
This is a repository copy of Dust devil dynamics.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/104394/

Version: Accepted Version

Article:

Horton, W., Miura, H., Onishchenko, O. et al. (5 more authors) (2016) Dust devil dynamics.
Journal of Geophysical Research: Atmospheres, 121 (12). pp. 7197-7214. ISSN 
2169-897X 

https://doi.org/10.1002/2016JD024832

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Dust Devil Dynamics

W. Horton,
1,2

H. Miura,
3
O. Onishchenko,

4,5
L. Couedel,

2
C. Arnas,

2
A.

Escarguel,
2
S. Benkadda,

2
V. Fedun

6

1The University of Texas at Austin, USA.

2Laboratorie de Physique des Interactions

Ioniques et Moleculaires, Centre National de

la Recherche Scientifique/Aix–Marseilles

Universities, 13397 Marseilles, France.

3National Institute for Fusion Science,

509–5292 Toki, Japan.

4Institute of Physics of the Earth, 10 B.

Gruzinskaya, 123242 Moscow, Russian

Federation.

5Space Research Institute, 84/32

Profsoyuznaya str., 117997 Moscow,

Russian Federation.

6University of Sheffield, Mappin Street

Sheffield, S1 3JD United Kingdom.

This article has been accepted for publication and undergone full peer review but has not been through
the copyediting, typesetting, pagination and proofreading process, which may lead to differences
between this version and the Version of Record. Please cite this article as doi: 10.1002/2016JD024832

c⃝2016 American Geophysical Union. All Rights Reserved.



Abstract.

A self–consistent hydrodynamic model for the solar heating driven onset

of a dust devil vortex is derived and analyzed. The toroidal flows and ver-

tical velocity fields are driven by an instability that arises from the inver-

sion of the mass density stratification produced by solar heating of the sandy

surface soil. The nonlinear dynamics in the primary temperature gradient

driven vertical air flows drives a secondary toroidal vortex flow through a

parametric interaction in the nonlinear structures. While an external tan-

gential shear flow may initiate energy transfer to the toroidal vortex flow,

the nonlinear interactions dominate the transfer of vertical–radial flows into

a fast toroidal flow. This secondary flow has a vertical vorticity while the pri-

mary thermal gradient driven–flow produces the toroidal vorticity. Simula-

tions for the complex nonlinear structure are carried out with the passive

convection of sand as test particles. Triboelectric charging modeling of the

dust is used to estimate the charging of the sand particles. Parameters for

a Dust Devil laboratory experiment are proposed considering various work-

ing gases and dust particle parameters. The nonlinear dynamics of the toroidal

flow driven by the temperature gradient is of generic interest for both neu-

tral gases and plasmas.
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Key Points.

◦ Main point #1: Surface heating drives unstable gravity waves that develop

into complex dust devil vortices.

◦ Main point #2: Toroidal rotation in dust devils evolves form the driven

vertical flows from the surface layer producing complex 3D structures.

◦ Main point #3: Validation with laboratory experiments of the complex theory-

simulation model of the dust devil will improve weather predictions.
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1. Introduction

Dust devils are localized, complex vortical structures driven by inverted temperature

gradients over hot, dry sandy soils and give one of the possible mass flow configurations in-

ferred from the dust devil field data taken from Balme and Greeley [2006]. Figure 1(a)-(b)

show the structure given by Balme and Greeley. Figure 2 gives our version of the electrical

structure from the differential motion of the dust, aerosol, particles from the triboelectric

charging of the sand transported by the hydrodynamic flows reported in the field obser-

vations along with knowledge from plasma physics of toroidal structures. In the lower

core of the structure the atmospheric flow patterns are of rising hot air. Outside the core

there is falling of cooled air. From the field data there is also the tangential, and thus a

toroidal flow velocity vθ shown in Fig. 2. The toroidal flow adds to the vertical flow to

produce the swirling helical structures of dust devils.

The vortex structure moves horizontally so as to feed on new layers of inverted mass

density material, thus maintaining the power driving the kinetic energy of the vortex

against friction and viscosity. While external horizontal wind shear may enhance the

strength of the vortex, external sheared flow is not an essential ingredient in our analysis,

owing to the nonlinear transfer of energy from the poloidal to the toroidal flows.

The solar heating of the surface layer of air at atmospheric pressure creates convec-

tively unstable layer with the temperature gradient larger than the adiabatic gradient.

