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Abstract

Alloy 625 is susceptible to significant precipitation hardening through the formation of

γ′′ (D022-NbNi3) particles. These precipitates can form both during manufacture and in

high temperature service and, consequently, the accurate prediction of their behaviour is

crucial. To this end, a model is presented here which describes γ′′ precipitation in Alloy 625,

encompassing the concurrent nucleation, growth and coarsening of different particles and

allowing for the particles to be shape changing. This model is calibrated with respect to the

experimentally measured aspect ratio evolution observed at 650◦C. The resultant outputs

for interfacial energy, particle size distribution and number density are in agreement with

experimental data for a simulation of 1000 hours at 650◦C.
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1. Introduction

Thanks to its excellent corrosion resistance and strength at elevated temperatures, Alloy

625 is widely utilised in a number of industries such as chemical processing, automotive

transportation and marine oil extraction [1, 2, 3, 4, 5, 6]. Furthermore, the alloy also exhibits
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good resistance to irradiation assisted stress corrosion cracking [7] and the combination of5

these properties have led to it becoming a candidate material for selected current and future

nuclear applications. The precipitation of Ni3Nb(Al,Ti) γ
′′ particles (body-centre-tetragonal

(BCT) unit cell corresponding to Figure 1 and orientation relationship [001]γ′′ ‖ <100>γ)

can lead to significant hardening of the superalloy through the formation of coherency strains

[8], with the degree imparted strongly dependent on the precipitate size [9] and density [10].10

Consequently, the ability to predict the evolution of these latter variables is key to accurate

material thermomechanical processing and assessment in service.

Figure 1: BCT D022 unit cell of γ′′ (Ni3Nb(Al,Ti)), adapted from [11].

In contrast to many established modelling techniques the relatively recently developed

SFFK (Svoboda-Fischer-Fratzl-Kozeschnik) model, derived using the Onsanger thermody-

namic extremum principle, provides considerable flexibility both in terms of precipitate15

shape and alloy composition [12, 13, 14]. Resultantly, owing to the oblate spheroidal shape

of γ′′ particles and the large number of alloying elements in Alloy 625, it is using the SFFK

framework that the model outlined in this research is developed.

2. Model Description

Like other numerical mesoscale precipitation models, such as that developed by Kamp-20

mann and Wagner (KW) [15, 16], the SFFK model is a class computation [17] in which
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the evolution of groups (or classes) of particles, each retaining the same physical properties

such and size and shape, is calculated rather than that of individual precipitates to achieve

the highest computational efficiency whilst retaining appropriate detail [18]. However unlike

classical approaches such as KW, the removal of some details in the SFFK model, specif-25

ically the lack of concentration profiles means that it can be much more easily applied to

large/many component systems saving significant computation time. That is to say, although

the KW method, specifically the equations governing precipitate evolution, can theoretically

be applied to complex systems, substantial numerical difficulties are incurred (particularly

associated with coupling conditions across the precipitate matrix interface) when modelling30

systems with component numbers equivalent to those of Alloy 625. By using a mean field

approach the SFFK model avoids this problem [19].

2.1. Nucleation

Nucleation is calculated in the present model according to classical nucleation theory:

Defining Ṅ as the nucleation rate per unit volume, N0 as the nucleation site density, β∗

as the atomic absorption rate, τ as the incubation time, t as the time, kB as the Boltz-

mann constant, T as the temperature in kelvin, ∆G∗ as the activation energy required for

nucleation and Z as the Zeldovich factor, the governing expression becomes Equation 1

[20, 21, 22, 23, 24, 25, 26]. In this instance, the Zeldovich factor and incubation time are de-

termined according to Equation 2 (where ∆G(n) is the free energy of forming a microcluster

containing n atoms) and Equation 3, respectively.

