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ABSTRACT

We study a resistive tearing instability developing in a system evolving through the combined
effect of Hall drift in the Electron-MHD limit and Ohmic dissipation. We explore first the
exponential growth of the instability in the linear case and we find the fastest growing mode,
the corresponding eigenvalues and dispersion relation. The instability growth rate scales as
γ ∝ B2/3σ−1/3 where B is the magnetic field and σ the electrical conductivity. We confirm the
development of the tearing resistive instability in the fully non-linear case, in a plane parallel
configuration where the magnetic field polarity reverses, through simulations of systems initi-
ating in Hall equilibrium with some superimposed perturbation. Following a transient phase,
during which there is some minor rearrangement of the magnetic field, the perturbation grows
exponentially. Once the instability is fully developed the magnetic field forms the character-
istic islands and X-type reconnection points, where Ohmic decay is enhanced. We discuss the
implications of this instability for the local magnetic field evolution in neutron stars’ crusts,
proposing that it can contribute to heating near the surface of the star, as suggested by models
of magnetar post-burst cooling. In particular, we find that a current sheet a few meters thick,
covering as little as 1% of the total surface can provide 1042 erg in thermal energy within a
few days. We briefly discuss applications of this instability in other systems where the Hall
effect operates such as protoplanetary discs and space plasmas.
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1 INTRODUCTION

A plethora of observations of strongly magnetised neutron stars

(Olausen & Kaspi 2014) has revealed that their temperatures are

higher than what conventional cooling of a hot proto-neutron star

suggests. A solution to this puzzle is that the extra thermal energy

needed for these systems is provided by the Ohmic decay of their

magnetic energy reservoir (Pons & Geppert 2007). However, given

the high conductivity of a neutron star crust, the rate of Ohmic de-

cay is expected to be slow and the conversion of magnetic energy

to heat inefficient. This has led to the idea that the Hall effect may

be able to accelerate magnetic field decay, as the Hall timescale is

inversely proportional to the intensity of the magnetic field. This

acceleration can only be done in an indirect way, as the Hall effect

conserves magnetic field energy.

Several paths have been proposed in this direction. Goldre-

ich & Reisenegger (1992) suggested that the Hall effect may lead

to the formation of smaller scale structure through cascades, which

have reduced Ohmic decay times, a result that has been followed up

by numerical studies exploring Hall-induced turbulence (Biskamp

et al. 1996; Wareing & Hollerbach 2009, 2010). Another possibility

⋆ Email: K.N.Gourgouliatos@leeds.ac.uk

is the development of instability of a state previously being in Hall

equilibrium leading to smaller structure formation (Rheinhardt &

Geppert 2002; Rheinhardt et al. 2004; Pons & Geppert 2010). Re-

cent work of Wood et al. (2014) found a family of exact solutions

for the density-shear instability in electron-MHD, requiring a co-

varying magnetic field and electron number density, a result that

was studied numerically in detail by Gourgouliatos et al. (2015).

Apart from instabilities and cascades, secular Hall evolution has

been explored: Vainshtein et al. (2000) studied the effect of the

sharp drop of electron number in the crust, finding that the mag-

netic field evolution is described by a Burger’s type equation, lead-

ing to the formation of shocks in the form of current sheets decay-

ing on a Hall timescale rather than the slower Ohmic, and applied

to the evolution of a toroidal field in an axially symmetric system

by Reisenegger et al. (2007). Once the poloidal field is included

(Hollerbach & Rüdiger 2002, 2004) the formation of current sheets

is followed by an oscillatory behaviour. The consensus of axially

symmetric crustal simulations, exploring a broad range of initial

conditions (Pons et al. 2009; Kojima & Kisaka 2012; Viganò et al.

2012; Gourgouliatos & Cumming 2014b), has concluded that the

Hall effect drastically changes the structure of the magnetic field,

whereas later, Hall evolution saturates (Gourgouliatos & Cumming

2014).
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2 K.N. Gourgouliatos & R. Hollerbach

An intrinsic drawback of global neutron star simulations is the

fact that they under-resolve current sheets. Current sheets form both

in the uniform electron density case (Wareing & Hollerbach 2010)

and even more efficiently in the presence of an electron density

gradient (Vainshtein et al. 2000; Viganò et al. 2012). Furthermore,

they are likely to appear near the surface of the crust, as the avail-

able electric charges decrease dramatically from the solid crust to

the plasma magnetosphere. In the latter case, a usual assumption

made in simulations is that the external magnetic field is a vacuum

potential field which leads to boundary effects by matching the two

configurations (Wood et al. 2014).

In their seminal paper Furth et al. (1963) studied finite-

resistivity instabilities of a sheet pinch finding the so-called tear-

ing instability “a long-wave ‘tearing’ mode, corresponding to a

breakup of the layer along the current flow lines”. Linear analy-

sis of the MHD system yields an exponential growth rate γT ∼

τ
−3/5
O
τ
−2/5
A

, where τO and τA are the resistive and Alfvèn times re-

spectively, while in the non-linear phase the growth becomes alge-

braic (Rutherford 1973). Several applications of the tearing insta-

bility have been considered in astrophysical contexts. Rosenbluth &

Chang (1967) studied resistive instabilities in magnetospheric tails.