The pressure gradient term contains the buoyancy forces and gives the eigenmodes for the

Brunt–Väisälä frequency of the vertical/horizontal convection. The condition when the

square of the Brunt–Väisälä frequency is negative corresponds to the Schwarzschild crite-
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rion [Schwarzschild, 1998] for atmosphere instability against convection. The dynamical

rate of growth is estimated from (g/Lp)
1/2 where the mass density scale length Lp is much

less than the pressure gradient scale height H in the hot desert atmosphere. For incom-

pressible motions in a gas with adiabatic gas constant γ the formula for the Brunt–Väisälä

frequency becomes (gd ln θ/dz)1/2 where θ is the potential temperature for the gas. The

unstable air dynamics drives an upward and horizontal air flow from the energy released

by gravity from the reversed mass density in the hot–surface air layer. The instability

follows simply from the formulas for internal gravity waves with the equation of state for

air. The critical vertical–temperature gradient for the onset of the dust devil vortex is

derived and approximated as observed of 1-10oC/m, in the first few meters of hot surface

air over the sandy soil.

As the critical temperature gradient is reached, the low–frequency f < mHz internal

gravity waves become [bifurcate] complex exponential growing modes. These unstable

gravity waves produce vertical–horizontal vortex flow structures rising from 100m to 1 km

with their vorticity vector ω = ∇× v in the horizontal plane. Without external sheared–

horizontal winds the flow becomes unstable through a nonlinear bifurcation to a horizontal

toroidal flow that can exceed the velocities of the original vertical–horizontal flow. The

higher–speed toroidal or tangential flow creates a lower–pressure region in the core of the

dust devil structure that has been measured in several field experiments and modeled in

several computer simulations [Houser, et al., 2003].

The dust is pulled up in the core by the frictional drag on the air and the electrostatic

repulsion owing to electric charge differences between the smaller and large diameter dust

particles from the triboelectric effect. The vertical/horizontal flow has a toroidal vorticity
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which either lifts the dust and sand directly or balances the downward gravitational force

on the sand sufficiently to allow electrostatic forces from triboelectricity to lift the smaller,

lighter sand and dust into a high rising column [Kok and Renno, 2006]. The bouncing

of the sand, called saltation, transfers weakly–bound surface electrons from the larger

to the smaller diameter particles (sand – principally SiO2 during the collisions [Lacks

and Levandowsky, 2007]. Each grain forms a small capacitor with capacitance given by

Cd = 2πϵ0d where d is the diameter of the grain and ϵ0 is the free space permeability.

The vertical stratification of the grains by mass separates the particles so that the lighter

negatively–charged particles rise to the top of the vortex structure as shown in Balme

and Greeley [2006]. The result is a large vertical electric field and a large electric dipole

moment shown as P . The first observations [Freier, 1960; Crozier, 1970] on dust devils

report measuring a kV/m vertical electric field and give estimates of the electric dipole

moment PE of order a Coulomb–meter red[C-m] from the first data on dust devils. This

electric field then enhances the pickup, or lifting, of the smaller sand grains as shown

in the experiments of Kok and Renno [2006]. Thus there is feedback loop in the charge

separation that builds up the electric dipole moment and the lifts the negatively–charged

grains of sand to considerable heights H > 100m. Since the vortex structure is dynamical

with significant fluctuations, the oscillations of the charged dust generates radio frequency

(RF) waves from the oscillations of the charges as well as an acoustical signal that is

heard and recorded in movies of dust devils. In addition, the circular vortex motion of

the charges creates a fluctuating magnetic field.

Houser, et al. [2003], with data taken in July 2000, outside Boulder City, Nevada, gave

typical dust devils with 2R0 ∼ 10m diameter and H ∼ 100m height. The electromagnetic
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emission was recorded at two bands: 5-20Hz and 30-50Hz. The peak emission is steady

for 10 s and decreases over the next 25 s as shown in magnetic spectrograms in Farrell, et

al. [2000]. In June 2001 a campaign was carried out in Arizona 5 km southwest of Eloy,

Arizona with scientists from GSFC, UC Berkeley, Glenn RC, Ames, JP:L and Optech, Inc.

This campaign used a variety of instruments simultaneously integrating the data at high

speed of 40 kS/s. Studies of the individual events are found in Renno, et al. [1998] and

a summary of the MATADOR 2002 field test is given in Renno, et al. [2004]. Since that

early study the nature of the wind–driven pickup of the grains by triboelectric charging

has been parameterized in more detail by several research groups [Lacks and Levandowsky,

2007].

