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Abstract    16 

PEEK-OPTIMA™ (Invibio Ltd., UK) has been considered as an alternative joint arthroplasty 17 

bearing material due to its favourable mechanical properties and the biocompatibility of its wear 18 

debris.  In this study, the potential to use injection moulded PEEK-OPTIMA™ as an alternative 19 

to cobalt chrome in the femoral component of a total knee replacement was investigated in terms 20 

of its wear performance.  Experimental wear simulation of three cobalt chrome and three PEEK-21 

OPTIMA™ femoral components articulating against all-polyethylene tibial components was 22 

carried out under 2 kinematic conditions.  3 million cycles (MC) under intermediate kinematics 23 

(maximum anterior-posterior (AP) displacement of 5 mm) followed by 3MC under high 24 

kinematic conditions (AP displacement 10 mm).  The wear of the GUR1020 UHMWPE tibial 25 

components was assessed by gravimetric analysis and for both material combinations under each 26 

kinematic condition, the mean wear rates were low, below 5 mm3/million cycles.  Specifically, 27 

under intermediate kinematic conditions, the wear rate of the UHMWPE tibial components was 28 

0.96±2.26 mm3/MC and 2.44±0.78 mm3/MC against cobalt chrome and PEEK-OPTIMA™ 29 

implants respectively (p=0.06); under high kinematic conditions, the wear rates were 2.23±1.85 30 
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mm3/MC and 4.44±2.35 mm3/MC respectively (p=0.03).  Following wear simulation, scratches 31 

were apparent on the surface of the PEEK femoral components.  The surface topography of the 32 

femoral components was assessed using contacting profilometry and showed a statistically 33 

significant increase in measured surface roughness of the PEEK femoral components compared to 34 

the cobalt chrome implants.  However, this did not appear to influence the wear rate, which 35 

remained linear over the duration of the study.  These preliminary findings showed that PEEK-36 

OPTIMA™ gives promise as an alternative bearing material to cobalt chrome alloy in the 37 

femoral component of a total knee replacement with respect to wear performance. 38 
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Introduction  47 

Polyether ether ketone (PEEK) is a thermoplastic polymer which has been used clinically in the 48 

spine and investigated for use as a biomaterial in trauma and orthopaedics due to its favourable 49 

mechanical properties and relative bioinertness.1, 2  There has been growing interest in its use as 50 

an arthroplasty bearing material either in its natural, unfilled form or reinforced with carbon 51 

fibres (CFR-PEEK).  Natural PEEK has been used in the spine in PEEK-on-PEEK articulations 52 

where pre-clinical studies have demonstrated an equivalent wear rate for PEEK cervical (NuNec)3 53 

and lumbar disc replacements (NuBac) compared to conventional materials,4 and although 54 

clinical follow-up has been relatively short-term, the implants have shown promise.5  CFR-PEEK 55 

has been considered for use as acetabular cups in total hip replacement, experimental wear 56 

simulation under standard gait conditions has shown lower wear rates than cross-linked 57 

UHMWPE against ceramic heads;6-8 although a 5 year follow-up from clinical trials of the Mitch 58 

cup has yielded a revision rate of 4 in 25 due to loosening and squeaking.9  CFR-PEEK has 59 

exhibited low wear experimentally in the tibial component of a highly conforming 60 

unicompartmental knee replacement.10  However, despite promise from experimental wear 61 

simulation in low contact stress situations, in high contact stress environments, there are 62 

questions about the suitability of CFR-PEEK11, 12 and PEEK13 and to date there is minimal 63 

clinical data.14 64 

 65 

The material of interest in this study was unfilled PEEK-OPTIMA™ manufactured by Invibio 66 

Biomaterials Solutions Ltd. (Thornton Cleveleys, UK)1, 15 and injection moulded to a geometry 67 

for use as the femoral component in total knee replacement.  There are several potential 68 

advantages of using PEEK over cobalt chrome in this application.  For example, the lower 69 

stiffness of PEEK compared to cobalt chrome may reduce implant loosening caused by stress 70 

shielding and bone resorption.16-18  Also, when coupled with an all polyethylene tibial component 71 

as proposed in this study, the implant will be metal-free, which will be of particular benefit to 72 

patients with metal sensitivity.19  73 

 74 

Wear debris induced osteolysis leading to aseptic loosening20, 21 however remains one of the 75 

primary failure mechanisms of total knee replacements22 therefore, there is continuing interest in 76 

