

This is a repository copy of Yield responses of wild C3 and C4 crop progenitors to sub-ambient CO2 : A test for the role of CO2 limitation in the origin of agriculture.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/104455/

Version: Accepted Version

Article:

Cunniff, J., Jones, G., Charles, M. et al. (1 more author) (2017) Yield responses of wild C3 and C4 crop progenitors to sub-ambient CO2 : A test for the role of CO2 limitation in the origin of agriculture. Global Change Biology. ISSN 1354-1013

https://doi.org/10.1111/gcb.13473

This is the peer reviewed version of the following article:Cunniff, Jennifer, et al. "Yield responses of wild C3 and C4 crop progenitors to sub-ambient CO2: A test for the role of CO2 limitation in the origin of agriculture." Global Change Biology (2016)", which has been published in final form at https://dx.doi.org/10.1111/gcb.13473. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Received Date : 01-Mar-2016 Revised Date : 13-Jun-2016 Accepted Date : 26-Jul-2016 Article type : Primary Research Articles

Yield responses of wild C₃ and C₄ crop progenitors to sub-ambient CO₂: A test for the role of CO₂ limitation in the origin of agriculture.

Jennifer Cunniff^{1\$}, Glynis Jones², Michael Charles³ and Colin P. Osborne¹

¹Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK. ²Department of Archaeology, Northgate House, University of Sheffield, West Street, Sheffield, S1 4ET, UK. ³School of Archaeology, University of Oxford, 34-36 Beaumont Street, Oxford, OX1 2PG, UK. ^{\$}Current address: CABI, Nosworthy Way, Wallingford, Oxfordshire, OX10 8DE, UK.

Corresponding author: Colin P. Osborne

Tel: +44 (0)114 222 0146

Fax: +44 (0)114 222 0002

Email: c.p.osborne@sheffield.ac.uk

Keywords: sub-ambient CO₂, origin of agriculture, yield, crop progenitor, photosynthesis, stomatal conductance, germination, viability.

Running head: Crop progenitor yields at sub-ambient CO₂.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/gcb.13473

Abstract

Limitation of plant productivity by the low partial pressure of atmospheric CO₂ (C_a) experienced during the last glacial period is hypothesised to have been an important constraint on the origins of agriculture. In support of this hypothesis, previous work has shown that glacial C_a limits vegetative growth in the wild progenitors of both C_3 and C_4 founder crops. Here we present data showing that glacial C_a also reduces grain yield in both crop types. We grew four wild progenitors of C₃ (einkorn wheat and barley) and C₄ crops (foxtail and broomcorn millets) at glacial and post-glacial C_a , measuring grain yield, and the morphological and physiological components contributing to these yield changes. The C₃ species showed a significant increase in unthreshed grain yield of ~50% with the increase in $C_{\rm av}$ which matched the stimulation of photosynthesis, suggesting that increases in photosynthesis are directly translated into yield at sub-ambient levels of C_a . Increased yield was controlled by a higher rate of tillering, leading to a larger number of tillers bearing fertile spikes, and increases in seed number and size. The C4 species showed smaller, but significant, increases in grain yield of 10-15%, arising from larger seed numbers and sizes. Photosynthesis was enhanced by C_a in only one C_4 species and the effect diminished during development, suggesting that an indirect mechanism mediated by plant water relations could also be playing a role in the yield increase. Interestingly, the C_4 species at glacial C_a showed some evidence that photosynthetic capacity was upregulated to enhance carbon capture. Development under glacial C_a also impacted negatively on the subsequent germination and viability of seeds. These results suggest that the grain production of both $C_3 \mbox{ and } C_4 \mbox{ crop}$ progenitors was limited by the atmospheric conditions of the last glacial period, with important implications for the origins of agriculture.

Introduction

Cultivation of wild grasses and grain legumes by people began ~12,000 years ago in Southwest Asia (Meyer & Purugganan, 2013; Willcox *et al.*, 2008), leading to the evolution of domesticated cereals and pulses dependent on humans for their dispersal (Harlan, 1992). Within five millennia, cultivation leading to domestication had occurred in multiple independent regions in the both the Old and New World (Blumler, 1996; Fuller *et al.*, 2012; Larson *et al.*, 2014; Piperno, 2006; Piperno, 2011; Purugganan & Fuller, 2009). Numerous lines of evidence now suggest a prolonged period during which certain species were cultivated but had not yet acquired the morphological changes associated with domestication (Colledge, 1998; Fuller, 2007; Larson *et al.*, 2014; Piperno, 2006; Piperno & Dillehay, 2008; Purugganan & Fuller, 2011; Weiss *et al.*, 2006; Willcox, 2005; Willcox *et al.*, 2008). Debate in this area currently centres around whether the process of domestication was an unconscious product of cultivation and harvesting (Darwin, 1875; Purugganan & Fuller, 2011; Rindos, 1984) or the result of deliberate breeding by early farmers (Abbo *et al.*, 2011; 2014a; 2014b).

Plant cultivation may be practiced by hunter-gatherer communities, and only becomes agriculture when it forms the basis of subsistence economies (Harlan, 1992). Why people made this transition during the Neolithic remains one of the most important questions in archaeology. Numerous explanations have been suggested, including demographic (Cohen, 1977; 2009) and social pressures (Bender, 1978), and environmental change (Bettinger *et al.*, 2009; Byrne, 1987; Richerson *et al.*, 2001). However, none can account for the synchronicity in the start of agriculture in distinct regions across the globe. Sage (1995) proposed a global factor, hypothesising that low partial pressures of atmospheric CO_2 (C_a) during the last glacial period may have been insufficient to support the level of plant productivity required

for the successful establishment of agriculture. However, deglaciation at the end of the Pleistocene period was coupled to a rapid rise in atmospheric C_a from below 18 Pa to 27 Pa between 15,000 and 12,000 years ago (Jouzel *et al.*, 1993; Petit *et al.*, 1999), and soon afterwards plant cultivation began.

Previous experiments have shown that the wild progenitors of the primary C₃ and C₄ cereals from different continental centres where agriculture originated independently exhibited significant increases in vegetative biomass with an increase in C_a equivalent to the end glacial change (Cunniff *et al.*, 2008). Biomass of a single C₃ species in these experiments nearly doubled, whilst the C₄ species showed a smaller, but significant, increase of up to 40%. This increase in the C₄ species is unexpected, since plants using C₄ photosynthesis are not expected to respond to C_a because a series of biochemical and structural modifications raise CO₂ at the sites of carbon fixation to three to ten times that of ambient air (Hatch, 1987). These increases in biomass, particularly for the C₃ species, are caused by a direct effect of low C_a on photosynthesis (*A*) (Cunniff *et al.*, 2008), whilst for the C₄ species, indirect effects of C_a mediated via improved water relations may be more important (Cunniff *et al.*, 2016).

Previous research has shown that C_3 plants show significant yield enhancements with an increase in the level of atmospheric CO₂. Studies considering rising atmospheric C_a over the coming 50 years have shown that yields could increase as much as 35%, or as little as 13%, in modern C₃ crop cultivars grown with ample water and nutrients (Ainsworth & Long, 2005; Kimball, 1983; Kimball *et al.*, 2002; Long *et al.*, 2006), whilst grain increases in C₄ species only occur when plants experience intermittent water deficits (Leakey, 2009; Leakey *et al.*, 2006; Manderscheid *et al.*, 2014; Ottman *et al.*, 2001).

The grain yields of modern C_3 crop cultivars are significantly more sensitive to variation in sub-ambient than elevated C_a (Allen *et al.*, 1991; Baker *et al.*, 1990; Campbell *et al.*, 2005; Gifford, 1977; Mayeux *et al.*, 1997), and there is recent evidence that yields of C_4 species are also substantially reduced by glacial levels of C_a (Piperno *et al.*, 2015). Mayeux *et al.* (1997) found that a rise in C_a from 20 to 35 Pa led to a 200% increase in grain yield in a modern spring wheat cultivar, and that even a 27% increase in C_a from pre-industrial levels of 28 Pa to near-ambient levels of 35 Pa increased yields by 55%. Yield increases in the sub-ambient C_a range are controlled by a variety of components including: a greater number of seeds per spike (Mayeux *et al.*, 1997), increased tiller production (Gifford, 1977; Sionit *et al.*, 1981; Wand *et al.*, 1999), greater seed number and mass (Campbell *et al.*, 2005; Sionit *et al.*, 1981) and a greater percentage of filled spikelets (Ziska *et al.*, 1997).

Long-term exposure to sub-ambient C_a can also impact on plant fitness. Growth at very low C_a levels of 15 Pa led to seed abortion in *Abutilon theophrasti* (Dippery *et al.*, 1995), and at 20 Pa fitness (survival and seed production) was significantly reduced in *Arabidopsis thaliana* (Ward & Kelly, 2004; Ward & Strain, 1997). Furthermore, the germination rate of seeds developed under low C_a can be reduced (Campbell *et al.*, 2005), leading to intergenerational effects.

Physiological regulation may go some way towards offsetting the limiting effects of sub-ambient C_a . For example, increasing stomatal conductance (g_s) improves CO₂ supply, and up-regulation of photosynthetic enzymes improves CO₂-capture (Anderson *et al.*, 2001; Gesch *et al.*, 2000; Sage & Reid, 1992). However, such acclimation is less frequent in C₄ species, since their carbon concentrating mechanism makes photosynthesis less limited by

 CO_2 supply, although small changes in leaf nitrogen, g_s and photosynthetic enzymes have been reported in some species (Anderson *et al.*, 2001; Pinto *et al.*, 2014; Ripley *et al.*, 2013).