Kok and Renno [2006] observe that mineral dust aerosols have a strong effect on the

Earth’s climate by absorbing and scattering solar radiation. The dust also serves as a seed

for the formation of condensation of ice nuclei [Twomey, 1974; DeMott, et al., 2003; Kok

and Renno, 2006]. The current limited understanding of the level of dust in the atmosphere

leads to large uncertainties in prediction of global climate changes [Intergovernmental

Panel on Climate Change, 2001, 2007]. Owing to their micron to hundred nanometer size,

mineral dust aerosol interactions have relatively large interparticle forces when compared

with forces from the wind stress forces. These interparticle forces inhibit the dust aerosols

from being directly lifted by surface winds. As noted above, the smaller charges are

charged negatively and the larger particles charged positively owing to differences in the

surface quantum states. Lacks and Levandowsky [2007] test formulas for the probability

distributions for dependence of the charges versus the radius of the particles in molecular

dynamics simulations. Saltation is the process by which the sand and dust particles are
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moved by the wind, bouncing along the surface against the force of gravity. The collisions

between the larger and smaller bouncing particles gives the smaller particles a negative

charge. There is a complex interplay between gravity, electric forces and wind shear stress

that ejects, or lifts, the dust into the air. Once the small mineral particles are ejected they

are transported by the frictional force from the wind and vortex flows for long distances

and to high altitudes. Kok and Renno [2006] report laboratory data on the critical electric

field required to lift sand grain particles of several sizes. They report experiments with

Sonoran desert particles in Arizona ranging from 20 to 300µm with fourteen sample sizes

to test the formulas derived for the lifting conditions. The experiments show the critical

electric field above which the particles are lifted. The authors give a formula for the wind

velocity threshold combined with the electric field threshold for lifting sand particles.

Noting that dust grains with a large–to–small radius ratio of five have a ratio of the

electrical capacitance of 5. Then elastic collisions of ensembles of particles show that the

loosely bound surface electrons on the larger dust grains are transferred to the smaller

diameter dust grains. The complex solid state physics of the process is described by

triboelectric theory. Molecular dynamics simulations for ensembles of dust grains with

these rules applied on each collision show that the smaller diameter particles trap more

electrons transferred from the larger diameter dust grains. After 105 collisions [Lacks

and Levandowsky, 2007] show that bimodal charge distributions develop with the smaller

diameter dust have a negative charge and the large dust grains having a positive charge.

The rules for the charge transfer involve the equalization with Fermi level electron states

during the period of contact in the collision with loosely bound electrons in surface effect

energy states.
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One of the earliest reports estimating the electric field is Freier [1960] from dust dev-

ils observed in the Sahara Desert, West Africa at the time, during the a solar eclipse

expedition. The report notes the field reaches at least 400V/m and could be modeled

by an electric dipole moment M = 0.6Cm (reported as 1.7 × 109esum at the height of

h = 21.4m with a speed of 4m/s). During September the frequency of large dust devils

was about one per day. The electric field was measured with an electric field mill. A

report by Crozier [1970] on Dust Devil Properties gives a table of data for 17DDs in

New Mexico; total charges estimated from 0.001C to 0.05C and charge densities ranging

from 1.0 × 1011 to 9 × 1017 electrons/m3. The electric dipole moments reported ranged

from 0.01 to 5C-m. For one of the middle–sized DD the electric field estimate is given

as 1.0 × 1011 to 9 × 1017 as 1.5V/m but the report notes that 3 kV/m would exceed the

range of the instrument. The report states the dust devils are negatively charged. The

observer notes that the shape of the dust devil changes on a minute time scale. Balme and

Greeley [2006] carried out a series of laboratory experiments to identify key parameters

and their values. Balme scans over diameters of 100, 200 and 300µm with ensembles of

20,000 test particles injecting the particles in a 50m area around the core of the vortex at

the rate of 400 particles per second for 5 seconds. This is equivalent to an injection rate of

10 kg/s or comparable to that reported in Renno, et al. [1998]. The lighter particles stay

near the core and the heavier ones move with helical orbits around the core migrating

to the edge. This is understood in terms of the difference in the centrifugal force acting

on the particles. While the basic reference particle is quartz for the sand particles of the

desert soils, one notes that dust devils also occur in areas with some vegetation [Oke, et

al., 2007] and some simulations were carried out with wood density particles [Greeley, et
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al. (2005)]. There are observations by Mars explorers of giant dust devils adding further

to the interest in the complex dynamics [Farrell, et al., 2004]. A curious event is noted

on the NASA website of the change in the performance of a solar panel array after the

passage of Martian dust devil over the panel. There are many large tracks over the surface

of Mars from the dust devils.