Priest (1985) presented various applications of the tearing instabil-

ity in relation to current sheets developing in solar and space plas-

mas. The tearing instability is considered to be an efficient mech-

anism for powering solar flares and accelerating particles therein

(Sturrock 1966; Somov & Verneta 1989; Aschwanden 2002). Re-

cent numerical simulations by Landi et al. (2015); Del Zanna et al.

(2016) in general astrophysical contexts have demonstrated the de-

velopment of the tearing instability in the limit of very high con-

ductivity for appropriately thin current layers. Other applications

have focused on pulsar magnetospheres, where numerical simula-

tions agree on the presence of current sheets, either confined to

the equatorial plane as is the case in axially symmetric systems

(Contopoulos et al. 1999; Komissarov 2006), or with more compli-

cated geometries for the case of inclined systems (Spitkovsky 2006;

Kalapotharakos & Contopoulos 2009). In depth study of the cur-

rent sheets of pulsar magnetospheres by Uzdensky & Spitkovsky

(2014), showed that they are susceptible to the tearing mode insta-

bility leading to the formation of plasmoids with the eventual emis-

sion of high energy radiation and non-thermal particles (Sironi &

Spitkovsky 2014). The tearing instability has also been studied in

the context of Relativistic MHD considering applications to mag-

netar flares and jets through explosive reconnection (Komissarov

et al. 2007; Elenbaas et al. 2016; Barkov & Komissarov 2016).

Motivated by the omnipresence of the tearing instability in

current sheets and their formation in neutron star crusts through

the Hall effect, we study its development and impact. We explore

the evolution of the magnetic field in a configuration where the tan-

gential component changes direction by 180◦ within a thin layer,

allowing for some finite resistivity, in the inertialess electron-MHD

formulation. We show, through linear and non-linear calculations,

that the tearing mode instability naturally appears and enhances the

decay of the magnetic field.

We note that the term Hall evolution (or drift) has the mean-

ing of Electron-MHD when used to describe the evolution of the

magnetic field in the crust of neutron stars. There, only electrons

are allowed to moved through a solid crystal lattice consisting

of positively charged ions (Jones 1988). In principle, Hall evolu-

tion can accommodate for the motion of more than one charged

species whereas Electron-MHD refers to systems where only elec-

trons move, making the latter a special case of the former. In this

paper the term Hall-MHD is used in the limit of Electron-MHD.

The plan of the paper is as follows: In Section 2 we formulate

the equations of Electron-MHD. We solve these equations in the

linear and non-linear regime in Section 3. We discuss the proper-

ties of the instability and compare it with the conventional tearing

instability in Section 4. We discuss the application of the tearing in-

stability in neutron stars and other astrophysical systems in Section

5. We conclude in Section 6.

2 ELECTRON-MHD FORMULATION IN NEUTRON

STAR CRUSTS

The crust is the outer layer of the neutron star with thickness of

about 1km. The density at the base is 1014g cm−3 and 109g cm−3 at

the surface. It can be approximated to good accuracy by a highly

conducting ion Coulomb lattice with electrons having the freedom

to move. Following the derivation of Goldreich & Reisenegger

(1992), the crustal electric current must be carried by free elec-

trons: j = −neeve, where j is the current density, ne the electron

number density, e the electron charge and ve the electron veloc-

ity. Then, from Ampère’s law j = (c/4π)∇ × B, where c is the

speed of light and B the magnetic induction and using Ohm’s law

j = σ (E + (ve × B) /c) where E is the electric field and σ the elec-

tric conductivity, we substitute into Faraday’s law, yielding:

∂B

∂t
= −∇ ×

(

c

4πene

(∇ × B) × B +
c2

4πσ
∇ × B

)

. (1)

The first term on the right hand side of the above equation describes

the evolution under the Hall effect and the second one Ohmic dis-

sipation. Conceptually, the Hall effect can be thought of as the ad-

vection of the magnetic flux by the electron fluid.

Contrary to usual MHD this equation does not assume that

mass is displaced, as the crustal ions hold fixed positions in space,

while the moving electrons are to good approximation inertialess.

The Lorentz forces are balanced by the elasticity of the crust. The

only physical quantity involved in the description of the system

is the magnetic induction B, while for instance in normal MHD

one needs to solve for the plasma velocity through the momentum

equation.

It follows, from the first term on the right hand side of equation

(1), that a state for which the following condition is satisfied

∇ ×

(

c

4πene

(∇ × B) × B

)

= 0 , (2)

corresponds to a Hall equilibrium, and will not evolve in the limit

of zero resistivity (Cumming et al. 2004; Gourgouliatos et al. 2013;

Fujisawa & Kisaka 2014). In the realistic case of non-zero resistiv-

ity, however, the system will start evolving and may be pushed out

of Hall equilibrium (Marchant et al. 2014).