Following on from our previous experiments on vegetative biomass reported in Cunniff *et al.* (2008), here we measure the yield and physiological responses of the modern day representatives of two wild C_3 and C_4 crop progenitors to glacial and post glacial C_a . The C_3 crop progenitors are from the Southwest Asia centre of domestication and the C_4 crop progenitors are from the North China domestication centre. We aimed to test the hypotheses that: (i) a rise in C_a equivalent to the end glacial change increases grain yield in the wild progenitors of both C_3 and C_4 progenitors, but the yield enhancement is greater in the C_3 species; (ii) yield increases are controlled by several components e.g. increased tiller production, seed size and number; (iii) in C_3 species, the increased yield is due to direct effects on photosynthesis; (iv) acclimation (if it occurs) is greater in C_3 than C_4 species; and (v) grains developed under low C_a have reduced germination potential.

Materials and methods

Plant material and growth conditions

The C_a treatments were applied in controlled environment (CE) chambers (Conviron BDR16, Conviron, Winnipeg, Manitoba, Canada) at two levels throughout the full period of plant growth: glacial (18 Pa) and postglacial (27 Pa). The chambers were operated in a closed configuration, by connecting the outlet vent to the air inlet via a filter packed with a layer of activated charcoal and a layer of sodalime (Sofnolime 1.0 - 2.5 mm granules, Molecular Products Ltd, Mill End, Essex). Activated charcoal was employed to filter the air and remove any trace gases such as ethylene which could be emitted by plants or soil, and have the potential to affect plant development. The C_a in each chamber was controlled using a CO₂ sensor (CARBOCAP® Carbon Dioxide Probe GMP343, Vaisala, Finland) that was linked to a feedback system regulating the circulation of chamber air through the soda-lime scrubber. C_a was recorded every minute, giving overall mean values over the full growth period of 18.2 Pa (±SD 0.48) and 27.1 Pa (± SD 0.49). To maintain this tight control, the soda lime was changed as soon as C_a started to drift above the target level, which was approximately every four weeks. Treatment and plants were exchanged between the two controlled environment chambers every week from germination to harvest to help minimise the confounding effect of the chamber on the growth environment.

Seeds of the wild progenitors of C_3 and C_4 crops were obtained from germplasm holdings or commercial sources. They included two C_4 species, *Setaria viridis* (L.) P. Beauv (Herbiseed, Twyford, UK. Cat no. 9602) and *Panicum miliaceum* var. *ruderale* (Kitag.) (Herbiseed, Cat no. 9507) from North China, and two C_3 species, *Hordeum spontaneum* K. Koch (Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany, Accession number: HOR 13798) and *Triticum boeoticum* Boiss. (IPK, Accession number: TRI 17093) from Southwest Asia. All were important as founder crops in the two regions, upon which Neolithic agricultural economies were first established (Evans, 1993; Zohary *et al.*, 2012). Batches of ~30 seeds of each species were sown into trays containing a 1:1 sand: John Innes no. 2 compost (7 parts loam, 3 parts peat, 2 parts sand, 20:10:10 N:P:K) mix (Ivandic *et al.*, 2000). This mix was chosen in an attempt to replicate an unimproved soil.

Seeds were germinated at 20/10 °C (day/night) for the C₃ species and 30/25 °C for the C₄ species, with an 8 hour photoperiod and a photosynthetic photon flux density (PPFD) of 300 μ mol photons m⁻² s⁻¹ in the CE chambers. Once established, sixteen seedlings of a similar size for each species were selected and planted into 10 litre containers (0.16×0.2×0.35m, Wilkinson Hardware Store Limited, Manton Wood, Worksop, UK) containing the same

growth medium. For the C₃ species, an 8-week vernalization period was then imposed to enable flowering. The same CE chambers were used, except that conditions were set at 4 °C (day and night) with PPFD and photoperiod as during germination. After vernalization of the C₃ species, temperature was returned to 20/10 °C (day/night), photoperiod to 16 hours and PPFD to a maximum level of 650 μ mol photons m⁻²s⁻¹ measured at canopy height. Vapour pressure deficit (VPD) had a minimum value of 0.2 kPa at night and a maximum value of 0.7 kPa during the day until grain filling, when it was increased to 0.5 kPa at night and 0.9 kPa during the day to facilitate maturation. The C₄ species were grown at 30/25 °C (day/night), with a 14 hour photoperiod, and PPFD of 622 μ mol photons m⁻²s⁻¹ measured at canopy height. VPD had a minimum value of 0.7 kPa at night and a maximum value of 0.9 kPa during the day until grain filling when it was increased to 1 kPa at night and 1.3 kPa during the day to facilitate ripening. For both the C₃ and C₄ species the total integrated daily photon flux is equivalent to averages for the growing seasons for these crops in Southwest Asia and Northern China, although the daily maximum was lower than that experienced under clear skies in the field (Duzen & Aydin, 2012; Wang et al., 2013). Plants were watered 3-4 times per week in the early stages of the experiment; but this was reduced at grain filling as the water demands of the plants decreased. When grain filling was complete and senescence had commenced, watering was terminated to promote drying of the plant material. Plants were fertilised with granular fertiliser (Osmocote exact standard 1:1:3 N:P:K) after two months of growth. The chambers were of adequate internal height for all of the plant species tested to grow to maturity without significant shading.

CO₂ and H₂O exchange were measured at three stages during the experiment; tillering, flowering and grain filling, using a portable open gas exchange system (LI-6400P, LI-COR Biosciences, Lincoln, Nebraska, USA), for the youngest fully expanded leaf. PPFD within the chamber was set to 1800 μ mol m⁻²s⁻¹ for the C₃ species and 2000 μ mol m⁻²s⁻¹ for the C₄ species (6400-02B LED Light Source chamber, LICOR), since preliminary measurements of the photosynthetic response to light showed that these saturated photosynthesis (A_{sat}) . Leaf temperature was matched to the growth environment; 20 °C for the C₃ species and 30 °C for the C₄ species throughout all of the measurements, and incoming air was maintained at a constant humidity to keep the leaf-air vapor pressure deficit at less than 1 kPa. Gas exchange parameters were calculated using the equations of von Caemmerer and Farquhar (1981) and photosynthetic responses to variation in intercellular CO_2 (A/C_i curves) determined following Ainsworth et al. (2002). Photosynthesis was induced under the growth C_a level, either 18 Pa or 27 Pa, until A_{sat} and g_s reached steady state, typically after 20 mins. Values of A_{sat} and C_i were then recorded at C_a of (27, 18), 15, 12, 10, 8, and 5 Pa for the C₃ species and (27, 18), 15, 12, 10, 8, 5 and 2 Pa for the C₄ species, with a time interval of 2-3 mins between C_a levels. The growth C_a (27 or 18 Pa) was then repeated to verify that the original value of A_{sat} could be restored, and then C_a was increased in steps to (18, 27), 38, 45, 65, 80, 100, 130, 160, 180 and 200 Pa. Curves were fitted as described in Cunniff et al.(2008). Stomatal limitation (l_s) was calculated following Farquhar & Sharkey(1982) as:

$$l_{\rm s} = \frac{A_{\rm o} - A}{A_{\rm o}}$$
 Equation 1,

where A is the photosynthetic rate at growth C_a , i.e 18 Pa or 27 Pa, and A_o is the photosynthetic rate which would occur as g_s approaches infinity, assuming that C_i is 18 Pa or 27 Pa. Instantaneous WUE was calculated as:

WUE =
$$\frac{A_{\text{sat}}}{g_{\text{s}}}$$
 Equation 2.

Components of yield

Due to the shattering mechanism (brittle rachis) employed as a dispersal mechanism by wild cereal inflorescences, each was enclosed in a muslin bag during grain filling to keep seeds with the parent plant. Total yield was determined by a destructive harvest when plants had completely dried. Final plant height, measured from soil level to the collar of the leading spike, and the total number of tillers (fertile and sterile) was recorded. Fertile tillers were classed as those which bore seed heads, whilst sterile tillers as those which had no inflorescence, or an inflorescence with spikelets containing no seeds. The C_3 plants were then divided into leaves, culms, and unthreshed spikelets; the long awns were removed from the spikelets of *H. spontaneum*. The C_4 plants were divided into leaves, culms, inflorescence heads and seeds. The total number of filled and empty spikelets was counted for the C_3 species, but this could not be determined for the C_4 species, as seeds are not retained within the glumes upon shattering. All of the viable spikelets/seeds for each plant were weighed immediately after harvest, then random subsets of 100 spikelets/seeds were weighed separately. Finally, the spikelets/seeds subset, leaves, culms and awns were dried at 70 °C for 7 days, and weighed.

Yield components were calculated, as follows:

$$S = \frac{SF}{(SF_{subset}/100)}$$
 Equation 3,

$$Y = S \times \left(\frac{SD_{\text{subset}}}{100}\right)$$
Equation 4,

$$TDM = (LDM + CDM + Y + ADM)$$
 Equation 5,

$$HI = (Y/TDM)$$
 Equation 6,

where *S* is the total number of spikelets/seeds, *SF* is the air-dried fresh mass of all harvested spikelets/seeds at maturity, SF_{subset} is the fresh mass of the 100 spikelets/seeds subset, *Y* is the total yield (g), SD_{subset} is the dry mass of the 100 spikelets/seeds subset, *TDM* the total dry

matter (g), *LDM* the leaf dry mass (g), *CDM* the culm dry mass (g), *ADM* the awn dry mass (g), and *HI* the harvest index.

Germination trial

Forty seeds were randomly selected from each plant at the end of the experiment to give a total of 320 seeds from each species and each C_a . Seeds were sown equally between two trays (160 in each) containing the sand:compost mix described previously, returned to the controlled environment chambers and supplied with either the original growth C_a , or the alternative C_a . Carrying out this trial at both C_a levels allowed the direct effects of C_a to be distinguished from the indirect effects mediated via seed quality. Conditions in the CE chambers were the same as described for seed germination at the beginning of the experiment. For ten days, the number of germinated seeds from each species at each C_a was recorded, to determine the rate of germination and viability of seeds which had developed under the two different C_a levels.