Ṅ = N0Zβ
∗exp

(

−∆G∗

kBT

)

exp

(

−τ

t

)

(1)

Z = −

√

1

2πkBT

(

∂2∆G(n)

∂n2

)

n∗

(2)
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τ =
1

2Z2β∗
(3)

Ignoring diffusion inside the precipitate (and ipso facto any variation chemical composi-

tion), the value for the atomic impingement rate is found according to Equation 4 in which

ρ∗ corresponds to the equivalent critical nucleation radius, Ω is the system molar volume

(the molar volume is assumed to be the same in both the matrix and precipitate phases) a

is the lattice parameter of the matrix, cxi is the concentration of component i in either the

precipitate (x = k) or (x=0) the matrix, s is the number of components in the system and

D0i is the bulk diffusion coefficient of component i in the matrix. The equivalent radius cor-

responds to a radius of a sphere with the same volume as that of the model precipitate. The

bulk diffusion coefficient is used here as the microstructure is assumed to be homogeneous.

β∗ =
4πρ∗2

a4Ω





s
∑

i=1

c0iD0i

(cki − c0i)2



 (4)

Uniquely in the present model, the precipitate equivalent critical stable radius is calcu-

lated according to modified SFFK Equations which allow for a more complete dependence

on the precipitate aspect ratio and, by extension, the misfit strain between the matrix and

precipitate and also their elastic contrast; rather than the simple linear relationships defined

in classical regimes, the value of ρ∗ now equates to the maximum value of Equation 5 with

respect to ρ. Here, ∆G represents the change in the Gibbs free energy of the system, the

symbol λk corresponds to the precipitate-matrix misfit strain energy, ∆Gv is the thermo-

dynamic driving force for precipitation, αk is the precipitate aspect ratio calculated as the

ratio of the precipitate major and minor axis lengths, ζEk and ζMk are the interfacial ener-

gies on the precipitate ends and mantle (defined below) respectively, m is the total number

of precipitates and ξk is an as yet undefined term which the authors will refer to as the
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dimensional ratio (the origin of term is explained below).

∆G =
m
∑

k=1

4πρ∗3k
3

(

λk(αk) + ∆Gv

)

+
m
∑

k=1

4πρ∗2k
ξ2k
8

(

ζEk (αk) + 2αkζ
M
k (αk)

)

(5)

Since precipitation is assumed to be homogeneous in this study, the number of sites for

γ′′ nucleation N is given by the quantity of atoms that could possibly form a precipitate35

remaining in the matrix i.e. those which could constitute one of the elemental constituents

of γ′′ precipitates but are not already locked up in the phase.

2.2. Precipitate Geometry

γ′′ precipitates present with an oblate spheroidal shape with the contrast between the

lengths of the major and minor axes becoming more pronounced as the particles grow viz.40

the aspect ratio experiences a significant decrease with increasing major radius [27]. Fully

describing the curvature of the oblate spheroidal geometry and the implications this has for

the interfacial energy is a severely non-trivial exercise and, moreover, the implementation

of any such description is likely to lead to calculation times which are too long for most

practical applications. Consequently, Svoboda et al. [14] include a far simpler adaptation45

in their SFFK model whereby biaxial precipitates such as needles and plates are modelled

as cylinders.

The dimensions of the real precipitate are related to that of the cylinder such that they

both have the same volume and aspect ratio. This is described mathematically by Equation

6 where Ak is the major axis of the real ellipsoid and Bk is the diameter of the cylinder.

Replacing the axis with their values in terms of the equivalent radius defines the dimensional

ratio ξk.

Bk =

√

4

3
Ak = ξkρk (6)
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2.3. Precipitate Evolution

The evolution of nucleated precipitates in the model takes place concomitantly with

respect to radius and aspect ratio. Through inserting dependencies on both misfit strain50

(and therefore elastic contrast) and aspect ratio into the Equations of Svoboda et al. [12] for a

system in which the interfacial mobility is unrestricted, the rate of change of the equivalent

radius for a given precipitate (class) is now calculated in the present model according to

Equation 7 where R is the ideal gas constant and O1
k is a factor derived from the equation

governing the dissipation of the Gibbs energy in the system matrix which accounts for the55

cylindrical precipitate shape. Similarly the rate of aspect ratio change is defined according

to Equation 8 where O3
k is another factor which accounts for precipitate shape but with

different magnitude to O1
k
1.

ρ̇k = −





ξ2k
4ρk

(

ζEk + 2αkζ
M
k

)

+ λk(αk) + ∆Gv +
ρk
3

dλ

dρ
+

ξ2k
8

(

dζEk
dρ

+
dζMk
dρ

)

−
ξ2k

12αk

dα

dρ

(

ζEk − αkζ
M
k

)





.