3 TEARING INSTABILITY

3.1 Linear Theory

Let us assume a background magnetic field with components along

the y and z directions depending only on x, and a constant electron

number density (ne) and electric conductivity (σ):

Bb = By(x)ŷ + Bz(x) ẑ . (3)

This magnetic field corresponds to a Hall equilibrium satis-

fying equation (2). Consider some perturbation b(x, z, y, t) =

exp
(

γt + ikyy + ikzz
)

(bx(x)x̂+by(x)ŷ+bz(x) ẑ); by Gauss’s law it is

c© - RAS, MNRAS 000, 1–10
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∇· b = 0, thus bz = ik−1
z b′x−kyk

−1
z by where prime denotes derivative

with respect to x. Thus the perturbation becomes:

b = exp
(

γt + ikyy + ikzz
) [

bx(x)x̂ + by(x)ŷ +
(

ik−1
z b′x − kyk

−1
z by

)

ẑ
]

. (4)

Substituting into equation (1) and keeping only the linear terms in

b we obtain the following equations:

(5)

γbx +
c

4πene

[

k2
z Bzby − ikzB

′
ybx

+ ky

(

i
{

B′zbx − Bzb
′
x − kyk

−1
z Byb

′
x

}

+
{

kzBy + k2
y k−1

z By + kyBz

}

by

)]

+
c2

4πσ

[(

k2
y + k2

z

)

bx − b′′x

]

= 0 ,

(6)

γby +
c

4πene

[

−k2
z Bzbx − B′′z bx + Bzb

′′
x

+ ky

(

i
{

kyk
−1
z

(

Byby

)′

+
(

Bzby

)′}

− kzBybx

+ k−1
z

(

Byb
′
x

)′)]

+
c2

4πσ

[(

k2
y + k2

z

)

by − b′′y

]

= 0 .

We first explore numerically the eigenvalue problem. To model the

structure of a current sheet we have chosen the following profile for

the background field:

By = By,0sech

(

x

x0

)

,

Bz = Bz,0 tanh

(

x

x0

)

,

(7)

assuming x0 > 0 and Bz,0 > 0. The field becomes uniform along

the z direction for |x| ≫ x0. A choice of amplitudes By,0 = ±Bz,0

corresponds to a Bloch wall (Bloch 1932): a magnetic field that

changes direction from the −z to the +z keeping its magnitude con-

stant, within a layer of thickness scaling with x0 centred at x = 0.

This case has been of particular interest in MHD simulations as it

is a force-free magnetic field (Low 1973), making it an appropri-

ate choice for studies of resistive instabilities. However, this is an

unnecessary constraint for Electron-MHD studies as any choice of

By,0 amplitude is a Hall equilibrium since equation (2) is identically

satisfied.

The configuration extends from −xb to xb. We impose vacuum

boundary conditions at x boundaries, demanding that no currents

exist outside the domain. We ensure that x0 is sufficiently smaller

than xb for the results to be physically meaningful, and the back-

ground field Bb is essentially uniform and current free close to the

boundaries. Demanding vacuum boundary conditions ∇ × b = 0

for these equations at |x| > xb we obtain the following equa-

tions: b′x ± k2
z

(

k2
y + k2

z

)−1/2
bx + ikyby = 0 and ikyb

′
x −

(

k2
y + k2

z

)

by =

0. We consider an appropriate system of units so that xb = 1,

cBz,0/(4πene) = 1 where the growth rate is measured in units of

inverse Hall times τH = 4πene x2
b
/(cBz,0), with the characteristic

Ohmic timescale being τO = 4πσx2
b
/c2. We define the Hall param-

eter RH = σBz,0/(cene), the ratio of the Ohmic timescale over the

Hall timescale. Larger RH correspond to systems where the Hall

effect dominates. In the systems we studied we have set Bz,0 = 1,

combining it with By,0 = 0 and By,0 = 1. We have varied the thick-

ness of the current sheet from x0 = 0.1 to x0 = 0.5, and the Hall

parameter from RH = 100 to RH = 2000, by changing the conduc-

tivity, see Tables 1 and 2 for the range of parameters used. Then

we solve the linear problem to determine the fastest growing eigen-

modes of bx and by and the corresponding eigenvalues. We do so

by discretising the system of ordinary differential equations (5) and

(6) and constructing the relevant matrix, whose eigenvalues allow

us to determine γ and the eigenmodes. We have implemented this

using a finite difference and a spectral calculation finding identi-

cal results. We used up to a 1000 Chebyshev polynomial expansion

in the highest RH and thinner x0 simulated for convergence, see

chapter 7 of Boyd (2001). The results were tested against the finite

difference calculation to ensure their validity.

Studying the plane parallel perturbations with ky = 0, we find

that both the eigenvalues and eigenfunctions for By,0 = 0 are real,

while if By,0 6= 0 the eigenvalues are still real but the eigenfunc-

tions become complex indicative of phase shifting in z. Allowing

the instability to have ky 6= 0 leads to complex eigenvalues and

slower growing eigenmodes for the same background field and RH ,

Figures 1 and 2. Hereafter we will focus on the ky = 0 case.

The maximum growth rate of the instability scales as γ ∝

R
−1/3
H

, Fig. 3. The wave numbers at which the maximum growth

rate occurs are plotted in Fig. 4, and scales as R−0.15
H

. These scal-

ing laws hold for narrow current sheets and high enough Hall pa-

rameters. Thus, the corresponding minimum growth timescale for

the tearing instability becomes τI = γ
−1 ∝ τ

2/3
H
τ

1/3
O

and in terms

of the physical quantities appearing γ ∝ B
2/3
z,0 σ

−1/3, assuming that

the thickness of the reversal area remains unchanged. This quasi-

stationarity assumption holds as as long as τI ≪ τO which corre-

sponds to R
2/3
H
≫ 1.