The topology of the combined horizontal circular motion and up–down vertical motion

of the neutral atmosphere and the charged sand/dust particles makes the phenomenon

of interest to plasma physics, triboelectricity and to hydrodynamics. The axisymmetric

toroidal plasma physics confinement experiments exhibit a coupling between the driven

poloidal flow and a spontaneously–generated toroidal rotation [Horton, 2012]. In addition,

the plasma physics interest in dust devils arises from the rapid transport of the frictional

triboelectric charging of the micron–sized molecular dust grains that are analogous to

charging of molecular clumps of material from the surface of the vessel containing the

hot fusion plasma. The core plasma is at temperatures greater than the core of the sun

[10KeV ∼ 108K] and the coated walls are a few meters away from the core. While there

are important differences in the microscopic physics, the polarization of the charged grains

is a common feature and the associated electric forces on the dust grains are important

in the transport modeling. The plasma physics interest in dust devils arises also from the

similarities between the electrodynamics of the charged particles in dust devils and the

dynamics in dusty (complex) laboratory plasmas even though the charging mechanisms

are different: triboelectric charging in the case of dust and collisions between electrons

and molecules in the second case. Secondly, large vortex structures, i.e. ‘Solar Tornado’
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are commonly observed convectively–driven regions of the solar atmosphere [Wedemeyer,

et al. [2012] and Li, et al. [2012].

We use simple parameterizations from the Lacks and Levandowsky [2007] experiments

in our hydrodynamic model to calculate the amount of sand and mineral dust raised in

a dust devil. The explicit of the hydrodynamics may add confidence in the meteorology

communities’ ability to estimate and forecast the amount of material in the atmosphere to

be used in global circulation models of the troposphere. From the particle charge distri-

bution versus particle radius distribution shown in Lacks and Levandowsky [2007], we can

estimate the vertical electric field from the stratification of the particles. As an example,

we note that the dust storms in the Panhandle in northwest Texas bring significant layers

of dust into homes in Austin and San Antonio, more than 500 km southeast. The dust

storms can reduce visibility to 1 km [Goudie, 1983].

In Sec. 2(a) the generation of the dust devil by the unstable vertical convection is

derived in the vertical/horizontal flow velocities which is driven by the vertical tempera-

ture gradient. In Sec. 2(b) the nonlinear coupling of the toroidal vorticity to a vertical

vorticity is derived. The energy conservation and the flow of the cross–helicity equations

are analyzed. In Sec. 3.2 the numerical simulations are discussed and the transport of

the dust is calculated. Sections 3 and 4 discuss the desert observational data and the pro-

posed laboratory experiment required to validate the theory-simulation model for weather

forecasting. Section 5 gives the conclusions.

2. Dust Devil Generation from Temperature Gradients

A self–consistent hydrodynamic model for the generation of a dust devil vortex arises

naturally from the unstably stratified atmosphere as do other cyclonic/anticyclonic struc-
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tures. The poloidal flows [horizontal/vertical vr, vz flows] are driven by the instability that

arises from the inversion of the mass density stratification (a form of the Rayleigh–Taylor

instability) from solar heating of the air by the hot sandy surface soil. We show that

the initial unstable vertically stratified atmosphere results in large–scale toroidal motion

generating the dust devil vortex structures. The velocities are low compared with the

speed of sound 300m/s and thus we take them as incompressible as given by the stream

function Ψ(r, z) where vr = −(∂Ψ/∂z) and vz = (∂Ψ/∂r).

The formation of dust devils is associated with an intrinsic atmospheric instability

driven by the solar heating. The relatively low diffusive heat transfer and absorption of

thermal radiation emitted by the ground produces the temperature stratification with

cooler, denser gas over the warmer, less dense gas that naturally unstable. The instability

manifests itself as convective plumes and vortices as shown in Sec. 3 with 3D simulations.