investigating novel material combinations for joint replacement. The wear performance of such 77 

novel material combinations should be assessed under a wide envelope of clinically relevant 78 



conditions to determine their efficacy, reliability and safety prior to implantation.23  With the use 79 

of implants in younger more active patients, the threshold for osteolysis24, 25 is reached sooner and 80 

implant longevity diminishes.  Hence, in this study wear rates were investigated in a knee joint 81 

simulator under different kinematic conditions representative of different levels of patient 82 

activity.   83 

 84 

The aim of this study was to assess the suitability of PEEK-OPTIMA™ for use as an alternative 85 

bearing material to cobalt chrome in the femoral component of total knee replacements in terms 86 

of its wear performance.  It was hypothesised that the wear rate of the UHMWPE tibial 87 

components would be equivalent when articulating against cobalt chrome or PEEK-OPTIMA™ 88 

femoral components of similar initial surface topography and geometry. 89 

   90 

Materials and Methods 91 

Three injection moulded PEEK-OPTIMA™ femoral components (Invibio Knees Ltd, UK) with 92 

initial mean surface roughness (Ra) of 0.02µm and three Co-Cr-Mo (cobalt chrome) femoral 93 

components (Ra 0.02µm) (Maxx Medical Pte. Ltd., PA, USA) were tested against GUR1020 94 

(conventional, unsterilised) all-polyethylene tibial components (Figure 1) (Maxx Medical Pte. 95 

Ltd., PA, USA).  The surface topography of the PEEK-OPTIMA™ femoral components was as-96 

moulded, there was no additional post-processing of the articulating surfaces of the implants and 97 

the geometry of the PEEK-OPTIMA™ implant was based on the engineering drawing of the 98 

cobalt chrome component.    99 

 100 

All implants were right, mid-sized, cruciate retaining implants.  Two additional UHMWPE tibial 101 

components were used as unloaded soak controls to compensate for uptake of moisture during the 102 

study.26  Prior to the start of testing, the UHMWPE components were soaked in sterile water for a 103 

minimum of 2 weeks to maximise their moisture uptake.   104 

 105 

Experimental wear simulation was carried out on a 6 station ProSim electro pneumatic knee 106 

simulator (Simulation Solutions, UK).  Each station had six degrees-of-freedom with four 107 

controlled axes of motion as shown in Figure 2 - axial force (AF), flexion/extension (FE), anterior 108 

posterior displacement (AP) and tibial rotation (TR).  The AF (maximum ~2800N) and FE (0 to 109 



58°) were taken from the international standard for wear testing (ISO 14243-3) (Figure 3).26  The 110 

AP and TR were delivered through the tibial side of the implant and were displacement 111 

controlled.  Displacement control was selected as these prostheses did not have intrinsic 112 

constraint within the design and relied on soft tissue constraints in vivo.27  The TR was consistent 113 

for all tests and set at ±5°, two AP displacement conditions were used.  Intermediate kinematics 114 

applied an AP displacement of 0-5mm and under high kinematics, the AP displacement was 115 

larger, 0-10mm (Figure 4).  The shape of the  input profiles were based on the natural kinematics 116 

of the knee as described by Lafortune et al.28  The magnitude of the displacement under 117 

intermediate kinematics was similar to that detailed in the ISO standard,26 and under high 118 

kinematics, the magnitude of the displacement was based on gait analysis of the natural knee of 119 

healthy subjects.28  Abduction/adduction motion was passive and the AF was offset 7% of the 120 

width of the implant in a medial direction from the tibial axis as described in the ISO standard.26  121 

The cycle frequency was 1Hz. 122 

 123 

The femoral components were set up on the distal centre of rotation to facilitate femoral rollback 124 

as per standard practice at Leeds29 with the tibial components cemented with respect to the 125 

position of the femoral components.  The fixation of the tibial components was unique to each 126 

implant which minimised micro motion between the implant and the cement mantle, and the tibial 127 

components could be removed from the cement mantle for gravimetric analysis.  The femoral and 128 

tibial components remained paired for the duration of the study but to reduce interstation 129 

variation, each million cycles, the implants were moved to the adjacent station.  The tests were 130 

carried out in 25% (v/v) new born calf serum diluted with 0.03% (v/v) sodium azide solution to 131 

retard bacterial growth giving a final protein concentration of 15g/l.  Approximately every 0.3 132 

million cycles, the lubricant was replaced.  The study was carried out at room temperature to 133 

minimise potential artefacts due to protein deposition and denaturation at elevated temperature30 134 

and to investigate the potential for frictional heating of the lubricant to occur in the all-polymer 135 

implant.  136 

 137 

Prior to the start of the study, the simulator was calibrated and the tibial components were cleaned 138 

for 10 minutes in 70 % propan-2-ol in an ultrasonic bath before drying in air and being left to 139 

stabilise in a temperature (20±1 °) and humidity (45±1 %) controlled environment for 48 hours.  140 