Experimental design and statistical analysis

Because only two growth cabinets were available with a C_a scrubbing system, the trials for the C₃ and C₄ species were run in succession to give the desired growth conditions and level of replication. The two C₃ species were used in the first experiment and the two C₄ species in the second, and there were 16 representatives of each species, which gave eight replicates at each C_a level. All yield, phenology and germination measurements included all eight replicates, and six replicates were measured for gas exchange. All statistical analysis was carried out using the statistical computing package R (version 3.0.1, The R Foundation for Statistical Computing) with P = 0.05 as the critical level of significance. In all cases, the results show a minimum adequate model with all non-significant interaction terms eliminated (Crawley, 2005). For the components of yield, statistical significance of the C_a treatments was tested using a linear mixed effects model (lme) (Pinheiro & Bates, 2000), with species as a random effect, and tested for the effects of C_a , photosynthetic type and the interacting effects of C_a and photosynthetic type. Percentage data were arcsine-transformed before analysis. Although photosynthetic type was confounded with experiment (trial one vs. trial two) and growth conditions (photoperiod, temperature and VPD differences between experiments), it was included in the analysis to test the expectation that the yield response to C_a is smaller in C₄ than C₃ species, with the caveat that differences could also arise from environmental and random effects. Student's t-test was also used to test for the effect of C_a on the components of yield for individual species.

For photosynthetic parameters (A, g_s , $V_{c,max}$, J_{max} , k, V_T , l_s , WUE, C_i/C_a), ANOVA (aov) was used to test for the effect of C_a and growth stage and any interaction between the two in each species. Data were transformed if they did not meet the assumptions of ANOVA. The estimable function [(library(gmodels))] was then used to apply a contrast matrix to the data, which computes a significance value between the C_a treatments at each growth stage.

For the germination trials, data during the initial exponential phase of germination were log transformed and initial slopes calculated. Student's t-test was then used to compare the slopes for each species to investigate the effects of C_a on germination rate. To test the effects of C_a on viability, Student's t-test was performed for each species on the percentage of

seeds which had germinated at day ten under the two levels of C_a , after arcsine-transformation to ensure a normal distribution of errors.

Results

Components of yield

Yield of the C₃ and C₄ crop progenitors was affected by the C_a during growth (Fig. 1; $F_{1,58} =$ 157.5, P = <.001). Comparing the two photosynthetic types, yield increases were greater in the two C₃ species (CO₂× type: $F_{1,58} = 73.1$, P = <.001). Between glacial (18 Pa) and postglacial (27 Pa) C_a , the unthreshed yield of *T. boeoticum* increased by 48%, and *H. spontaneum* by 51% (Fig. 1a,b). In comparison, the two C₄ species showed small but still significant increases in seed yield of 10% for *P. miliaceum* and 15% for *S. viridis* (Fig. 1c,d).

In the C₃ crop progenitors, yields were partially influenced by the number of tillers produced by the plant and partially by the percentage which were fertile (Table 1). Between glacial and postglacial C_a , *T. boeoticum* showed a 35% increase in the number of tillers and, although *H. spontaneum* followed the same trend, the increase was not significant. Instead, the percentage of fertile tillers increased between 18 and 27 Pa C_a (Table 1). Neither the number of tillers nor the percentage that were fertile was affected by growth C_a in either of the C₄ crop progenitors.

Seed number responded significantly to growth C_a in both photosynthetic types (Table 1; $F_{1,58} = 7.2$, P = <.01). In the C₃ species, seed number increased by up to 45% between 18 Pa and 27 Pa C_a . Furthermore, there was a significant effect of growth C_a on the percentage of seeds that were viable (Table 1). In comparison, the two C₄ crop progenitors showed a lesser response of total seed number to C_a (Table 1; CO₂ × type: $F_{1,58} = 3.8$, P = <.05). For *S*.

viridis the increase was 15%, matching the change in yield, whilst for *P. miliaceum* there was no significant change in seed number (Table 1). For the C₃ progenitors, the disparity between increased yields and seed numbers can be explained by changes in seed size. Both showed a significant increase in seed size between 18 and 27 Pa C_a (Table 1). For the C₄ progenitors, increases in seed size between the two levels of C_a were smaller (CO₂ × type: $F_{1,58}$ = 13.8, *P* = <.001), and only significant for *P. miliaceum* (Table 1).

Total dry matter (TDM) responded strongly to growth C_a ($F_{1,58} = 148.1$, P = <.001), especially in the C₃ types, increasing by up to 44% in *H. spontaneum* (Table 1). *P. miliaceum* showed a smaller but significant increase in TDM. The ratio of harvested grain to total dry matter was positively affected by growth C_a (Table 1; $F_{1,58} = 5.1$, P = <.05). In the C₃ species harvest index increased by a maximum of 11% in *T. boeoticum*, whereas, for the two C₄ progenitors, there was no significant change (Table 1).

Gas exchange

Light-saturated rates of photosynthesis (A_{sat}) were affected by growth C_a at all developmental stages in the C₃ and, to a lesser extent, the C₄ species (Fig. 2a-d; Table 2). For the C₃ species at tillering, A_{sat} was up to 48% greater at 27 Pa compared 18 Pa C_a . Values of A_{sat} declined significantly at both C_a levels as the crops matured, and the decline at C_a 27 Pa was steeper than at 18 Pa, especially between flowering and grain filling (Fig. 2a,b; Table 2). Overall the average difference in A_{sat} between 18 and 27 Pa C_a over the three growth stages was 48%, and 55% for *T. boeoticum* and *H. spontaneum* respectively.

The two C₄ species showed a smaller response of A_{sat} to growth C_a (Fig. 2c,d; Table 2). At tillering in *P. miliaceum*, A_{sat} was 41% greater at 27 Pa compared to 18 Pa C_a . A_{sat} declined from tillering to grain filling, and the decline was greater at 27 Pa (Fig. 2c; Table 2).

three developmental stages.

Overall, the average C_a -mediated increase in A_{sat} from tillering to grain filling was 26% (Fig. 2c). *S. viridis* showed a markedly different response of A_{sat} to growth C_a (Fig. 2d). At tillering and flowering there was no significant difference in A_{sat} between 18 Pa and 27 Pa C_a . A_{sat} then declined, and the decline was faster at 27 Pa, leading to a significant difference in A_{sat} (Fig. 2d; Table 2). Overall, A_{sat} was on average 8% less in 27 compared with 18 Pa C_a , over the three developmental stages.

Stomatal conductance (g_s) was generally depressed at the higher growth C_a and the C₄ species responded more strongly than the C₃ species (Fig. 2e-h). The g_s declined with growth stage, but showed little response to growth C_a in either C₃ species, except during grain filling in *T. boeoticum* (Fig. 2e,f; Table 2). Furthermore, C_i/C_a did not differ between the growth C_a treatments in either of the C₃ species (Fig. 2i-j). In contrast, g_s in the C₄ species responded significantly to growth C_a and declined as the plants matured (Fig. 2g-h). In *P. miliaceum*, g_s remained 20-24% higher at 27 Pa C_a throughout the full growth period (Fig. 2g; Table 2). *S. viridis* demonstrated a differential response of g_s to C_a ; the g_s was higher at 18 Pa C_a and declined with plant age whilst, at 27 Pa, g_s did not alter from tillering to grain filling (Fig. 2h; Table 2). The C_i/C_a was less at 18 Pa than 27 Pa C_a in both C₄ species. In *P. miliaceum* C_i/C_a increased at 27 Pa, but remained at both levels of C_a whilst, in *S. viridis*, C_i/C_a increased at 27 Pa, but remained at both levels of C_a whilst, in *S. viridis*, C_i/C_a increased at 27 Pa, but remained uniform across all developmental stages at 18 Pa (Fig. 2k,l; Table 2).

These changes in g_s and A_{sat} combined to give large improvements in WUE (A_{sat}/g_s) with an increase in the growth C_a (Fig. 2m-p). In the C₃ species the improved WUE at 27 Pa was maintained throughout development and did not decline significantly at either C_a from tillering to grain filling (Fig. 2m,n; Table 2). The changes in WUE closely tracked the changes in A_{sat} , because g_s was constant throughout the full growth period and not influenced

A/C_i responses To further decipher whether acclimation was occurring in either photosynthetic type, the response of A to C_i was measured in all species at three developmental stages (Figs. 3&4). For both C₃ species, there was no evidence of acclimation (Fig. 3). The V_{cmax} declined significantly with developmental stage, but there was no response to growth C_a (Table 3). Similarly, J_{max} declined significantly during development, yet did not differ between 18 and 27 Pa C_a from tillering to grain filling (Table 3). The operating points at 18 Pa and 27 Pa C_a both sat on the initial slope of the A/C_i curve, explaining the strong response of A_{sat} to growth C_a (Figs. 2&3). The supply functions (l_s), which represent the limitation on A imposed by the stomata, differed between growth C_a , apart from at grain filling (Table 3).

> The C₄ subtypes demonstrated some evidence of acclimation. P. miliaceum showed a small but significant response of the initial slope (k) of the A/C_i curve to growth C_a . The k was 14% and 25% greater at 18 Pa compared to 27 Pa C_a at tillering and anthesis respectively (Fig. 4; Table 3). However, the saturated rate (V_T) of the A/C_i curve did not respond to growth $C_{\rm a}$ at any developmental stage (Table 3). The operating point at 18 Pa lay on the initial slope, showing that A was not saturated at the lower C_a , also causing a significant increase in stomatal limitation (Fig. 4; Table 3). Over time, the operating points moved towards the inflexion point of the curve, explaining the diminished response of A to C_a at later

> photosynthetic efficiency of C₄ leaves (Fig. 20,p). In P. miliaceum, WUE was significantly higher at 27 Pa C_a and did not decline with maturity at either level of C_a (Fig. 2o; Table 2). S. viridis showed the largest variation in the response of WUE to C_a ; WUE was significantly greater at 27 Pa, then declined rapidly at anthesis (Fig. 2p; Table 2).