The maximum growth rate and the corresponding wave num-

ber are higher for thinner current sheets, with the growth rate scal-

ing approximately as x−2
0 and the wave number as x−1

0 . Thus, the

growth time of the tearing instability τI in the linear regime can be

summarised in the following expression:

τI =
τH(10x0/xb)2(RH/100)1/3

γZ01−1

, (8)

where γZ01−1 is the dimensionless growth rate of a system with

RH = 100 and x0 = 0.1xb, note that τI is measured in natural units

and is not rescaled.

The inclusion of By has a mild stabilising effect, reducing

the growth rate for given wave number and pushing the maximum

growth rate to a higher wave number, as shown in Fig. 5 where the

dispersion relation is plotted. The eigenfunctions bx and by for the

fastest growing mode with parameters x0 = 0.1 and RH = 1000

are plotted in Fig. 6, showing that the fastest growing eigenmode

consists of oppositely directing by components on either side of the

current sheet and a bx component with a local minimum at x = 0.

3.2 Non-linear evolution

Following the rapid exponential growth of the instability and once

the perturbing field becomes comparable to the background one,

the instability evolves non-linearly. Furthermore, the background

field evolves as well, given the dissipation in the current sheet.

Given these limitations that cannot be assessed by the linear model,

we explore the full non-linear evolution of the plane-parallel prob-

lem. We integrate numerically the full non-linear equation (1) using

a second order Runge-Kutta scheme for the temporal evolution and

a second order finite difference scheme for the spatial derivatives.

We assumed vacuum boundary conditions in x and periodicity in z.

The computational domain extends to ±1 in x and to ±2 in z. The

resolution used for the majority of the runs was 200× 400 points in

x and z, and was tested against higher resolution for some particular

cases with good agreement.

We explore a variety of magnetic field configurations. As ini-

tial condition, we used the background field given in equation (7)

c© - RAS, MNRAS 000, 1–10



4 K.N. Gourgouliatos & R. Hollerbach

Table 1. Summary of the linear stability calculation for the runs with Bz,0 =

1, By,0 = 0 and ky = 0. The first column is the name of the run, the second

the thickness of the reversal area x0, the third the value of By,0, the fourth

the Hall parameter RH , the fifth the wave number at which the maximum

growth rate occurs, and the sixth the maximum value of the growth rate.

NAME x0 By,0 RH kz γ

Z05-1 0.5 0 100 0.781 0.218

Z05-2 0.5 0 200 0.741 0.189

Z05-4 0.5 0 400 0.694 0.156

Z05-6 0.5 0 600 0.663 0.138

Z05-10 0.5 0 1000 0.623 0.117

Z05-15 0.5 0 1500 0.589 0.102

Z05-20 0.5 0 2000 0.567 0.0925

Z02-1 0.2 0 100 1.894 1.525

Z02-2 0.2 0 200 1.785 1.315

Z02-4 0.2 0 400 1.652 1.095

Z02-6 0.2 0 600 1.565 0.973

Z02-10 0.2 0 1000 1.456 0.830

Z02-15 0.2 0 1500 1.372 0.728

Z02-20 0.2 0 2000 1.319 0.661

Z01-1 0.1 0 100 3.757 6.150

Z01-2 0.1 0 200 3.530 5.306

Z01-4 0.1 0 400 3.255 4.426

Z01-6 0.1 0 600 3.086 3.937

Z01-10 0.1 0 1000 2.866 3.368

Z01-15 0.1 0 1500 2.692 2.959

Z01-20 0.1 0 2000 2.564 2.693

Table 2. Summary of the linear stability calculation for the runs with Bz,0 =

1, By,0 = 1 and ky = 0. The columns are as in Table 1.

NAME x0 By,0 RH kz γ

Y05-1 0.5 1 100 0.884 0.178

Y05-2 0.5 1 200 0.851 0.158

Y05-4 0.5 1 400 0.810 0.132

Y05-6 0.5 1 600 0.784 0.117

Y05-10 0.5 1 1000 0.752 0.0988

Y05-15 0.5 1 1500 0.728 0.0856

Y05-20 0.5 1 2000 0.711 0.0770

Y02-1 0.2 1 100 2.067 1.352

Y02-2 0.2 1 200 1.958 1.194

Y02-4 0.2 1 400 1.825 1.008

Y02-6 0.2 1 600 1.735 0.901

Y02-10 0.2 1 1000 1.628 0.773

Y02-15 0.2 1 1500 1.539 0.680

Y02-20 0.2 1 2000 1.476 0.619

Y01-1 0.1 1 100 4.110 5.433

Y01-2 0.1 1 200 3.893 4.800

Y01-4 0.1 1 400 3.617 4.061

Y01-6 0.1 1 600 3.440 3.632

Y01-10 0.1 1 1000 3.209 3.123

Y01-15 0.1 1 1500 3.022 2.751

Y01-20 0.1 1 2000 2.902 2.507

Figure 1. Contour plot of the real part of the eigenvalues for a range of

wavenumbers (kz, ky), using the Z02-4 profile. We find that the maximum

eigenvalue occurs for ky = 0.