ρkRTO1
k

n
∑

i=1

(cki − c0i)
2

c0iD0i





−1

(7)

α̇k = −





ρ

3

dλ

dα
−

ξ2k
12αk

(

ζEk − αkζ
M
k

)

+
ξ2k
8

(

dζEk
dα

+
dζMk
dα

)







ρ3kRTO3
k

n
∑

i=1

(cki − c0i)
2

c0iD0iα2
k





−1

(8)

In addition to describing growth and aspect ratio change of an individual class, Equations

7 and 8 also allow for the concomitant growth and coarsening of new and existing precip-

itates/precipitate classes as the system evolves. As precipitation proceeds, the decreasing

supersaturation in the matrix is calculated via a continuity equation shown in Equation 9

1The equation including O2

k
derived by Svoboda et al. is omitted here due to the condition imposed in

this research of no diffusion taking place inside the precipitate
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where Ni corresponds to the total quantity of element i in the system. Once calculated,

the supersaturation value is in turn used to calculate the thermodynamic driving force for

precipitate nucleation and growth ∆Gv.

c0i = Ni −

m
∑

k=1

4πρ3ki
3






Ω

n
∑

i=1



Ni −
m
∑

k=1

4πρ3ki
3











−1

(9)

3. Literature Model Inputs

The aforementioned modifications made to the SFFKmodel swells the number of required60

inputs due to the removal of approximations regarding the evolution of variable values. The

thermodynamic driving force precipitation in Alloy 625, for instance, is calculated for the

model here through the use of the software Thermocalc (i.e. the CALPHAD method) em-

ploying the Ni-based Superalloys database version 7.0 (TCNI7) [28]; the stable phase trend

with temperature, as well as the composition of the γ′′ predicted using this methodology65

for a sample of Alloy 625 with the composition defined in Table 1 is shown in Figure 2.

Using these equilibrium predictions for the system, driving forces are updated during the

calculation in accordance with the concentrations outputted by the continuity Equation.

Table 1: Composition of Alloy 625 material used for simulation. The index ∗ signifies fraction
calculated from balance.

Element Ni Cr Fe Mo Nb C Mn Si P S Al Ti

wt% 62.0∗ 21.74 2.87 8.58 3.80 0.021 0.20 0.23 < 0.01 0.003 0.12 0.16

Another such input to the calculations is that of the elastic constants of both the pre-

cipitate and matrix phase. Unfortunately, the data reported in the literature for γ′′ is quite70

limited in terms of its temperature range [29] and therefore extrapolation, through mapping

to calculations made for pure nickel over a wide temperature rage by Luo et al. [30], is used

7



(a)

(b)

Figure 2: a) Molar phase composition of Alloy 625 and b) elemental composition of γ′′, both as a
function of temperature. Data calculated using TCNI7 database via the CALPHAD method.
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instead. Calibrating this trend to the data in the literature calculated by Connétable et al.

[29] at zero kelvin yields the behaviour for the elastic constants shown in Figure 3; data used

for the matrix phase corresponds to that measured for a piece of solution treated Alloy 62575

material by the Special Metals Corporation [31].

Figure 3: Inferred trends for Alloy 625 and γ′′ elastic constant values with temperature utilised in
the model presented in this paper. Owing to its comparatively stable behaviour, for simplicity the
value for the Poisson’s ratio is assumed in the model to be 0.3 always

In the absence of values for the diffusion coefficients within Alloy 625 being detailed in

the literature, the data determined for diffusion of each of the constituent atoms forming

the γ′′ phase inside a nickel binary diffusion couple is utilised instead [32, 33, 34]. It should

be noted that these coefficients are for bulk diffusion only due to the assumed homogeneity80

of the microstructure.
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4. Experimental Inputs

4.1. Interfacial Energy

The elimination of symmetry caused by the introduction of separate interfacial ener-

gies for the precipitate cylinder mantle and ends means that the interfacial energies of the85

cylindrical precipitate can only be evaluated (via rearrangement of Equation 8) through

calibrating them to an experimentally observed aspect ratio change rate. Accordingly, data

for the evolution of γ′′ precipitates was obtained from TEM analysis of thin foil specimens

of aged Alloy 625 material with the composition listed in Table 1.