Gravimetric analysis of the UHMWPE tibial components was carried out using a Mettler Toledo 141 

XP205 (Mettler Toledo, Leicester, UK) digital microbalance with a 0.01 mg resolution. 142 



Measurements were repeated until 5 consecutive measurements fell within a range of ±0.05 mg.  143 

Surface roughness measurements of the articulating surfaces were taken using a Taylor Hobson 144 

PGI800 contacting Form Talysurf (Taylor Hobson, Leicester, UK) with a 2 µm conical tip stylus, 145 

filtering and cutoffs were used appropriate to the material and to ISO 4288:1996.31  The surface 146 

roughness parameters of interest were, the mean surface roughness (Ra), the maximum profile 147 

height above the mean line (Rp) and the maximum profile depth below the mean line (Rv).   148 

 149 

Three million cycles (MC) of wear simulation was carried out under intermediate kinematics, the 150 

bulk lubricant temperature was monitored daily, close to the articulating surfaces using a Fluke 151 

51 II thermocouple (Fluke, Washington, USA) and the wear of the UHMWPE tibial components 152 

assessed at 1 and 3MC.  At the conclusion of the study under intermediate kinematics, the surface 153 

topography of the articulating surfaces was reassessed.  The test was then resumed using the same 154 

components but running a high kinematic profile with an increased AP displacement for an 155 

additional 3MC.  The wear of the UHMWPE tibial components was measured at 1 and 3MC 156 

(minimum).  The surface topography of the articulating surfaces was assessed at the completion 157 

of the study.  Three sets of implants were tested for each material combination. 158 

 159 

For each set of three knees and each set of kinematic conditions the mean wear rate (mm3/MC), 160 

bulk lubricant temperature, Ra, Rp and Rv plus 95% confidence limits were calculated. The mean 161 

wear rate was calculated using linear regression. Statistical analysis was carried out using a 162 

students t-test32 comparing the PEEK implants with the cobalt chrome implants at each time point 163 

with significance taken at p<0.05.  164 

 165 

The data associated with this paper are openly available from the University of Leeds Data 166 

Repository.33 167 

 168 

 169 

Results  170 

Following 3 MC of intermediate kinematics, the wear rate of cobalt chrome-on-UHMWPE was 171 

0.96±2.26 mm3/MC and the wear rate of PEEK-on-UHMWPE was 2.44±0.78 mm3/MC (Figure 172 

5). There was no significant difference in the wear of the UHMWPE tibial components 173 



articulating against the different materials (p=0.06).  After 3MC of wear simulation under 174 

intermediate kinematics, a polished region was apparent in the contact area of the tibial 175 

components, the cobalt chrome implants had discrete scratches running in an anterior-posterior 176 

direction on their surface and the PEEK-OPTIMA™ femoral components had a high density of 177 

light scratches where there had been contact between the two surfaces.  Table 1 shows the surface 178 

topography of the articulating surfaces of the femoral components.  Prior to the start of wear 179 

simulation, there was no significant difference (p>0.05) between the measured Ra, Rp or Rv of 180 

the PEEK-OPTIMA™ or cobalt chrome femoral components.  After 3MC of wear simulation 181 

under intermediate kinematics, there was a significant difference (p<0.05) in the Ra, Rp and Rv 182 

of the PEEK-OPTIMA™ femoral components compared to the cobalt chrome implants.  After 183 

3MC wear simulation, the UHMWPE tibial components had a polished region in the wear area 184 

where the machining marks had been removed (Table 2).   For the tibial components articulating 185 

against the PEEK-OPTIMA™ femoral components, within the burnished region, light, linear 186 

scratching was apparent.  As a result of this, the mean surface roughness (Ra) of the tibial 187 

components articulating against PEEK-OPTIMA™ was significantly (p<0.05) higher than those 188 

articulating against cobalt chrome after 3MC wear simulation under intermediate kinematic 189 

conditions.  Over the duration of the study, the wear rate was linear for both material 190 

combinations as shown in Figure 6.  Under intermediate kinematics, the R2 value for the wear rate 191 

of the all-polymer knee was 0.99 and 0.95 for the conventional materials.  The change in surface 192 

topography of the PEEK-OPTIMA™ femoral components did not appear to influence the wear 193 

rate.  The mean bulk lubricant temperature in the all-polymer knee was 29.5 °C which was 194 

significantly (p=0.01) higher than that of the conventional metal-on-UHMWPE implant (28.0 195 