> by C_a . The two C_4 species had a greater WUE than the C_3 species due to the higher

developmental stages (Fig. 2). *S. viridis* displayed a stronger acclimation response, with both k and V_T affected by growth C_a at most developmental stages (Fig. 4d-e; Table 3). The k responded to C_a with increasing strength as the plant aged, differing by 20% at tillering and 66% at grain filling between 27 and 18 Pa (Fig. 4d-e; Table 3). V_T also showed a maximum difference at grain filling, increasing by 26% between 18 and 27 Pa C_a . Differences in l_s were only seen at tillering, with values of 6.2 % at 27 Pa and 16.1 % at 18 Pa (Table 3).

Germination rate and seed viability

Germination rate and viability of seeds were significantly lower in the C₃ species grown under glacial C_a (Fig. 5a,b). For both C₃ species, the rate of seed germination was reduced in seeds collected from plants grown in 18 Pa C_a . In *T. boeoticum*, the reduced rate of germination at 18 Pa meant that, at the end of the germination trial, approximately 25% more seeds had germinated when collected from plants grown at postglacial C_a than seeds collected from plants grown under glacial C_a (Fig. 5a; t_{14} =4.6, P=<.001). Similarly, for *H. spontaneum*, the viability of seeds was significantly reduced at the 18 Pa C_a , with 37% more seeds germinating by the end of the trial from plants developed at postglacial C_a (Fig. 5b; t_{14} =2.1, P=<.05).

In comparison, plants of the C₄ photosynthetic type showed little or no effect of C_a on germination rate and seed viability (Fig. 5c,d). In *P. miliaceum*, the initial rate of germination was significantly slower in seeds collected from plants grown at 18 Pa than 27 Pa C_a (Fig. 5c; t_{14} =2.5, P=<.05), but there was no overall effect of C_a on seed viability.

Discussion

Postglacial C_a increased grain yield in the wild progenitors of C_3 and C_4 crops.

An increase in C_a from glacial to post-glacial levels significantly enhanced the yield of both C₃ and C₄ crop progenitors, the response being much larger in the C₃ species. This supports the CO₂ limitation hypothesis of Sage (1995), suggesting that plant yields were significantly reduced during the last glacial period. Our data for C₃ species are in agreement with Sage (1995) who predicted 30-50% increases in seed yield with the post-glacial rise in C_a , and with experimental evidence from other C₃ plants grown at sub-ambient levels of C_a (Dippery *et al.*, 1995; Gifford, 1977; Mayeux *et al.*, 1997).

A recent study by Piperno *et al.* (2015), the first to measure the effects of glacial CO₂ on seed yield of a C₄ crop progenitor, found substantial reductions in productivity in the wild ancestor of maize (*Zea mays* ssp. *parviglumis*) when grown at late-glacial (~20 Pa) compared to early Holocene (~26 Pa) and modern day levels (up to 41 Pa) of C_a . Specifically, in early Holocene conditions, seed yield increased by 180% over that in late-glacial conditions. These changes in seed yield are more pronounced than those measured in our study. However, the authors simultaneously altered temperatures alongside the different C_a treatments, as temperatures in the late-glacial period were typically 4-5 °C cooler than today (Hodell *et al.*, 2008, Piperno *et al.*, 2007). For this reason, the effects of C_a on yield in our experiment are likely to be conservative.

Increases in the grain yield of C_3 species resulted from a greater seed number and seed mass, an increase in tiller number and a greater proportion of fertile tillers. These data agree with previous studies which showed that increases in grain number (Mayeux *et al.*, 1997), tillering (Gifford, 1977; Polley *et al.*, 1992; Sionit *et al.*, 1981) and grain size

(Campbell *et al.*, 2005; Sionit *et al.*, 1981) may all be involved in the yield responses of C_3 cereals to increased C_a at both sub-ambient and future levels. In the C_4 species, grain yield was controlled by small increases in seed number (*S. viridis*) and seed size (*P. miliaceum*) between glacial and post-glacial C_a , with no changes in tiller number. Increased kernel number per head has been recognised in C_4 sorghum at elevated C_a (Ottman *et al.*, 2001) and this may explain the yield increases in *S. viridis*. In agreement with the data for *P. miliaceum*, kernel weight also increased in sorghum under elevated C_a (Ottman *et al.*, 2001). However, the 2.5% increase in individual seed weight we found does not match the total yield increase (10%). It is possible that small but non-significant increases in tiller and grain number explain this disparity.

Effect of glacial C_a on seed germination and viability

Seed quality and germination are critical factors for sustainable yield production and species persistence. In our study we found diminished germination and viability in seeds which developed under glacial C_a . Earlier studies have predominately looked at the germination of seeds collected from plants which completed their lifecycle under elevated C_a . Results are variable; often germination is both slower and lower (Andalo *et al.*, 1996; Bezemer & Jones, 2012), but sometimes it increases (Barnes *et al.*, 1997; Edwards *et al.*, 2001), or shows no change (Huxman *et al.*, 1998; Steinger *et al.*, 2000). It appears that the response of seed traits to elevated C_a differs between functional groups and species; the effect is stronger in non-legumes and generally absent in C₄ species (Jablonski *et al.*, 2002).

Lower germination at elevated C_a is often attributed to an increased C/N ratio, which leads to a decrease in seed protein and a reduction in the ability of the seed to supply the amino acids required for protein synthesis during embryo growth in the germinating seed

(Andalo *et al.*, 1996; Hampton *et al.*, 2013; Jablonski *et al.*, 2002; Steinger *et al.*, 2000). In our study we did not carry out chemical analyses of the seeds. However, Grünzweig & Dumbur (2012) showed that the seeds of grasses grown at sub-ambient levels C_a had higher protein content than those grown at elevated levels, so it is possible that there is a negative relationship between protein content and C_a . We did however see significant effects on seed size, with seeds developed under glacial C_a generally being of reduced weight

Lower seed weight may have contributed in part to the slower germination rates and reduced viability of seeds from both C₃ species which had developed under glacial C_a . Campbell *et al.* (2005) reported similar effects in *Nicotiana tabacum* seeds from plants grown at 10 Pa and 15 Pa, finding that seeds were 14% smaller and had 22% lower germination rates at the lower level of C_a . Dippery *et al.* (1995) found the most extreme response; in the C₃ annual *A. theophrasti*, reproductive output was reduced to zero at a C_a of 15 Pa due to the abortion of all floral buds. In the C₄ species, only *P. miliaceum* showed any impact of glacial C_a , and the viability of seeds was not reduced, whereas the rate of seed germination was slower. Slower seed germination expands the period of seedling establishment, which is one of the most vulnerable points of a plant's life cycle. The lengthening of this period under low C_a would greatly increase the time during which an episodic stress event could impact the seedling (Campbell *et al.*, 2005; Sage & Coleman, 2001).

Atmospheric C_a as a selective agent on plant populations

One caveat to our study is that plants were only grown for a single generation. Given the long duration of sub-ambient levels of C_a over geological time, strong selection pressures must have been exerted. Ward *et al.*(2000) found that biomass production was increased by 35% in *A. thaliana* after only 5 generations of growth at a C_a of 20 Pa, due to an increase in the

length of the lifecycle, resulting in a longer period of biomass accumulation before senescence. The modern day genotypes used in our study may therefore be more sensitive to sub-ambient levels of C_a and may not truly reflect the historical conditions where plants adapted and underwent genetic changes to deal with the reduced availability of atmospheric C_a (Gerhart & Ward, 2010; Ward, 2005; Ward *et al.*, 2000).

Contribution of photosynthesis to the yield response

Values of A_{sat} were limited by glacial C_a in both the C₃ and C₄ species, with a more pronounced effect in C₃ leaves, as expected. Values of A_{sat} were approximately 50% greater at post-glacial C_a in both *H. spontaneum* and *T. boeoticum*. The enhancement of A_{sat} is consistent with other studies at sub-ambient C_a (Polley *et al.*, 1992; Tissue *et al.*, 1995) and was closely correlated with the increase in yield, showing that increases in *A* are directly translated into yield at sub-ambient levels of C_a (Sage, 1995).

Of the C₄ species, only *P. miliaceum* showed a significant positive response of A_{sat} to C_a at sub-ambient levels. During tillering, the difference was substantial, with a 40% increase in A_{sat} between 18 and 27 Pa, showing that C₄ plants can respond very sensitively to changes in C_a at sub-ambient levels because their photosynthetic system may not be CO₂-saturated (Anderson *et al.*, 2001, Cunniff *et al.*2008; Johnson *et al.*, 1993; Pinto *et al.*, 2014; Wand *et al.*, 1999; Ziska & Bunce, 1997).

No acclimation responses occurred in either of the C₃ species growing at glacial C_a , in agreement with earlier studies finding no evidence of photosynthetic adjustment (Maherali *et al.*, 2002; Sage, 1994; Sage & Coleman, 2001; Sage & Reid, 1992; Tissue *et al.*, 1995). However, this finding conflicts with that of Ripley *et al.* (2013) who showed that the C₃

to higher levels of C_a .

subspecies of *Alloteropsis semialata* acclimated to glacial C_a via the physiological upregulation of $V_{c,max}$, J_{max} , and g_s linked to increased nitrogen concentration in leaves. Our experiment was performed in large pots (10 l), which may impose some sink limitation due to root restriction (Arp, 1991), whilst experiments in a field system have demonstrated upregulation of A at sub-ambient levels of C_a (Anderson *et al.*, 2001). Furthermore, our experiment did not include an ambient or elevated level of C_a so it is unknown whether the two sub-ambient levels (18 Pa and 27 Pa) would show an acclimatory response if compared to higher levels of C_a .

The lack of acclimation could be related to the light levels of the controlled environment chambers, which were lower than the maxima these crops would have experience in the field. However, photosynthesis has been shown to acclimate to elevated C_a even when plants are grown under light-limited conditions (Osborne *et al.*, 1997; Osborne *et al.*, 1998). Generally, plants are stimulated more by an increase in C_a if grown under light limiting conditions (Kirschbaum & Lambie, 2015) and this response is also recognised in vines grown at sub-ambient levels of C_a (Granados & Körner, 2002).