Samples were first solution-annealed at 1150◦C for 30 minutes (following Shankar et al.90

[1]) before being aged at 650◦C for periods of 100, 200, and 1000 hours, with foils prepared

using the conventional twin-jet electropolishing techniques in an electrolyte of 20% HClO4

80% CH3OH at −33◦C. Subsequent characterisation of the foils using an FEI Tecnai T20 200

kV analytical transmission electron microscope produced [001]-oriented centred dark-field

TEM images, such as those shown in Figure 4, from which the precipitate statistics were95

measured. The three [001] variants of the γ′′ precipitates are evident in figure 4c.

4.2. Misfit Strain

Whilst Sarkar et al. [35] have made measurements of the lattice parameters (and ipso

facto the misfit strain) of γ′′ in Alloy 625, flaws in their deconvolution based x-ray method

pertaining to it being performed on in situ precipitates mean their data are not appropriate

for this model. In contrast, the ageing conditions and methodology employed by Slama et al.

[36] in Alloy 718 (a related derivative alloy) are applicable and, therefore, values extrapolated

(to 650◦C) from these results were utilised here for calculation of the precipitate-matrix misfit

strain tensor ǫij as per Equation 10 [37]. The evolution of the misfit strain with respect to

aspect ratio rather than time is achieved through a matching of the corresponding statistical

10



(a) (b)

(c) (d)

Figure 4: [001]-orientated dark field TEM images of γ′′ precipitates in material aged at 650◦C for
a) 100, b) 200 and c) 1000 hours. d) [001] selected area diffraction pattern.
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average values at the relevant times.

ǫij =























a
γ′′

−aγ

aγ
0 0

0
a
γ′′

−aγ

aγ
0

0 0
c
γ′′

2
−aγ

aγ























(10)

Following Cozar [38], the crystallographic alignment of the γ′′ phase in the γ matrix dic-

tates that the value of the components ǫ11/ǫ22 and ǫ33 correspond to the misfit strains of the

cylinder mantle and ends respectively. As evidenced by Figure 5, however, the uncertainties100

in the measurements of Slama et al. allow for a wide range of possible fits meaning it is

necessary to identify the appropriate trend for each through an iterative method; the trends

presented for both stains in Figure 5 correspond to those where an appropriate final output

for the model is achieved.

Figure 5: Misfit strain values calculated via Equation 10 using the lattice parameter values mea-
sured by Sarkar et al. [35] along with their interpreted hyperbolic fits.
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Hagel et al. [39] suggested that a fully coherent interface can only be obtained if the value

of misfit strain at the interface is less than 1%. Correspondingly, analysis of the range of105

values for ǫ11 over all aspect ratios yields the conclusion that the cylinder mantle maintains

a coherent boundary throughout the precipitate’s evolution. In contrast, at the precipitate

ends, as indicated by ǫ33, the interface is rather more incoherent at the start of precipitation

and quickly deteriorates. This result is important as it allows for the resolution of the

mathematical impasse of the determination of separate values for ζE and ζM by allowing110

the reasonable assumption of an ideally coherent mantle-matrix interface (i.e. ζM = 0J).

4.3. dα/dρ

The mathematical relationship describing the average trend of precipitate aspect ratio

with precipitate major radius, used to calculate the value of dα/dρ when solving Equation

7 as the simulation proceeds, is determined from fitting a hyperbolic decay to statistics of115

all of the individually measured precipitates as per Figure 6.