°C). 196 

 197 

The same implants were then tested for an additional 3MC under high kinematic conditions with 198 

an increased AP displacement, reflecting a higher demand patient.  The mean wear rate of the 199 

conventional implant materials as shown in Figure 7 was 2.23±1.85 mm3/MC and the wear of the 200 

all-polymer knee was significantly higher than the conventional implant materials, p=0.03 201 

(4.44±2.35 mm3/MC).  The wear rate under high kinematic conditions remained linear over the 202 

duration of the study for both the all-polymer implant (R2 = 0.99) and the conventional metal-on-203 

polyethylene implant (R2 = 0.99).  Analysis of the surface of the femoral components (Table 3) 204 

showed a significant difference (p<0.05) between the surface roughness parameters (Ra, Rp and 205 

Rv) of the PEEK and the cobalt chrome implants after 3MC intermediate and 3MC high 206 



kinematics.  The scratches evident on the surface of the PEEK implants after 3MC of wear 207 

simulation under intermediate kinematics were still visible but following an additional 3MC 208 

under high kinematics, the measured values for Ra, Rv and Rp for the PEEK components were 209 

similar to those taken after 3MC of intermediate kinematics and there was no apparent further 210 

deterioration of the surfaces.  The surface roughness of the tibial components however, was 211 

significantly higher (p<0.05) for the implants articulating against PEEK-OPTIMA™ compared to 212 

those articulating against cobalt chrome (Table 2) for all the surface roughness parameters of 213 

interest.  When tested under high kinematics, the mean bulk lubricant temperature of the all-214 

polymer implant was significantly higher (29.7 °C) (p<0.01) than the lubricant temperature 215 

measured in the conventional materials (27.6 °C).  216 

 217 

 Discussion  218 

The aim of the study was to assess the suitability of PEEK-OPTIMA™ for use as an alternative 219 

bearing material to cobalt chrome in the femoral component of total knee replacements in terms 220 

of its wear performance.  The wear of the all-polymer implant was directly compared to that of a 221 

conventional metal-on-polyethylene implant of similar geometry and surface topography, 222 

experimental wear simulation was carried out under different kinematic conditions indicative of 223 

different patient activity levels. 224 

 225 

After 3 MC of experimental wear simulation under intermediate kinematic conditions, the wear 226 

performance of an all-polymer PEEK-OPTIMA™-on-UHMWPE total knee replacement was 227 

comparable to a conventional metal-on-UHMWPE implant of similar initial geometry and surface 228 

topography.  To put these results into context, previous experimental wear simulation of fixed 229 

bearing knee replacements under similar intermediate kinematic conditions have shown wear 230 

rates of approximately 8.6 mm3/MC with stabilised UHMWPE34 and 2.6 mm3/MC for moderately 231 

cross-linked UHMWPE35 against cobalt chrome femoral components; the moderately cross-232 

linked UHMWPE is considered to be low wearing (<5 mm3/MC).  Therefore the wear rate of 233 

0.96±2.26 mm3/MC for the metal-on-UHMWPE implants in this study with a conventional 234 

UHMWPE tibial insert were also considered low wearing, possibly due to their low conforming 235 

design.34  Measuring low wear rates of UHMWPE (<5 mm3/MC) by gravimetric analysis is 236 

difficult and there is a  loss of reliability in the measurement technique which makes the 237 

differentiation between the effect of variables being studied and uncontrolled and random errors 238 



in the system difficult. This, combined with the small sample size, may have contributed to the 239 

high variability in the measured wear rates of the tibial components.20  The low wear of the all-240 

polymer knee was consistent with previous simple geometry wear simulation of PEEK-on-241 

UHMWPE.36   242 

 243 

Damage on the PEEK-OPTIMA™ femoral components was observed in the form of scratching 244 

parallel to the principal direction of sliding.  Brown et al also reported damage to the articulating 245 

surfaces of PEEK-on-PEEK cervical discs early in a spine simulator study however, despite the 246 

initial change in surface topography, the wear rate remained constant as observed in our study.3  247 

