AFm type phases, and in Al-rich samples (Al/Si= 0.15) 

results in formation of portlandite in addition to the Al-rich reaction products. 

Polymerisation and crosslinking of the C-(N)-A-S-H gel increase with increased curing time. When 

sufficient levels of Al and alkali are present (Al/Si ≈ 0.15), increased curing time also results in 

increased formation of the additional N-A-S-H gel, due to limitations on the amount of Al substitution 

possible within the C-(N)-A-S-H gel.  

http://dx.doi.org/10.1016/j.cemconres.2016.08.010


Preprint of a paper published in Cement and Concrete Research, 89(2016):120-135. Version of record 
is available at http://dx.doi.org/10.1016/j.cemconres.2016.08.010  

39 

The local coordinations surrounding network forming and modifying cations within these binders, as 

well as the chemical composition and phases formed, are consistent with those formed by alkali-

activation of GGBFS. Consequently, the stoichiometrically controlled AAMs produced in this study 

constitute a chemically simplified model system through which phase evolution and microstructural 

development of C-(N)-(A)-S-H and N-A-S-H gels present in alkali activated slag can be further 

understood. The strong dependence of chemical and physical characteristics of the binders presented 

here on chemical composition of the reaction mixture highlights the way in which precursor chemistry 

controls phase evolution and microstructural development of AAMs, and provides a new level of detail 

in nanostructural insight. 

The findings presented in this study show that even small changes in reaction mixture composition 

can induce significant changes in phase formation and evolution, dictating the microstructure and 

physical properties of alkali-activated materials. These effects are often competing, with 

improvements in certain properties coming at the cost of reduced performance in others. This 

highlights the need to design AAM mix formulations to a specified purpose so that the desired physical 

properties for a particular application can be achieved. Precursor and reaction mixture composition 

are therefore important considerations when designing AAM for industrial applications where specific 

physical properties are desired. Through knowledge of the end use of the material and a thorough 

understanding of compositional and microstructural changes induced by manipulation of reaction 

mixture chemistry, as demonstrated within this study, AAM precursors can be designed or selected to 

produce tailored materials for a wide variety of unique applications. 
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