5. Results and Discussion

In order generate an appropriate comparison, the simulation results correspond to an

Alloy 625 system 1 mole in size, with a composition identical to that detailed in Table 1

aged at 650◦C. Utilising these values the magnitude of the system molar volume Ω is chosen120

such that ρ∗ = 1.00 nm but the actual value for the critical radius is actually enhanced

by 1% (to 1.01nm) in the model to ensure stability for nucleating particles. A result of

the selection of this magnitude for ρ∗, is the creation of a time shift in calculated data of

precipitates with a magnitude (determined from the aspect ratio evolution data) of 32.73

hours, therefore each of the modelled data sets presented are necessarily displaced with125

respect to time by a corresponding magnitude. Beginning with a magnitude of 0.1 seconds,
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Figure 6: Aspect ratio and major radius for γ′′ precipitates formed at 650◦C after ageing for 100,
200 and 1000 hours.

the time step implemented in the simulation increased by a magnitude of 1% per iteration

subject to both restrictions on parameter changes between steps (leading to a time step

decrease if exceeded) and a maximum magnitude of 3600s to retain detail. Finally, in order

to ensure the correct calculation of the precipitate statistics each of the datasets presented130

here relate to the distribution density evaluated using the procedure of Perez et al. [40],

rather than the raw classes as output by the model.

5.1. Aspect Ratio Distribution

Comparison of the experimental data fit with the average model data points shown in

Figure 7 shows the model to correctly reproduce the calibration data, with almost perfect135

agreement with the experimental data fit achieved. Such a correlation between the fitted and

average α(t) trends, whilst important, is obviously necessarily expected, however it is also

worth noting the very narrow limit the spread of generated distributions. The occurrence of

this latter phenomenon derives from the utilisation of the fitted α(t) trend for the calculation

14



of the interfacial energy of all the classes which forces all particles to principally follow this140

path. Clearly, the contrast between this mathematically-generated aspect ratio distribution

and those indicated for the experimental data highlights a limitation of the model with

respect to this variable. However, as average values (particularly precipitate size and number

density) constitute the key statistics in calculating the impact of a precipitate distribution

on the properties of Alloy 625 this limitation does not constitute a significant problem in145

the application of the model results.

Figure 7: Aspect ratio distribution density trend calculated for γ′′ precipitates in Alloy 625 when
ageing at 650◦C. The data points correspond to mean values with the error bars indicating the
first and forth quartiles of the distribution. Experimental data points and their hyperbolic which
is input to the model are shown for comparison.

5.2. Particle Size Distribution

Inspection of Figure 8 yields the conclusion that a reasonable agreement between the

model generated values and the nominal hyperbolic fit to the experimental data is obtained;

the underestimation of approximately 1 nm at extended ageing times is consistent with150
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the raw experimental data. Furthermore, it can also be observed through comparison of

the relative first and third quartiles of both the experimental and calculated distributions

that the model is remarkably successful in replicating the shape of the distribution as well.

This result is marked as it provides evidence that fixing the aspect ratio evolution has little

detrimental impact on the more significant major radius statistics.155

Figure 8: Particle size distribution density trend calculated for γ′′ precipitates in Alloy 625 aged
at 650◦C. The data points correspond to mean values with the error bars indicating the first and
forth quartiles of the distribution. Experimental data points and their hyperbolic which is input
to the model are shown for comparison.

5.3. Particle Number Density

Before an accurate comparison with experimental data can be made, it is first necessary

to adjust the model dataset such that it corresponds to a system with a molar volume

equivalent to the relative matrix value used in the calculation of the experimental statistics.

In this case derived from the measurements of Sarkar et al. [35]). Subsequent to such an160

operation, Figure 9 highlights the fact that an extremely good replication is achieved by
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the model albeit with an increasingly small divergence with time. The existence of such

a separation is not surprising owing to both the lack of competing precipitate phases for

niobium (such as carbides) in the model and the slightly smaller width of the distributions in

Figure 8. A smaller distribution width necessitates a higher number density must be created165

to generate the same precipitate volume fraction as that observed in the real system.

Figure 9: Calculated and experimentally observed number density evolution for γ′′ particles

5.4. Interfacial Energy

Rather than a true interfacial energy as previously defined, it turns out that the actual

value of ζEk in the model is that of an effective energy accounting for both the interfacial

energy and the effect of changing coherency on the misfit strain. In other words, as the

calculation of misfit strain is based principally on the lattices of precipitate and matrix always

retaining full coherency and because the model does not include an appropriate reduction for

the strain which accompanies the transition to a semi-coherent or fully incoherent interface in

the real system, the value of ζEk must change to compensate. The mathematical contribution

17



of this phenomenon to ζEk can be derived from the free energy equation (Equation 5) as per

Equation 11, where ZE
k corresponds to the actual interfacial which should be attributed to

the ends of the cylindrical precipitates constructed in the model and Λk is the contribution

from the reduction in misfit strain.