Figure 2. Contour plot of the real part of the eigenvalues for a range of

wavenumbers (kz, ky), using the Y02-4 profile. We find that the maximum

eigenvalue occurs for ky = 0.

superimposed with a small perturbation in the y component, con-

taining up to 2×10−5 of the total energy, so that it would trigger any

instability. We used configurations of current sheet initial thickness

x0 = 0.1 and x0 = 0.2 combining with Hall parameters RH = 200

and RH = 400, corresponding to Z01-2, Z01-4, Z02-2, Z02-4, Y01-

2, Y01-4 ,Y02-2 and Y02-4 (Tables 1 and 2). According to the lin-

ear calculation, the wavelength of the fastest growing mode corre-

sponding to these backgrounds is smaller than the domain’s extent

in z. In all runs, except when the Y02-2 initial condition was used,

we noticed a growth of the perturbation and the formation of the

island pattern of the tearing mode. In what follows we will discuss

in detail the results of runs with initial conditions Z01-2 and Z01-

4 which encapsulate the basic behaviour of the tearing instability.

c© - RAS, MNRAS 000, 1–10
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x0=0.2, By=1
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Figure 3. Maximum growth rate of the tearing instability, normalised to its

value at RH = 2000, versus RH . The red crosses correspond to models Z05-

1 up to Z05-20, the red stars to Z02-1 up to Z02-20, the red circles to Z01-1

up to Z01-20, the green crosses correspond to models Y05-1 up to Y05-20,

the green stars to Y02-1 up to Y02-20 and the green circles to Y01-1 up to

Y01-20. The growth rate scales asymptotically with R
−1/3
H

.

102 103

RH

1

2

k
z/
k
z,
20
00

R−0.15
H

x0=0.1, By=0

x0=0.2, By=0

x0=0.5, By=0

x0=0.1, By=1

x0=0.2, By=1

x0=0.5, By=1

Figure 4. The wave number at which the maximum growth rate occurs,

normalised to its value at RH = 2000, versus RH . There is an asysmptotic

scaling with the Hall parameter kz ∝ R−0.15
H

dependence. The symbols are

the same as in Fig. 3.

The Ohmic decay of the background field did not allow enough

time for the growth of the instability in the case of Y02-2.

We plot three snapshots of the magnetic field structure in

Fig. 7, at times t = 0 (left), t = τH (middle) and t = 2τH (right), for

the run with initial conditions Z01-4 and some weak perturbation.

We find that the strength of the perturbing magnetic field rises from

an initial value of 0.02B0 to 0.18B0. While the instability is grow-

ing, the background field changes as well, in particular the current

sheet becomes wider and consequently this has an effect on the

growth rates and wavenumbers of the dominant eigenmodes. Thus,

the tearing instability is shifted towards longer wave lengths as the

wavenumber scales inversely with x0. There is also some drift of the

newly formed islands along the z direction which is caused by the

mixing of modes with different wavelengths and different growth

rates. Eventually, once the instability has fully developed it forms

0 1 2 3 4 5

kz

0.0

0.2

0.4

0.6

0.8

1.0

1.2

γ

Z02-4

Y02-4

Figure 5. The growth rate versus the wave number for Z02-4 (red) and

Y02-4 (green), see Tables 1 and Table:2. Both of them have x0 = 0.2 and

RH = 400, whereas the Z02-4 has By,0 = 0 and the Y02-4 has By,0 = 1. The

case with By,0 = 1 has a smaller growth rate and the maximum is pushed

towards a higher wave numbers.

1.0 0.5 0.0 0.5 1.0

x

3

2

1

0

1

2

3

b

bx

by

Figure 6. The eigenfunctions bx and by for the fastest growing mode for the

case Z01-10.

the characteristic long-living reconnection islands, right panel of

Fig. 7.

To probe the instability we used the amount of energy in the

x and y components of the magnetic field where we plot the results

of two runs with RH = 200 and RH = 400, and x0 = 0.1 (initial

conditions Z01-2, Z01-4), Fig. 8. Following a short initial transi-

tion where energy is dissipated from the perturbation, presumably

due to damping of modes with negative growth rates (t < 0.2τH),

we find that the amount of energy in the x and y components rises

almost exponentially. This phase lasts until t = 2 for the RH = 400

run, and corresponds to a growth rate for the energy γE = 6.8 im-

plying an approximate growth rate for the amplitude of the per-

turbation field γI ≈ γE/2 = 3.4. This figure is smaller compared

to 4.426 found in the linear analysis, as expected, since the for-

mer takes into account the energy in the various other modes which

grow at slower rates, while the latter gives the growth rate of the

fastest mode only. The growth of the energy of the run where the

Z01-2 initial condition was used saturates earlier and at a lower

c© - RAS, MNRAS 000, 1–10
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Z01-4

Figure 8. The ratio of magnetic energy in the x and y components over the

total magnetic energy for two runs with initial conditions that of Z01-2 (red)

Z01-4 (green) and a perturbing field containing 2× 10−5 of the total energy.

The time is expressed in units of τH .
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t

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

(E
0−

E
t)
/E

0

Ohmic, Z01-2

Ohmic, Z01-4

Hall, Z01-2
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Figure 9. The difference of magnetic energy at time t, Et from the initial

magnetic energy E0, for the runs shown in Fig. 8, solid green and red lines.