Interestingly, the response of the C₄ species suggested that some acclimation was occurring at the glacial level of C_a . Previous work has shown that acclimation to C_a in C₄ plants is largely absent unless resources are limited, and this is true for both sub-ambient and elevated C_a studies (Ainsworth & Rogers, 2007; Sage, 1994; Wand *et al.*, 1999). However, some small adjustments in photosynthetic capacities have been previously reported at subambient C_a . For example, Anderson *et al.* (2001) observed greater PEP carboxylase capacity in the C₄ perennial grass *Bothriochola ischaemum* across a sub-ambient gradient of C_a . Similarly, Pinto *et al.* (2014) recognised the up-regulation of C₄ decarboxylase enzymes in several C₄ grasses grown at 18 Pa compared to 40 Pa C_a . Stomatal conductance was significantly higher at glacial C_a , for both C₄ crops in our study, however this did not increase the C_i/C_a ratio. In fact, the opposite pattern was seen, suggesting that stomatal acclimation did not occur (Sage, 1994). In this study, A was C_a -limited in the C₄ grasses at glacial levels, whilst at the postglacial level it was more C_a -saturated, consistent with previous work which showed no increase in A between postglacial and ambient C_a (Cunniff *et al.*, 2008).

Effect of glacial C_a on plant water relations

Growth at post-glacial C_a caused significant reductions in g_s in the C₄ species at all developmental stages, signifying a decrease in the use of water at the leaf scale. However, the same response was not seen in the C₃ species. As photosynthesis is not CO₂-saturated at either the glacial or postglacial levels, then g_s may remain unchanged to ensure that carbon is not limiting for growth.

Increases in WUE were found in both C_3 and C_4 crop species. Improved WUE is one of the most consistent effects of rising C_a in both C_3 and C_4 species at both sub-ambient and future levels (e.g. Conley *et al.*, 2001; Garcia *et al.*, 1998; Maroco *et al.*, 1999; Polley *et al.*, 1993, 1996). Lower g_s and increased WUE at post-glacial C_a can extend the period for positive carbon gain and contribute to increased yield, and this has been demonstrated in these crops previously. Cunniff *et al.* (2016) showed that, over a normal soil drying cycle between watering events, higher g_s and increased leaf transpiration (E_{leaf}) at glacial C_a led to decreased plant water status, which then fed-back to cause stomatal closure that negatively impacted *A*. Conversely, at post-glacial C_a , g_s and *A* were maintained through the full drying cycle. This indirect response of g_s to C_a mediated by plant water status has been reported in a large range of field and pot studies in both C_3 and C_4 species, and is an important mechanism by which plants growing at elevated C_a can attain significant biomass during periods of episodic water deficit (Leakey *et al.*, 2004; Samarakoon & Gifford, 1996; Vu & Allen 2009; Wall, 2001; Wall *et al.*, 2001). Though these stimulations of *A* may be infrequent, they can accumulate to give significant growth enhancements by the end of the growth season. Furthermore, it has been demonstrated that in natural grasslands, especially those of C₄ species, water deficits occur frequently (Owensby *et al.*, 1997). These results have added significance when set against the globally drier climate of the last glacial period (Robinson *et al.*, 2006, Yung *et al.*, 1996).

Implications of the glacial environment for agriculture

These results add significant support to Sage's (1995) hypothesis that the low level of C_a in the Pleistocene was a limiting factor in the successful establishment of agriculture. The low level of C_a not only affects the vegetative biomass, but translates to significantly smaller grain yields in C₄ as well as C₃ species, albeit to a lesser extent in the former. Further climatic interactions, including lower temperatures and less rainfall during the glacial period would have likely exacerbated these yield reductions. Climate change records for western Asia from 25,000 to 5,000 years ago show that the last glacial maximum (LGM) [23,000-19,000 calendar years before present (cal yrs BP)] was colder (in some records predicted to be 5 °C less) and more arid (with some sources predicting 50% less rainfall) (Robinson *et al.*, 2006). Furthermore, it is predicted that, globally, the strength of the hydrological cycle in the late Pleistocene was about half of that at present (Yung *et al.*, 1996). Primary production may have been unstable and haphazard, making foraging difficult, and attempts to specialise on a limited crop base would have been risky (Cowling & Sage, 1998; Sage, 1995). However, once C_a increased and the climate ameliorated as the glacial period waned, a suite of physiological improvements would have increased productivity and reduced the risk of a

failed harvest, making specialization a viable alternative to broad-spectrum exploitation, thereby enabling the development of agriculture (Richerson *et al.*, 2001).

Acknowledgements

We thank the University of Sheffield for providing a postgraduate scholarship to Jennifer Cunniff, and technical support for developing and maintaining the sub-ambient CO_2 system. We are grateful to the Genebank at the Institute of Plant Genetics and Crop Plant Research (IPK) in Gatersleben for providing seeds.

References

- Abbo S, Lev-Yadun S, Gopher A (2011) Origin of Near Eastern plant domestication: homage to Claude Levi-Strauss and "La Pensee Sauvage". Genetic Resources and Crop Evolution, 58, 175-179.
- Abbo S, Lev-Yadun S, Gopher A (2014a) The human mind as a common denominator in plant domestication. Journal of Experimental Botany,**65**, 1917-1920.
- Abbo S, Van-Oss RP, Gopher A, Saranga Y, Ofner R, Peleg Z (2014b) Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends in Plant Science, 19, 351-360.
- Ainsworth EA, Davey PA, Hymus GJ, Drake BG, Long SP (2002) Long-term response of photosynthesis to elevated carbon dioxide in a Florida scrub-oak ecosystem. Ecological Applications, 12, 1267-1275.
- Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO₂ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytologist, **165**, 351-371.

Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising CO₂ : mechanisms and environmental interactions. Plant Cell and Environment, **30**, 258-270.

- Allen LH, Bisbal EC, Boote KJ, Jones PH (1991) Soybean dry matter allocation under subambient and superambient levels of carbon dioxide. Agronomy Journal,83, 875-883.
- Andalo C, Godelle B, Lefranc M, Mousseau M, Till-Bottraud I (1996) Elevated CO₂
 decreases seed germination in *Arabidopsis thaliana*. Global Change Biology, 2, 129-135.
- Anderson LJ, Maherali H, Johnson HB, Polley HW, Jackson RB (2001) Gas exchange and photosynthetic acclimation over subambient to elevated CO₂ in a C₃-C₄ grassland.
 Global Change Biology, 7, 693-707.
- Arp WJ (1991) Effects of source-sink relations on photosynthetic acclimation to elevated CO₂. Plant Cell and Environment, **14**, 869-875.
- Baker JT, Allen LH, Boote KJ (1990) Growth and yield responses of rice to carbon dioxide concentration. The Journal of Agricultural Science, 115, 313-320.
- Barnes DJ, Bettarini I, Polle A *et al.* (1997) The impact of elevated CO₂ on growth and photosynthesis in *Agrostis canina* L. ssp. *monteluccii* adapted to contrasting atmospheric CO₂ concentrations. Oecologia, **110**, 169-178.
- Bender B (1978) Gatherer-hunter to farmer social-perspective. World Archaeology, **10**, 204-222.
- Bettinger R, Richerson P, Boyd R (2009) Constraints on the development of agriculture. Current Anthropology, **50**, 627-631.

- Blumler MA (1996) Ecology, evolutionary theory and agricultural origins. In: *The Origins* and Spread of Agriculture and Pastoralism in Eurasia. (ed Harris DR) pp 25-49.
 London, UCL press.
- Byrne R (1987) Climate Change and the Origins of Agriculture. In: Studies in the Neolithic and Urban Revolutions: the V. Gordon Childe Colloquium Mexico, 1986. (ed Manzanilla L) pp 21-34. Oxford, Archaeopress.
- Campbell CD, Sage RF, Kocacinar F, Way DA (2005) Estimation of the whole-plant CO₂ compensation point of tobacco (*Nicotiana tabacum* L.). Global Change Biology, **11**, 1956-1967.
- Cohen MN (1977) The Food Crisis in Prehistory: Overpopulation and the Origins of Agriculture, New Haven, Yale University Press.

Cohen MN (2009) Introduction: Rethinking the origins of agriculture. Current Anthropology, **50**, 591-595.

- Colledge S (1998) Identifying pre-domestication cultivation using multivariate analysis. In: *The origins of agriculture and crop domestication.* (eds Damania AB, Valkoun J, Willcox G, Qualset CO) pp 121-131. Aleppo, ICARDA.
- Conley MM, Kimball BA, Brooks TJ *et al.* (2001) CO₂ enrichment increases water-use efficiency in sorghum. New Phytologist, **151**, 407-412.
- Cowling SA, Sage RF (1998) Interactive effects of low atmospheric CO₂ and elevated temperature on growth, photosynthesis and respiration in *Phaseolus vulgaris*. Plant Cell and Environment, **21**, 427-435.

Crawley MJ (2005) Statistics. An introduction using R., Chichester, John Wiley & Sons Ltd.

Cunniff J, Charles M, Jones G, Osborne CP (2016) Reduced plant water status under subambient pCO_2 limits plant productivity in the wild progenitors of C₃ and C₄ cereals. Annals of Botany (in press).

- Cunniff J, Osborne CP, Ripley BS, Charles M, Jones G (2008) Response of wild C₄ crop progenitors to subambient CO₂ highlights a possible role in the origin of agriculture.
 Global Change Biology, 14, 576-587.
- Darwin CR (1875) The variation of animals and plants under domestication, London, John Murray.
- Dippery JK, Tissue DT, Thomas RB, Strain BR (1995) Effects of low and elevated CO₂ on C₃ and C₄ annuals. Oecologia, **101**, 13-20.
- Duzen H, Aydin H (2012) Sunshine-based estimation of global solar radiation on horizontal surface at Lake Van region (Turkey). Energy Conversion and Management, **58**, 35-46.
- Edwards G, Clark H, Newton P (2001) The effects of elevated CO₂ on seed production and seedling recruitment in a sheep-grazed pasture. Oecologia, **127**, 383-394.
- Evans LT (1993) Crop Evolution, Adaptation and Yield, Cambridge, Cambridge University Press.
- Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, **33**, 317-345.
- Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the old world. Annals of Botany, **100**, 903-924.