ζEk = ZE
k +

8ρk
3ξ2k

ΛE
k (11)

Whilst non-trivial, successful deconvolution of the two contributions to the output ζEk

values can be achieved under the condition of a fixed U value (as defined in Equation 12)

through consideration of their impact on the evolution of the interfacial energy at constant

aspect ratio: ζEk (ρα=constant) happens to be well fitted by a second order polynomial, meaning

that the reasonable assumption that ZE
k (ρα=constant) shares the same form generates the

relations in Equation 13. Consequently, comparison of the polynomial relations detailed in

Equation 14, calculated from the evaluation of the coefficients Aζ , Bζ and Cζ over all aspect

ratios, indicates the value of Bζ should also follow a second order polynomial if the influence

of the factor 8Λk[3ξ
2
k]

−1 is removed. Therefore, as the degeneration of the precipitate-matrix

interface should be at a minimum at the start of precipitate nucleation and growth, the

mathematical description of BZ and (from its remainder) 8Λk[3ξ
2
k]

−1 can be evaluated from

Bζ by fitting a second order polynomial to data points corresponding to high aspect ratios.

U =
s
∑

i=1

(cki − c0i)
2

c0iD0i

(12)

ζEk = Aζ(αk)ρ
2
k +Bζ(αk)ρk + Cζ(αk)

Aζρ
2
k +Bζρk + Cζ = AZρ

2
k +BZρk + CZ +

8ρk
3ξ2k

ΛE
k

Aζ = AZ Bζ = BZ +
8

3ξ2k
ΛE

k Cζ = CZ

(13)

18



Aζ = A1
ζ(U)α2

k + A2
ζ(U)αk + A3

ζ(U)

Bζ = B1
ζ (U)α7

k +B2
ζ (U)α6

k +B3
ζ (U)α5

k +B4
ζ (U)α4

k +B5
ζ (U)α3

k +B6
ζ (U)α2

k +B7
ζ (U)αk +B8

ζ (U)

Cζ = C1
ζ (U)α2

k + C2
ζ (U)αk + C3

ζ (U)

(14)

Using this methodology over a range of U values the coefficients in Equation 14 are

defined according to the surfaces in Figure 10. The resultant separate/deconvoluted con-

tributions to the ζEk distribution (Figure 11) provide evidence of a concomitant increase in170

interfacial energy and reduction in misfit strain energy evolution consistent with precipitates

becoming increasingly incoherent with the matrix as they grow.

Analysis of the evolution of the contributions to the mean interfacial energy when av-

eraged over the entire particle surface (i.e. ζk) with the mean aspect ratio as presented in

Figure 12 shows the data to be consistent with the inclusion theory of Eshelby [41, 42]. That175

is to say, a decrease in the aspect ratio is accompanied by both an increase in the interfacial

energy and a drop in the elastic energy as evidenced by the trends of ZE
k and the misfit

strain energy reduction (8ρkΛ
E
k [3ξ

2
k]

−1) respectively. Furthermore, extrapolation from the

data series shows conformity for the asymptote in the misfit reduction with the definition of

γ′′-matrix incoherency made by other authors in Alloy 718 [27, 38, 36]; typically an average180

major radius of around 50 nm (cf. Figure 8) and aspect ratio of <0.2.

The most appropriate comparison of the dynamic interfacial energy value produced by

the model with those detailed in the literature can seemingly be made by identifying the

value for Zk for an average precipitate at the corresponding values of the misfit strains ǫ11

and ǫ33. Unfortunately as shown in Table 2, however, such an approach is fundamentally185

flawed due to the large disparity (unaccounted for simply by temperature differences) in the

relative magnitude of the two variables e.g. when ǫ33 = 2.86 × 10−2 Devaux et al. state

19



(a) (b)

(c) (d)

Figure 10: Contours for the coefficients in Equations 13 and 14 a) Aζ , b) Bζ , c) BZ and c) Cζ .
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Figure 11: ζEk evolution for γ′′ particles together with its deconvoluted contributions from ζEk and
the reduction in misfit strain energy (8ρkΛ

E
k [3ξ

2
k]

−1). Data points correspond to average values
and the error bars to the first and third quartiles of the interfacial energy distribution.