The same quantity for runs evolving only under the Ohmic dissipation. The

decay for the system evolving only under Ohmic dissipation is slower, and

the difference is more profound for the higher RH .

energy. At very early times (0.2 < t < 0.4τH) the instability at

RH = 200 grows marginally faster than the RH = 400 due to

γZ01−4 < γZ01−2, however this lasts for a very short time as the back-

ground field decays swiftly and widens the magnetic field reversal

area. For instance, in a run with RH = 200 and x0 = 0.1 it takes

∼ 3τH for the reversal area to double its size if left to decay Ohmi-

cally. This means that the growth rate will drop by a factor of 4 and

the wave number of the fastest growing mode will be multiplied

by a factor of 2. With respect to the energy decay, the inclusion of

the instability leads to a faster rate compared to a system evolving

solely under Ohmic dissipation with the Hall term switched-off, a

result that is more prominent in the case of RH = 400, Fig. 9.

4 DISCUSSION

Following the description of the linear and non-linear evolution, we

conclude that this instability is a resistive tearing mode as it fulfils

the criteria set by Furth et al. (1963). First it is a resistive instabil-

ity with a clear dependence on the value of the resistivity, second

it appears along the current sheet by breaking up the field lines

and third it is a long wavelength instability. We remark though that

the physical mechanism between the tearing instability in Electron-

MHD and the usual MHD evolution is different. In Electron-MHD,

a sole equation for the evolution of the system needs to be solved,

equation (1), whereas in MHD the momentum equation needs to

be accounted for, as well. Thus, while in the usual MHD case, the

development of the instability results from a sequence of events in-

volving magnetic pressure and tension and plasma pressure, in the

Electron-MHD such a description is irrelevant, as the Lorentz force

is balanced by the ion lattice and the entire evolution is determined

by the magnetic induction equation alone.

In the Hall-MHD case, the key quantity is the electron fluid

velocity advecting the magnetic flux. The electron fluid velocity

is uniquely determined by the magnetic field structure through the

relation:

ve = −
c

4πene

∇ × B . (9)

The instability develops through the steps shown in Fig. 10. The by

component is supported by a current corresponding to the motion

of the electron fluid on the plane of the figure with velocity ve, de-

noted by blue arrows shown edge-on. Note that since the current is

carried by electrons, its flow is antiparallel to the ve; hereafter we

are going to refer to the electron motion to avoid confusion from

the oppositely directing current. Considering the x component of

the electron flow near the O and X points, we find that it pushes the

field lines away from the O point and compresses them towards the

X points. Whereas, in the z direction and along the current sheet the

electron velocity is from the X point towards the O point. Thanks

to resistivity the field lines reconnect at the X point; these newly re-

connected field lines shrink around the O point, where they, again

due to resistivity, vanish. The compression of the field lines around

the X point and the dilution around the O point enhance and sup-

press the electron flow that runs normal to the plane of the figure,

respectively (blue arrow shown tail on). This velocity difference

deforms the field lines so that by is enhanced, closing the positive

feedback loop. This is in agreement with the fact that the instability

growth rate depends on both the Hall and the Ohmic timescales.

The Hall time scale controls the rate at which the field lines move,

while the Ohmic times scale set the rate at which the field lines re-

connect and essentially controls the supply of magnetic field lines

that will move from the X point towards the O point.

The results of our linear analysis show that the growth rate

of the instability is proportional to R
−1/3
H

as opposed to R
−1/5
H

sug-

gested in the analytical approach of Wood et al. (2014), while the

corresponding wavenumber is proportional to R−0.15
H

as opposed to

R
−1/5
H

suggested there. We find that as long as the boundaries of our

calculations are twice as wide compared to the size of field reversal

area, their effect on the instability is minimal. These discrepancies

are related to the inevitable simplifications made in order to obtain

an analytical expression for this instability and the different pro-

files of the background magnetic field employed not containing a

current sheet.

Regarding the full non-linear calculations we find that the in-

stability has a considerable effect on the magnetic field decay once

RH is large enough. This is caused by the rapid growth of the initial

c© - RAS, MNRAS 000, 1–10
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Figure 7. The magnetic field for the run using the initial conditions Z01-4 with a superimposed small perturbation in by, at time t = 0 (left), τH (middle)

and 2τH (right), the black lines correspond to the Bx and Bz components of the field, and the By component is shown in colour. The magnetic field forms the

characteristic islands in the location of the current sheet. As the system evolves and the current sheet decays, the system adopts longer wavelength modes.

perturbation and the slow decay of the background state. In the ex-

amples simulated we find that for a choice of RH = 400 the decay

rate is clearly enhanced once the instability is close to its saturation

point, with milder effect for a choice of RH = 200. Thus the role of

the instability becomes more evident for higher RH .

Similar to the variants of the MHD tearing instability, the

growth timescale of the E-MHD tearing instability has a mixed

dependence of the Hall and the Ohmic timescales. In the usual

MHD tearing instability the growth rate of the tearing instability

scales with τ−3/5
O
τ
−2/5
A

, where τO is the resistive and τA the Alfvèn

timescale respectively (Furth et al. 1963). In relativistic magneti-

cally dominated plasmas the growth rate is the geometric mean of

the Alfvèn timescale and the resistive timescale (Komissarov et al.