However, there was evidence that the linear scratching on the PEEK-OPTIMA™ femoral also 248 

caused scratching in the wear scar on the UHMWPE tibial component.  The bulk lubricant 249 

temperature was higher in the all-polymer knee than in the conventional implant, this elevated 250 

temperature could be attributed to frictional heating37 due to the anticipated higher friction in this 251 

material combination8 and poor dissipation of heat due to the low thermal conductivity of the 252 

polymers.38  Although higher friction bearing couples have exhibited frictional heating in vivo,39 253 

the clinical relevance of the elevated temperatures measured in our tests is unknown.  The 254 

continuous running of the simulator may have accentuated the frictional heating40 and led to a test 255 

artefact41 by creating differing environmental test conditions for the different materials.  The 256 

lubricant used was 25 % serum analogous to synovial fluid with the final protein concentration 257 

(15 g/l) matched to that in vivo42 and tests were carried out at room temperature to minimise test 258 

artefacts caused by denaturation of the protein-based lubricant. However, to minimise the 259 

influence of frictional heating, rest periods could have been incorporated into the test protocol.   260 

 261 

Having demonstrated a similar rate of wear of UHMWPE against the two femoral materials under 262 

intermediate kinematics, the wear of the same implants under high kinematic conditions with an 263 

increase in the anterior-posterior displacement was investigated.  By using the same implants for 264 

both kinematic conditions, the potential for variability in set up of the implants has been 265 

minimised, the study has started to investigate the influence of longer-term testing on the wear of 266 

the PEEK-OPTIMA™ implant and the study is more representative of changes in patients gait as 267 

they perform different activities.  Typical wear rates for fixed bearing knees under high kinematic 268 

conditions tested on the same simulator as in this study were 15.9 mm3/MC34 for stabilised 269 

UHMWPE and 6.7 mm3/MC for moderately crosslinked UHMWPE.35  It was anticipated that the 270 



surface topography of the femoral component would influence the wear rate of the UHMWPE 271 

tibials however, the wear rate remained low (<5 mm3/MC) and was linear over the duration of the 272 

study, likely due to the orientation of the scratches in the principal direction of sliding.  Surface 273 

topography measurements of the femoral components following 3 MC of high kinematics showed 274 

no further change to their surfaces compared to measurements taken after 3 MC of intermediate 275 

kinematics. However, the wear rate of the PEEK-on-UHMWPE was statistically significantly 276 

higher than metal-on-UHMWPE under these conditions.  It was a limitation of this study that the 277 

tests under the different kinematic conditions were not independent since the same samples were 278 

tested first under intermediate kinematics before testing under high kinematics.  Therefore, it is 279 

possible that changes in the surface topography of the femoral components as a result of the 280 

intermediate kinematic conditions test may have influenced the wear under high kinematics.  281 

Although, this appears not to be the case, since the wear rate under both the intermediate and high 282 

kinematic conditions remained linear over the duration of the study for both the all-polymer 283 

implant and the conventional metal-on-polyethylene implant.  Longer-term testing with a larger 284 

set of samples will be necessary to fully assess whether the changes in surface topography of the 285 

PEEK-OPTIMA™ femoral component influence the wear rate of UHMWPE tibial components.  286 

 287 

This was a preliminary study focusing solely on the wear performance of the all-polymer knee 288 

implant and therefore there were several other limitations, such as sample size.  Three sets of 289 

implants were studied for each material combination, restricted by the number of stations in the 290 

simulator and the necessity to carry out control tests of conventional implants of similar geometry 291 

in parallel. This is best practice and allowed the influence of the different femoral materials on 292 

UHMWPE wear to be directly compared.  However, a larger sample size may have reduced the 293 

95% confidence limits, making the statistical analysis more robust and giving greater evidence on 294 

which to draw conclusions.  Another limitation was the use of unsterilised components. However, 295 

the proposed sterilisation route of the UHMWPE by ethylene oxide has been shown not to 296 

influence the mechanical properties or induce cross-linking and therefore the wear performance 297 

of the UHMWPE is not anticipated to be influenced by such sterilisation.6, 43    In this study, the 298 

wear of the UHMWPE tibial components were assessed.  Previous work on metal-on-299 

polyethylene knees assumes all wear generated is from the UHMWPE.  It is not known whether 300 

there was wear of the PEEK-OPTIMA™ femoral component as the implants could not be 301 