ǫ11 = 6.67× 10−3 whereas the fits in Figure 5 show ǫ11 = 2.2× 10−3.

Table 2: Literature values for the interfacial energy and misfit strain between γ′′ precipitates and
the matrix of nickel based alloys.

System
Interfacial

ǫ11(×10−3) ǫ33(×10−2)
Energy (mJ)

Cozar et al. [38]
Fe 30.8-Ni 145 9.4± 0.3 3.72± 0.06

9.1-Ta 185 7.0 3.46

Devaux et al. [27] Alloy 718 97± 17 6.67 2.86

Slama et al. [36] (750◦C, 4h) Alloy 718 − 8.9± 3.1 2.96± 0.30

This Study (Average Precipitate) Alloy 625 0 → 51.84 → −23.5 → 3.7

The cause for this significant disagreement with the misfit strains and, ultimately, the
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Figure 12: Evolution of the average values ζk, Zk and 8ρkΛk[3ξ
2
k]

−1 with average aspect ratio
calculated from their relative distributions.

interfacial energies listed by both Cozar et al. [38] and Devaux et al. almost certainly arises190

due to the different systems each is associated with and the assumptions made in their

derivation: With respect to the results of Cozar et al., whilst the authors note that the

value for the interfacial energy is probably enhanced due to the loss in coherency between

the γ′′ precipitates in the majority iron matrix as opposed to a majority nickel one, it is far

more likely that it is the incorporation of tantalum rather than niobium leading to much195

a longer cγ′′ lattice parameter (whilst leaving aγ and aγ′′ relatively unchanged) which is

responsible for incompatibility with the model Zk and ǫ33 values. In contrast, although

the values calculated by Devaux et al. [27] are apparently principally based on values for

the lattice parameters of niobium containing γ′′ measured by Wagner et al. [43] at 750◦C,

comparison with those of Slama et al. [36] and (for ǫ11) Cozar et al. [38] in Table 2 suggest200

they represent a severe underestimate owing to too large of a value being utilised for aγ.

Assuming all other factors in the free energy balance equation are approximately equivalent
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to those used in the model, the result of this underestimation will be a compensatory over

estimation of the interfacial energy Zk cf. for an average model precipitate at 650◦C when

ǫ11 = 6.67× 10−3, α = 0.57 and Zk = 9.22 mJ.205

In the light of the problems discussed for the literature interfacial energy values calculated

for γ′′ precipitates, one can only conclude that their conformity with respect to the order

of magnitude evolution of the modelled data shows broad agreement is achieved. Similarly,

owing to their different structure, composition, range and probable analogous problems with

their applicability relating to their derivation, alternative comparison to values calculated210

for γ′ precipitates in Ni-Ti and Ni-Al systems such as those reassessed over many years using

the LSW theory by Ardell [44, 45, 46] of ca. 6.6-94 mJ also yields only a successful order of

magnitude check.

6. Conclusions

Drawing on many mathematical relations described in the literature, a modified SFFK215

model for γ′′ precipitates in Alloy 625 has been created which produces statistics for precipi-

tate number density, aspect ratio, major radius and interfacial energy. Some minor disparity

with experimental values gathered both in this study and described in the literature is ev-

idenced as a consequence of assumptions made both in their derivation and by the model.

However, based on the degree of precision desired for the appropriate calculation of mechan-220

ical properties such as material hardness for material manufacture and service performance

the model data can be considered as an appropriate reproduction. To the author’s knowl-

edge, this study is the first instance of such statistics being calculated for γ′′ precipitates and

also for the production of a dynamic value of the interfacial energy in a class type computa-

tion. Ultimately, the outlined methodology derived with respect to γ′′ precipitates can allow225

for the calculation of similar statistics in many other spherical and spheroidal (including

needle-shaped) precipitate systems (making appropriate shape corrections consistent with
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Svoboda et al. [14]).
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