Fuller DQ, Willcox G, Allaby RG (2012) Early agricultural pathways: moving outside the 'core area' hypothesis in Southwest Asia. Journal of Experimental Botany,63, 617-633. Garcia RL, Long SP, Wall GW *et al.* (1998) Photosynthesis and conductance of spring-wheat leaves: field response to continuous free-air atmospheric CO₂ enrichment. Plant Cell and Environment, **21**, 659-669.

- Gerhart LM, Ward JK (2010) Plant responses to low CO₂ of the past. New Phytologist, **188**, 674-695.
- Gesch RW, Vu JCV, Boote KJ, Allen LH, Bowes G (2000) Subambient growth CO₂ leads to increased Rubisco small subunit gene expression in developing rice leaves. Journal of Plant Physiology, **157**, 235-238.
- Gifford RM (1977) Growth pattern, carbon dioxide exchange and dry weight distribution in wheat growing under differing photosynthetic environments. Australian Journal of Plant Physiology,**4**, 99-110.
- Granados J, Körner C (2002) In deep shade, elevated CO₂ increases the vigor of tropical climbing plants. Global Change Biology,**8**, 1109-1117.
- Grünzweig JM, Dumbur R (2012) Seed traits, seed-reserve utilization and offspring performance across pre-industrial to future CO₂ concentrations in a Mediterranean community. Oikos, **121**, 579-588.
- Hampton JG, Boelt B, Rolston MP, Chastain TG (2013) Effects of elevated CO₂ and temperature on seed quality. The Journal of Agricultural Science, **151**, 154-162.
- Harlan JR (1992) *Crops and Man*, Madison, Wisconsin., American Society of Agronomy and Crop Science Society of America.
- Hatch MD (1987) C₄ photosynthesis a unique blend of modified biochemistry, anatomy and ultrastructure. Biochimica Et Biophysica Acta,**895**, 81-106.
- Hodell DA, Anselmetti FS, Ariztegui D *et al.* (2008) An 85-ka record of climate change in lowland Central America. Quaternary Science Reviews, **27**, 1152-1165.

Huxman ET, Hamerlynck PE, Jordan ND, Salsman JK, Smith DS (1998) The effects of parental CO₂ environment on seed quality and subsequent seedling performance in *Bromus rubens*. Oecologia,**114**, 202-208.

- Ivandic V, Hackett CA, Zhang ZJ, Staub JE, Nevo E, Thomas WTB, Forster BP (2000) Phenotypic responses of wild barley to experimentally imposed water stress. Journal of Experimental Botany, **51**, 2021-2029.
- Jablonski LM, Wang X, Curtis PS (2002) Plant reproduction under elevated CO₂ conditions: a meta-analysis of reports on 79 crop and wild species. New Phytologist, **156**, 9-26.
- Johnson HB, Polley HW, Mayeux HS (1993) Increasing CO₂ and plant-plant interactions effects on natural vegetation. Vegetatio, **104**, 157-170.
- Jouzel J, Barkov NI, Barnola JM *et al.* (1993) Extending the Vostok ice-core record of paleoclimate to the penultimate glacial period. Nature,**364**, 407-412.
- Kimball BA (1983) Carbon-dioxide and agricultural yield an assemblage and analysis of430 prior observations. Agronomy Journal, 75, 779-788.
- Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO₂ enrichment. Advances in Agronomy,**77**, 293-368.
- Kirschbaum MUF, Lambie SM (2015) Re-analysis of plant CO₂ responses during the
 exponential growth phase: interactions with light, temperature, nutrients and water availability. Functional Plant Biology, 42, 989-1000.
- Larson G, Piperno DR, Allaby RG *et al.* (2014) Current perspectives and the future of domestication studies. Proceedings of the National Academy of Sciences, **111**, 6139-6146.
- Leakey ADB (2009) Rising atmospheric carbon dioxide concentration and the future of C₄ crops for food and fuel. Proceedings of the Royal Society B, 2333-2343.

Leakey ADB, Bernacchi CJ, Dohleman FG, Ort DR, Long SP (2004) Will photosynthesis of maize (*Zea mays*) in the US Corn Belt increase in future CO₂ rich atmospheres? An analysis of diurnal courses of CO₂ uptake under free-air concentration enrichment (FACE). Global Change Biology, **10**, 951-962.

- Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006) Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO₂ concentration in the absence of drought. Plant Physiology, **140**, 779-790.
- Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort DR (2006) Food for thought: Lower-than-expected crop yield stimulation with rising CO₂ concentrations. Science,**312**, 1918-1921.
- Maherali H, Reid CD, Polley HW, Johnson HB, Jackson RB (2002) Stomatal acclimation over a subambient to elevated CO₂ gradient in a C₃/C₄ grassland. Plant Cell and Environment, **25**, 557-566.
- Manderscheid R, Erbs M, Weigel HJ (2014) Interactive effects of free-air CO₂ enrichment and drought stress on maize growth. European Journal of Agronomy,**52**, 11-21.
- Maroco JP, Edwards GE, Ku MSB (1999) Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. Planta,**210**, 115-125.
- Mayeux H, Johnson H, Polley W, Malone S (1997) Yield of wheat across a subambient carbon dioxide gradient. Global Change Biology, **3**, 269-278.
- Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nature Reviews Genetics, **14**, 840-852.
- Osborne CP, Drake BG, Laroche J, Long SP (1997) Does long-term elevation of CO₂ concentration increase photosynthesis in forest floor vegetation? (Indiana Strawberry in a Maryland Forest). Plant Physiology,**114**, 337-344.

- Osborne CP, Laroche J, Garcia RL *et al.* (1998) Does leaf position within a canopy affect acclimation of photosynthesis to elevated CO₂? Analysis of a wheat crop under Free-Air CO₂ Enrichment. Plant Physiology,**117**, 1037-1045.
- Ottman MJ, Kimball BA, Pinter PJ *et al.* (2001) Elevated CO₂ increases sorghum biomass under drought conditions. New Phytologist, **150**, 261-273.
- Owensby CE, Ham JM, Knapp AK, Bremer D, Auen LM (1997) Water vapour fluxes and their impact under elevated CO₂ in a C4-tallgrass prairie. Global Change Biology,**3**, 189-195.
- Petit JR, Jouzel J, Raynaud D *et al.* (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, **399**, 429-436.
- Pinheiro JC, Bates DM (2000) Mixed-Effects Models in S and S-PLUS, New York, Springer-Verlag.
- Pinto H, Sharwood RE, Tissue DT, Ghannoum O (2014) Photosynthesis of C₃, C₃-C₄, and C₄ grasses at glacial CO₂. Journal of Experimental Botany,**65**, 3669-3681.
- Piperno DR (2006) The Origins of Plant Cultivation and Domestication in the Neotropics: A behavioral ecological perspective. In: *Behavioral Ecology and the Transition to Agriculture*. (eds Kennett DJ, Winterhalder B) pp 137-166. University of California Press, Ltd.
- Piperno DR (2011) The origins of plant cultivation and domestication in the New World tropics patterns, process, and new developments. Current Anthropology,**52**, S453-S470.
- Piperno DR, Dillehay TD (2008) Starch grains on human teeth reveal early broad crop diet in northern Peru. Proceedings of the National Academy of Sciences, **105**, 19622-19627.

Piperno DR, Holst I, Winter K, Mcmillan O (2015) Teosinte before domestication:Experimental study of growth and phenotypic variability in Late Pleistocene and earlyHolocene environments. Quaternary International, 363, 65-77.

- Piperno DR, Moreno JE, Iriarte J *et al.* (2007) Late Pleistocene and Holocene environmental history of the Iguala Valley, Central Balsas Watershed of Mexico. Proceedings of the National Academy of Sciences, **104**, 11874-11881.
- Polley HW, Johnson HB, Marino BD, Mayeux HS (1993) Increase in C₃ plant water use efficiency and biomass over glacial to present CO₂ concentrations. Nature, **361**, 61-64.
- Polley HW, Johnson HB, Mayeux HS (1992) Growth and gas-exchange of oats (*Avena sativa*) and wild mustard (*Brassica kaber*) at subambient CO₂ concentrations.
 International Journal of Plant Sciences, **153**, 453-461.
- Polley HW, Johnson HB, Mayeux HS, Brown DA, White JWC (1996) Leaf and plant water use efficiency of C₄ species grown at glacial to elevated CO₂ concentrations. International Journal of Plant Sciences,**157**, 164-170.
- Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature, **457**, 843-848.
- Purugganan MD, Fuller DQ (2011) Archaeological data reveal slow rates of evolution during plant domestication. Evolution, **65**, 171-183.
- Richerson PJ, Boyd R, Bettinger RL (2001) Was agriculture impossible during the Pleistocene but mandatory during the Holocene? A climate change hypothesis. American Antiquity, 66, 387-411.
- Rindos D (1984) The Origins of Agriculture: An Evolutionary Perspective, New York, Academic Press.

Ripley BS, Cunniff J, Osborne CP (2013) Photosynthetic acclimation and resource use by the C₃ and C₄ subspecies of *Alloteropsis semialata* in low CO₂ atmospheres. Global Change Biology, **19**, 900-910.