2007). These differences in the growth rates and consequently on

the wave numbers reflect the different physical mechanism outlined

above.

The tearing instability in Electron-MHD shares some common

properties with the Hall-drift induced magnetic instability which

was studied in the linear approximation with uniform (Rheinhardt

& Geppert 2002) and non-uniform (Rheinhardt et al. 2004) back-

ground density, and by Pons & Geppert (2010) in the non-linear

regime. Both instabilities require some non-zero resistivity to oper-

ate, as the maximum growth rate of the Hall-drift instability scales

as B
q

0, q < 1, where B0 is the magnitude of the magnetic field, thus

for negligible resistivity the growth rate becomes zero in physical

units. Furthermore both of them are long wavelength instabilities,

having positive eigenvalues for 0 < k < kc where kc is some cut-off

wavenumber. They differ on that the Hall-drift instability does not

require the presence of a current sheet, even though strong currents

are involved, whereas the current sheet is a key element for the de-

velopment of the tearing instability. Finally, we notice a similarity

on the late evolution where the non-linear effects have taken over:

in both instabilities the system tends to adopt the longest wave-

length permitted by the computational domain leading and the over-

all dissipation is faster Pons & Geppert (2010).

The role of the Hall effect in the development of the tearing in-

stability has been studied by numerous authors, primarily motivated

by experimental results (i.e. Bodin & Newton (1963)). Studies of

Figure 10. Schematic depiction of the instability. We assume a background

field directed to +z on the upper half and to the −z on the lower half. The

by component of the perturbation is shown in colour contours with red used

to point inwards and blue outwards (also denoted with ⊙ and ⊗ in black).

The blue arrows show the electron velocity related to the by components,

and the ⊗ blue arrows the electron velocity perpendicular to the plane of

the figure. The electron velocity is higher at the X point compared to the O

point leading to positive feedback and growth of the by component. Please

refer to the text on the Discussion section for a detailed description of the

instability process.

the effect of Hall current on tearing mode in rotating reverse plas-

mas of cylindrical geometry have shown that Hall currents com-

bined with rotation of the fluid can suppress tearing modes (Kap-

praff et al. 1981; Finn et al. 1983; Mirin et al. 1986). Our approach

is different to these ones in two basic aspects. First, we consider the

evolution under only Electron-MHD, neglecting other terms aris-

ing from Lorentz forces, plasma pressure and inertia, assuming that

they are balanced by the elastic forces of the ion lattice, whereas in

these works the Hall effect is included as an add-on to normal MHD

evolution. Second, the geometry of the system is different assuming

a rotating cylinder whereas we study a planar system. Our results

are in agreement with those of Fruchtman & Strauss (1993), who

showed that the Hall effect can actually lead to a tearing mode in

an appropriate planar geometry.
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5 NEUTRON STAR CRUST HEATING AND OUTBURSTS

Models of global magnetic evolution have shown that a usual out-

come of Hall evolution is the development of current sheets (Vain-

shtein et al. 2000; Hollerbach & Rüdiger 2002, 2004; Reisenegger

et al. 2007; Geppert & Viganò 2014; Wood & Hollerbach 2015;

Gourgouliatos et al. 2016). Such current sheets are more prominent

on the natural boundaries of the crust-core interface (Lander 2013;

Beloborodov & Li 2016) and neutron star surface (Thompson &

Duncan 2001; Lyubarsky et al. 2002), providing potential sites for

the tearing instability.

As shown in the non-linear calculation, a high Hall parameter

and a thin layer containing the current sheet are essential for the

development of the instability. We can make an estimate of the rel-

ative physical parameters using realistic crust models of (Potekhin

& Yakovlev 1996; Potekhin 1999; Cumming et al. 2004), where the

electron number density at the base of the crust is ∼ 2.5×1036cm−3

and the electric conductivity 3.6 × 1024s−1, while we assume that

the electron number density at the surface is 2.5 × 1033cm−3 and

conductivity 3.6 × 1022s−1. Note that the solid surface may ex-

tend to lower densities, however at these lower densities the mag-

netic stresses will be comparable to the breaking stresses of the

crust and the assumption of electron MHD does not hold any more

(Gourgouliatos & Cumming 2015; Lander 2016). Using the val-

ues mentioned above, the Hall parameter at the base of the crust

is RH,b = 100B15 and on the surface RH,s = 1000B15, where B15

is the magnetic field in units of 1015G. The Hall timescale at the

base of the crust is τH,b = 1.5 × 105B−1
15 yr, while on the surface it is

τH,s = 1.5 × 102B−1
15 yr, where we have assumed a length-scale for

the magnetic field ∼ 1km. Finally we need to get a realistic estimate

of the thickness of the current sheet. Numerical simulations place

it close to their resolution limit (Hollerbach & Rüdiger 2002; Pons

& Geppert 2007; Viganò et al. 2012), thus in physical dimensions

this is ∼ 3m (for a resolution of 346 radial grid points of a ∼ 1km

crust (Viganò et al. 2012) ). Therefore, using these approximations

for the quantities appearing in expression (8) the growth rate of the

instability near the surface (τs) and the base of the crust (τb) of the

neutron star is:

τs ≈ 18 days x2
3B
−2/3
15
, τb ≈ 23 years x2

3B
−2/3
15

(10)

where x3 is the thickness of the current sheet in units of 3m. Note

that the Ohmic decay timescale for a layer of the same thickness

close to the surface of a neutron star will be approximately 1.5year.