assessed by gravimetric analysis nor was a method available to assess potential wear 302 

geometrically.  Future work will assess the wear debris generated by the all-polymer knee implant 303 



and compare its morphology and size distribution to that generated by a conventional metal-on-304 

polyethylene implant.  Further, the tests conducted in this study were relatively short-term, longer 305 

duration simulation will be necessary to fully assess the long term wear performance of the 306 

implant.   307 

 308 

In conclusion, under intermediate kinematic conditions, the wear rate of the UHMWPE tibial 309 

components was independent of the femoral material as a similar rate of wear was shown against 310 

cobalt chrome and PEEK-OPTIMA™ femoral components of similar geometry.  Under higher 311 

demand kinematics, the wear of the UHMWPE was significantly higher against PEEK than cobalt 312 

chrome but the magnitude of the wear was considered to be low (<5 mm3/MC) against both 313 

materials, and measuring low rates of wear gives potential for measurement errors especially in a 314 

low sample size.  Over the duration of this study, the surface of the PEEK-OPTIMA™ femoral 315 

components did change but this did not influence the wear rate in this short term study. This study 316 

showed that PEEK-OPTIMA™ has potential for use as an alternative bearing material to cobalt 317 

chrome in total knee replacement however, the study should be considered as generation of 318 

baseline data prior to further and longer term pre-clinical testing under a wider envelope of more 319 

adverse and clinically relevant conditions. 320 
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Figures/Tables 456 

 457 

Figure 1: Injection moulded PEEK-OPTIMA™ femoral component coupled with an all-458 

polyethylene tibial component. 459 

 460 

Figure 2: The four controlled axes of motion in a knee wear simulator. 461 



 462 

Figure 3: Axial force (AF) and flexion/extension (FE) input profiles. 463 

 464 

Figure 4: Tibial rotation (TR) and anterior-posterior displacement (AP) input profiles for 465 

intermediate and high kinematic conditions. 466 



 467 

Figure 5: Mean wear rate (mm3/MC) with 95% confidence limits of UHMWPE tibial 468 

components against cobalt chrome and PEEK-OPTIMA™ femoral components under 469 

intermediate kinematic conditions (n=3). 470 

 471 



Figure 6: Mean wear volume (mm3) with 95% confidence limits of UHMWPE tibial 472 

components against cobalt chrome and PEEK-OPTIMA™ femoral components under 473 

intermediate and high kinematic conditions (n=3). 474 

 475 

Figure 7: Mean wear rate (mm3/MC) with 95% confidence limits of UHMWPE tibial 476 

components against cobalt chrome and PEEK-OPTIMA™ femoral components under 477 

high kinematic conditions (n=3). 478 

  479 



Table 1: Surface roughness measurements (mean ± 95% confidence limits) of cobalt 480 

chrome and PEEK-OPTIMA™ femoral components.  Measurements taken in a medial-481 

lateral direction prior to testing and following 3MC wear simulation under intermediate 482 

kinematic conditions (n=3). 483 

 484 

Table 2: Mean surface roughness (±95% confidence limits) of UHMWPE tibial 485 

components articulating against PEEK-OPTIMA™ and cobalt chrome femoral 486 

components tested after 3MC intermediate kinematic conditions and 3MC high kinematic 487 

conditions (n=3). 488 

Parameter UHMWPE tibial components articulating 

against Cobalt chrome 

UHMWPE tibial components articulating 

against PEEK-OPTIMAΡ 

Pre-test 3MC 

intermediate 

3MC high Pre-test 3MC 

intermediate 

3MC high 

Ra (µm) 0.52 ± 0.11 0.30 ± 0.20 0.30 ± 0.07 0.49 ± 0.12 0.47 ± 0.06 0.67 ± 0.35 

Rp (µm) 1.86 ± 0.30 0.94 ± 0.67 0.82 ± 0.29 1.80 ± 0.26 1.24 ± 0.45 1.91 ± 0.31 

Rv (µm) 1.55 ± 0.26 1.13 ± 0.97 0.55 ± 0.19 1.45 ± 0.35 1.67 ± 0.80 0.93 ± 0.17 

 489 



Table 3: Surface roughness measurements (mean ± 95% confidence limits) of cobalt 490 

chrome and PEEK-OPTIMA™ femoral components.  Measurements taken in a medial-491 

lateral direction prior to testing and following 3MC wear simulation under high kinematic 492 

conditions (n=3). 493 

 494 
 495 