- Robinson SA, Black S, Sellwood BW, Valdes PJ (2006) A review of palaeoclimates and palaeoenvironments in the Levant and Eastern Mediterranean from 25,000 to 5000 years BP: setting the environmental background for the evolution of human civilisation. Quaternary Science Reviews, **25**, 1517-1541.
- Sage RF (1994) Acclimation of photosynthesis to increasing atmospheric CO₂: The gas exchange perspective. Photosynthesis Research, **39**, 351-368.
- Sage RF (1995) Was low atmospheric CO₂ during the Pleistocene a limiting factor for the origin of agriculture? Global Change Biology, **1**, 93-106.
- Sage RF, Coleman JR (2001) Effects of low atmospheric CO₂ on plants: more than a thing of the past. Trends in Plant Science, **6**, 18-24.
- Sage RF, Reid CD (1992) Photosynthetic acclimation to sub-ambient CO₂ (20 pa) in the C₃ annual *Phaseolus vulgaris* L. Photosynthetica, 27, 605-617.
- Samarakoon AB, Gifford RM (1996) Elevated CO₂ effects on water use and growth of maize in wet and drying soil. Australian Journal of Plant Physiology, **23**, 53-62.
- Sionit N, Strain BR, Hellmers H (1981) Effects of different concentrations of atmospheric CO₂ on growth and yield components of wheat. Journal of Agricultural Science,**97**, 335-339.
- Steinger T, Gall R, Schmid B (2000) Maternal and direct effects of elevated CO₂ on seed provisioning, germination and seedling growth in *Bromus erectus*. Oecologia, **123**, 475-480.
- Tissue DT, Griffin KL, Thomas RB, Strain BR (1995) Effects of low and elevated CO₂ on C₃ and C₄ annuals .2. photosynthesis and leaf biochemistry. Oecologia, **101**, 21-28.

- Von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, **153**, 376-387.
- Vu JCV, Allen LH (2009) Growth at elevated CO₂ delays the adverse effects of drought stress on leaf photosynthesis of the C₄ sugarcane. Journal of Plant Physiology, 166, 107-116.
- Wall GW (2001) Elevated atmospheric CO₂ alleviates drought stress in wheat. Agriculture, Ecosystems & Environment, 87, 261-271.
- Wall GW, Brooks TJ, Adam NR *et al.* (2001) Elevated atmospheric CO₂ improved *Sorghum* plant water status by ameliorating the adverse effects of drought. New Phytologist, **152**, 231-248.
- Wand SJE, Midgley GF, Jones MH, Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO₂ concentration: a meta-analytic test of current theories and perceptions. Global Change Biology,**5**, 723-741.
- Wang W, Liao Y, Wen X, Guo Q (2013) Dynamics of CO₂ fluxes and environmental responses in the rain-fed winter wheat ecosystem of the Loess Plateau, China. Science of The Total Environment, **461–462**, 10-18.
- Ward JK, Kelly JK (2004) Scaling up evolutionary responses to elevated CO₂: lessons from *Arabidopsis*. Ecology Letters, **7**, 427-440.
- Ward JK, Strain BR (1997) Effects of low and elevated CO₂ partial pressure on growth and reproduction of *Arabidopsis thaliana* from different elevations. Plant, Cell & Environment, **20**, 254-260.
- Ward KJ (2005) Evolution and growth of plants in a low CO₂ World. In: A history of atmospheric CO₂ and its effects on plants, animals, and ecosystems. (eds Ehleringer JR, Cerling TE, Dearing MD) pp 232-257. New York, USA, Springer.

- Ward KJ, Antonovics J, Thomas BR, Strain RB (2000) Is atmospheric CO₂ a selective agent on model C₃ annuals? Oecologia, **123**, 330-341.
- Weiss E, Kislev ME, Hartmann A (2006) Autonomous cultivation before domestication. Science,**312**, 1608-1610.
- Willcox G (2005) The distribution, natural habitats and availability of wild cereals in relation to their domestication in the Near East: multiple events, multiple centres. Vegetation History and Archaeobotany, 14, 534-541.
- Willcox G, Fornite S, Herveux L (2008) Early Holocene cultivation before domestication in northern Syria. Vegetation History and Archaeobotany, 17, 313-325.
- Yung YL, Lee T, Wang CH, Shieh YT (1996) Dust: A diagnostic of the hydrologic cycle during the last glacial maximum. Science, **271**, 962-963.
- Ziska LH, Bunce JA (1997) Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C₄ crops and weeds. Photosynthesis Research, **54**, 199-208.
- Ziska LH, Namuco O, Moya T, Quilang J (1997) Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature. Agronomy Journal,89, 45-53.
- Zohary D, Hopf M, Weiss E (2012) *Domestication of Plants in the Old World*, Oxford, Oxford University Press.

Figure legends

Figure 1. Total yield of the C₃ species (a) *T. boeoticum* and (b) *H. spontaneum*, and the C₄ species (c) *P. miliaceum* and (d) *S. viridis*, grown at C_a of 18 Pa (filled bar) and 27 Pa (open bar). Data are means +SE of eight replicates. Significance codes are ***= <.001, *=<.05.

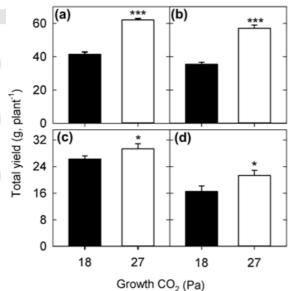
Figure2. Light-saturated rates of photosynthesis (A_{sat} [a-d]), Stomatal conductance (g_s [e-h]), C_i/C_a (i-l) and water-use efficiency (WUE [m-p]), at three developmental stages; tillering, anthesis and grain filling for the C₃ species (a, e, i, m) *T. boeoticum* and (b, f, j, n) *H. spontaneum*, and the C₄ species (c, g, k, o) *P. miliaceum* and (d, h, l, p) *S .viridis*, grown at C_a of 18 Pa (closed circles) and 27 Pa (open circles). Data are means +SE of six replicates. Significance codes are ***= <.001, **=<.01 and *=<.05.

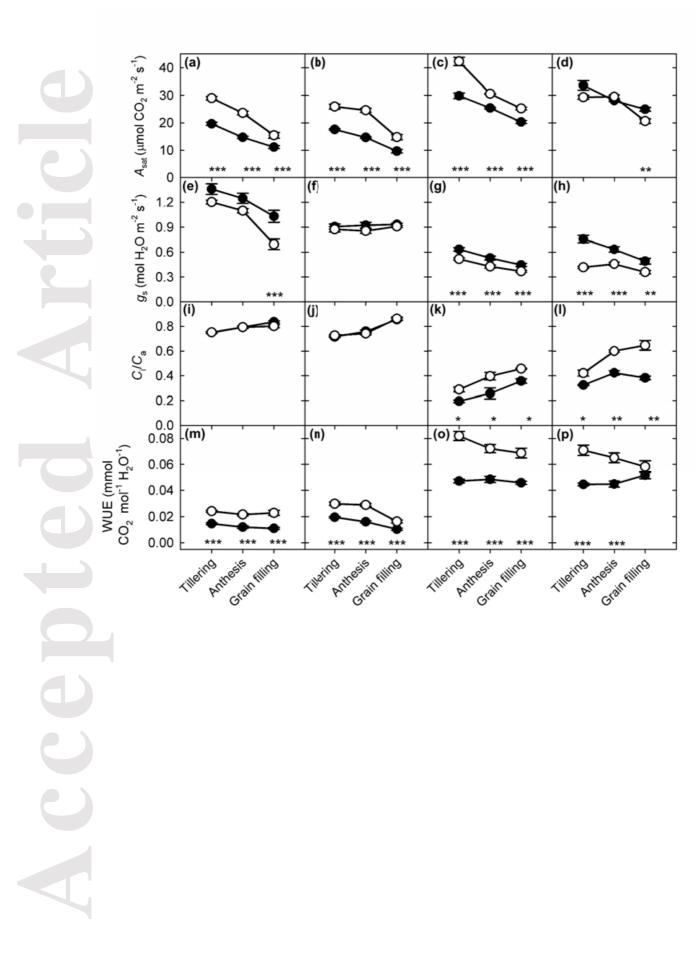
Figure 3. A/C_i responses for the C₃ species, *T. boeoticum* at (a) tillering, (b) anthesis, and (c) grain filling and *H. spontaneum* at (d) tillering, (e) anthesis, and (f) grain filling, grown at C_a of 18 Pa (closed circles) and 27 Pa (open circles). The square symbols (18 Pa closed, and 27 Pa open) are the photosynthetic rates when C_a was equal to the value used for growth and the dotted lines are the supply functions. Data are means ±SE of six fitted curves, and error bars are smaller than symbols in many cases.

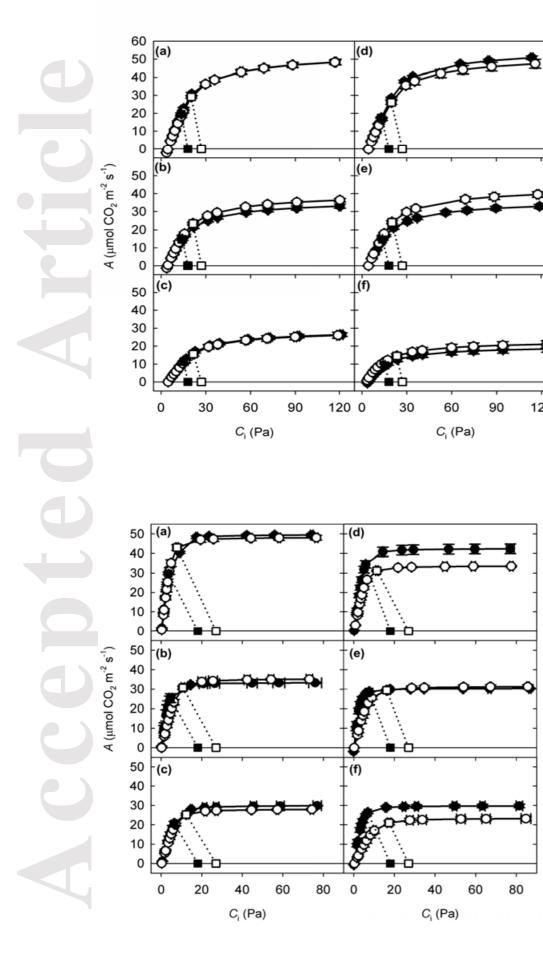
Figure 4. A/C_i responses for the C₄ species, *P. miliaceum* at (a) tillering, (b) anthesis, and (c) grain filling and *S. viridis* at (d) tillering, (e) anthesis, and (f) grain filling, grown at C_a of 18 Pa (closed circles) and 27 Pa (open circles). The square symbols (18 Pa closed, and 27 Pa open) are the photosynthetic rates when C_a was equal to the value used for growth and the dotted lines are the supply functions. Data are means ±SE of six fitted curves, and error bars are smaller than symbols in many cases.