Assuming that the current sheet covers a fraction f of the surface

of the star, whose radius is set to 10km, the energy that will be

contained in this layer will be

EI = 1.5 × 1044 erg B2
15 x3 f . (11)

While thinner layers would lead to a faster growing instability, the

instability layer cannot become infinitesimally thin. The release of

heat will increase the resistivity of the crust, lower the Hall param-

eter and eventually dilute the current sheet.

Release of such amounts of energy in shallow depths have

been theorised in order to explain the bursting behaviour of mag-

netar outbursts. J1822.3-1606, a low-magnetic field magnetar (5 ×

1013G), requires 1042erg of thermal energy to be deposited between

6× 108 − 6× 1010g cm−3 (Rea et al. 2012), or slightly deeper down

to 1011g cm−3 (Scholz et al. 2012, 2014) to power its bursts and

subsequent cooling. Modelling of SGR 0418+5729 has also sug-

gested that a somewhat smaller amount of thermal energy (1041erg)

in similar depth, is needed to power its bursts (Rea et al. 2013). In

a different magnetar, CXOU J164710.2-455216, whose magnetic

field is relatively weak (< 7 × 1013G), an energy deposition of

∼ 4 × 1044erg at shallow depths is required to power its bursting

events (An et al. 2013), which could be associated to a much larger

part of the crust through a longer wavelength, or alternatively an

extremely high magnetic field reaching 1016G is needed. Finally,

in 1E 1048.1-5937, a similar sequence of bursting events has been

reported (Archibald et al. 2015) where thermal emission was en-

hanced in a timeframe of 102 − 103 days. The energies required

by these models can be fulfilled by a current sheet covering as lit-

tle as 1% of the magnetar surface. We remark that the timescales

here are longer than the instantaneous deposition of thermal energy

used in cooling models (Pons & Rea 2012), however, for thin cur-

rent sheets, the generation of Ohmic heat can be as short as few

days and will not have a major impact on the post-burst cooling of

the magnetar. Another possibility is that this instability operates in

conjunction or trigger other types of instabilities suggested to oper-

ate in the outer curst, such as the thermoresistive instability (Price

et al. 2012) or the thermoplastic instability (Beloborodov & Levin

2014; Li et al. 2016), with the major effect of the tearing mode be-

ing on the reduction of the timescales and an increase on the energy

efficiency.

Regarding the deeper part of the crust, solutions matching the

crustal field to the superconducting core have found that thin cur-

rent layers naturally form (Henriksson & Wasserman 2013; Lander

2014), and assuming similar parameters for the thickness of the

layer and the strength of the field, the resulting timescale exceeds

∼ 20 years and cannot be associated to any bursting events. Nev-

ertheless, it may contribute to faster magnetic field decay, affecting

the global evolution and quiescent thermal radiation. This effect

may be complementary to other processes that have been proposed

to operate in the crust-core interface, such as a highly dissipative

layer (Pons et al. 2013) and enhance the importance of Hall decay

proposed by Dall’Osso et al. (2012).

6 CONCLUSIONS

In this work we have shown that the tearing mode instability op-

erates under the Hall effect and resistivity in the Electron-MHD

description. The appearance of the instability is similar to the usual

MHD case, developing the characteristic reconnection islands, even

though the mechanism is physically different, as the usual concepts

of magnetic pressure and tension do not apply in this context. We

find that the tearing instability facilitates a faster magnetic field de-

cay, which is more evident for high Hall parameters, without lead-

ing to any significant amplification of the strength of the local mag-

netic field. Considering its role in neutron star magnetic field evo-

lution, we have found it is more likely to occur just below the sur-

face of strongly magnetised neutron stars or close to the crust-core

boundary. In the first case the energetics of the instability are con-

sistent with the amount of heat needed for a magnetar burst, which

is likely to originate close to the surface, while the associated mag-

netic field strengths are sufficient to deform the crust. In the latter

case, it may provide an extra channel for magnetic field decay and

contribute to the quiescent emission.

We note that the tearing instability discussed here may be rel-

evant to other systems where evolution under the Hall effect and

Electron MHD is important. Namely, the Hall effect is known to

operate in protoplanetary discs (Balbus & Terquem 2001). Lesur

et al. (2014) showed that the inclusion of ambipolar diffusion and

Ohmic decay leads to the formation of magnetic zones and recently,

Béthune et al. (2016) showed that the magnetic field reverses direc-
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tion within a narrow layer [c.f. Figure 7 of Béthune et al. (2016)].

We speculate the these reversal regions may be appropriate sites for

the development of the tearing instability with implications for the

overall evolution of these protoplanetary discs.

Observations of the magnetotail has provided evidence of re-

connection activity in the region (Nagai et al. 2001; Runov et al.

2003; Snekvik et al. 2009) and the release of plasmoids due to the

Hall effect (Liu et al. 2013). While the system near the magneto-

tail is more complicated than the simple Electron-MHD evolution

described here, the basic principles described here may be still in

operation and enhance the reconnection and the subsequent plas-

moid formation.
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