Figure 5. Germination rate and viability of seeds collected from plants grown at C_a of 18 Pa (closed circles) and 27 Pa (open circles) for the C₃ species (a) *T. boeoticum* and (b) *H. spontaneum*, and the C₄ species (c) *P. miliaceum* and (d) *S. viridis*. Percentage germination was measured daily over a 10-day period. Data are means ±SE of eight replicates.

	Н.	<i>H. spontaneum</i> (C_3) <i>T. boeoticum</i> (C_3)					
	Growth CO ₂ ((Pa)		Growth CO ₂ (Pa	(Pa)		
Component	18	27	Р	18	27	Р	
No. tillers	96.3 ± 3.0	107 ± 5.0	n.s	49 ± 1.0	66±1.0	***	
% fertile tillers	79.8 ± 0.9	92.0 ± 0.9	***	89.3 ±1.1	92.6±1.0	*	
Seed number	1237 ± 50	1673 ± 54	***	1177 ± 41	1540±34	***	
% viable seeds	70.4 ± 2.2	77.6 ± 1.7	*	91.1 ± 1.3	93.3±0.4	n.s	
Seed size (mg)	40.9 ± 0.6	44.2 ± 1.7	*	38.8 ± 1.1	43.3±0.5	**	
TDM (g)	100.8 ± 3.1	145.3 ± 3.0	***	95.8 ± 3.3	136.5 ± 2.4	***	
Harvest index	0.35 ± 0.01	0.39 ± 0.01	***	0.43 ± 0.004	0.46 ± 0.003	***	
	Р.	. miliaceum (C ₄)		S. viridis (C ₄)			
	Growth CO_2 ((Pa)		Growth CO_2 (Pa)			
Component	18	27	Р	18	27	Р	
No. tillers	13.1 ± 1	16.0 ± 1	n.s	192 ± 24	164 ± 39	n.s	
% fertile tillers	87.9 ± 2.5	91.4 ± 2.9	n.s	100	100	n.s	
Seed number	5223 ± 188	5749 ± 307	n.s	11472 ± 1279	14294 ± 974	*	
Seed size (mg)	5.0 ± 0.03	51.4 ± 0.03	*	1.45 ± 0.03	1.49 ± 0.04	n.s	
TDM (g)	71.9 ± 1.3	79.3 ± 2.6	*	35.8 ± 2.7	41.2 ± 4.0	n.s	
Harvest index	0.36 ± 0.01	0.37 ± 0.01	n.s	0.47 ± 0.04	0.53 ± 0.03	n.s	


Table 1.Components of yield of the C₃ and C₄ crop progenitors grown at C_a of 18 Pa or 27 Pa. Values are means ±SE of 8 replicates. Significance codes are *=<.05, **=<.01 and ***=<.001.


		CO_2		Stage	Stage			$CO_2 \times Stage$		
Species	Parameter	F	d.f	Р	F	d.f	Р	F	d.f	Р
T. boeoticum	$A_{\rm sat}$	143.1	1	***	97.8	2	***	8.1	2	**
	g_{s}	21.1	1	***	31.1	2	***	-	2	n.s
	$C_{\rm i}/C_{\rm a}$	-	1	n.s	23.4	2	***	-	2	n.s
	WUE	131.5	1	***	3.7	2	*	-	2	n.s
H. spontaneum	$A_{\rm sat}$	171.3	1	***	93.3	2	***	5.6	2	**
	g_{s}	-	1	n.s	-	-	n.s	-	2	n.s
	$C_{\rm i}/C_{\rm a}$	-	1	n.s	91.9	2	***	-	2	n.s
	WUE	136.2	1	***	65.8	2	***	5.6	2	**
P. miliaceum	$A_{\rm sat}$	150.7	1	***	152.4	2	***	19.4	2	**:
	g_{s}	93.6	1	***	92.1	2	***	-	2	n.s
	$C_{\rm i}/C_{\rm a}$	17.7	1	***	11.2	2	***	-	2	n.s
	WUE	176.5	1	***	-	2	n.s	-	2	n.s
S. viridis	$A_{\rm sat}$	8.2	1	**	47.2	2	***	4.6	2	*
	g _s	95.9	1	***	17.9	2	***	5.9	2	**
	$C_{\rm i}/C_{\rm a}$	64.4	1	***	15.6	2	***	5.9	2	*
	WUE	60.2	1	***	-	2	n.s	6.5	2	**


Table 2. ANOVA for gas exchange and WUE for the C_3 and C_4 crop progenitors, testing for the effects of CO_2 treatments, growth stage and the interacting effects of growth stage and CO_2 . In each case, a minimal adequate model is presented, obtained by the removal of non-significant (n.s) interactions. Significance thresholds were set at 0.05. Significance codes are *=<0.05, **=<0.01 and ***=<0.001.

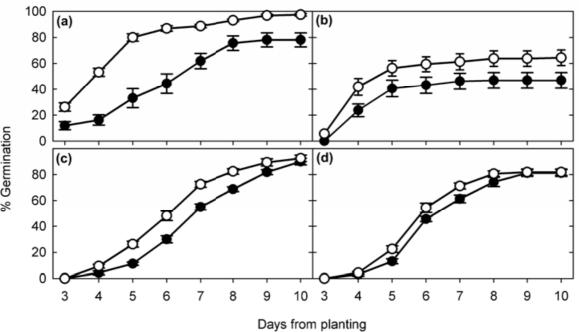

-			<i>T. boeoticum</i> (C_3)			<i>H. spontaneum</i> (C_3)				
			Growth CO ₂ (Pa)		Growth CO ₂				
	Stage	Parameter	18	27	Р	18	27	Р		
	Tillering	$V_{\rm c,max} (\mu {\rm mol}{\rm m}^{-2}{\rm s}^{-1})$	129.2 ± 4.0	132.8 ± 1.6	n.s	116.5 ± 1.0	111.4 ± 4.6	n.s		
	Anthesis		92.8 ± 2.8	100.2 ± 3.7	n.s	92.4 ± 3.0	105.9 ± 4.4	n.s		
	Grain Filling		77.4 ± 4.8	70.5 ± 6.9	n.s	54.1 ± 3.7	54.2 ± 3.9	n.s		
	Tillering	$J_{\rm max} (\mu {\rm mol}{\rm m}^{-2}{\rm s}^{-1})$	321.5 ± 13.1	320.6 ± 9.0	n.s	332.1 ± 2.8	309.3 ± 17.5	n.s		
	Anthesis		197.1 ± 7.3	220.6 ± 5.9	n.s	192.4 ± 6.8	240.9 ± 12.0	n.s		
	Grain Filling		151.6 ± 5.9	131.4 ± 16.4	n.s	101.0 ± 9.7	107.2 ± 10.7	n.s		
	Tillering	$l_{\rm s}(\%)$	26.3 ± 1.5	16.5 ± 0.9	**	27.3 ± 2.4	21.7 ± 1.8	*		
	Anthesis		21.3 ± 1.3	12.9 ± 1.7	**	19.5 ± 2.2	12.7 ± 2.1	*		
	Grain Filling		18.0 ± 2.5	13.6 ± 2.4	n.s	7.5 ± 1.1	6.9 ± 0.7	n.s		
			P. mi	liaceum (C ₄)		S. viridis (C_4)				
			Growth CO_2 (Pa)Growth CO_2 (Pa)							
	Stage	Parameter	18	27	Р	18	27	Р		
	Tillering	$k \pmod{\mathrm{m}^{-2} \mathrm{s}^{-1}}$	0.8 ± 0.01	0.7 ± 0.02	**	0.6 ± 0.04	0.5 ± 0.06	*		
	Anthesis		0.5 ± 0.04	0.4 ± 0.03	*	0.6 ± 0.04	0.4 ± 0.05	**		
	Grain Filling		0.4 ± 0.08	0.3 ± 0.02	n.s	0.5 ± 0.05	0.3 ± 0.04	***		
	Tillering	$V_{\rm T}$ (µmol m ⁻² s ⁻¹)	50.8 ± 0.4	49.6 ± 1.0	n.s	43.5 ± 2.6	34.9 ± 0.4	**		
	Anthesis		34.5 ± 0.3	36.2 ± 0.4	n.s	31.4 ± 0.2	32.9 ± 1.2	n.s		
	1 mmobili							***		
	Grain Filling		31.1 ± 0.2	29.1 ± 0.6	n.s	30.9 ± 1.0	24.4 ± 1.03			
		<i>l</i> _s (%)	31.1 ± 0.2 36.7 ± 3.7	$\frac{29.1 \pm 0.6}{10.7 \pm 1.2}$	n.s **	30.9 ± 1.0 16.1 ± 1.4	$\frac{24.4 \pm 1.03}{6.2 \pm 1.6}$	**		
Ç	Grain Filling	l _s (%)								

Table 3. Values of the A/C_i parameters of the C₃ and C₄ crop progenitors grown at C_a of 18 Pa or 28 Pa. Values are means ±SE of 6 replicates. Significance codes are *=<.05, **=<.01 and ***=<.001. Abbreviations for A/C_i parameters are: C₃ maximum rate of Rubisco carboxylation ($V_{c,max}$), the apparent C₃ maximum rate of photosynthetic electron transport (J_{max}), initial slope of the C₄ photosynthetic response (k), C₄ maximum photosynthetic capacity (V_T) and l_s (stomatal limitation).

% Germination