The dust devil is a visible manifestation of a vortex that has lifted dust and sand directly

from the surface. In these vortices, warmer air from the ground travels upward in the

central region, and cooler air is pulled downward both within the core and the outer

regions surrounding the vortex. Dust entrained in the upward moving fluid elements

gives rise to the opaque central region. Renno, et al. [1998] describes the process in a

Lagrangian sense, with cooler air down–drafted in the outer regions to merge with the

ground heated fluid elements that are drawn inward to the dust devil center. Then heated

elements propagate upward again in the central region, thus forming a heat engine with

the ground as the primary energy source. This mechanism has also been proposed to

explain water spouts [Renno and Bluestein, 2001].
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2.1. Two– and three–dimensional dust devil dynamics

In the gravitational, unstable lower level of the air, there are two types of nonlinear

vortices. They are 2D rolls and three–dimensional vortex rings. For the two–dimensional

rolls we take axis of the roll in the y–direction which wraps in to ring becoming the

azimuthal direction ϕ in the vortex ring in the 3D vortex. The vertically–upward fluid

motion with velocity vz and the horizontal motion with velocity vx. For 2D incompressible

flow the velocity in a vertical slice across the vorticity vector is called the poloidal plane.

In this plane the velocity vector is derived from the stream function Ψ as follows:

v = ŷ ×∇Ψ =

(

∂Ψ

∂z
, 0,−∂Ψ

∂x

)

= (u, v, w). (1)

The curl (rotation) of momentum equation gives

∂

∂z
ρ
∂

∂z

∂

∂t
Ψ+

∂

∂x
ρ
∂

∂x

∂

∂t
Ψ = g

∂

∂x
ρ. (2)

The conservation of mass for the incompressible 2D flow is

∂ρ

∂t
− ∂Ψ

∂x

∂ρ

∂z
+
∂Ψ

∂z

∂ρ

∂x
= 0. (3)

The amplitude of the waves increases with height as the density drops from the conser-

vation of energy.

In the 3D vortex flow we use u = vr and w = vz for the velocity flow in the poloidal

plane and vφ is the toroidal velocity. Here (r, ϕ, z) are the cylindrical coordinates. We

will assume the mean fields averaged over the fluctuations have symmetry in the toroidal

angle variable ϕ. The conservation equation for the airborne dust of mass density ρd,

along with the surface layer source term Sd, is given by

∂ρd
∂t

+
1

r

[

∂ρd
∂r

∂ψ

∂z
− ∂ρd

∂z

∂ψ

∂r

]

= Sdw(zm, x, t), (4)
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where there is a source of dust proportional to the upward air velocity near the surface

at zm. Equation (4) is in the limit of vanishing slippage between the dust and air flow

in a small–surface layer at z = zm. The source of the dust at the layer zm is defined

where dw/dz = 0 or w is a maximum and then Sd is the surface density at the top of the

boundary layer of the bouncing/saltating dust, as described in Fig. 2.

In the approximation where the density under the operators on the left–hand side of

Eq. (3) can be taken as constant the operator on ψ is the Grad–Shafranov operator of

equilibrium toroidal MHD. The operator is denoted by ∆∗ in plasma physics and numerous

programs are available for inverting the Grad–Shafranov problem. The linearized forms

of the density–weighted toroidal–vorticity equation determines the eigenmodes of the con-

vection. For the vertical mass density function ρ(z) the Laplace transform of exp(γt) of

the toroidal vorticity equation gives

r
∂

∂r

ρ

r

∂

∂r
Ψ+

∂

∂z
ρ(z)

∂

∂z
Ψ =

ρN2(z)

−γ2 r
∂

∂r

1

r

∂

∂r
Ψ. (5)

In Eq. (5) the function N2(z) is the Brunt–Väisälä frequency from the vertically mass

density profile ρ(z).

In the limit of weak stratification above the unstable mixing layer, we can reduce the

full nonlinear dynamics as incompressible 3D turbulence with

ω = ∇× v,
∂ω

∂t
+ v · ∇ω = ω · ∇v +∇ρ× ∇p

ρ2
(6)

where ω is vorticity and gravity is implicit in the mass density stratification ρ. There

is now a Poisson equation to solve to the pressure distribution which will have a lower–

pressure core in the dust devil to balance the centrifugal force from the higher rotational

velocity. The pressure drop in the core is measured in the field data. The pressure profile
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follows by solving the Bernoulli equation

∆

(

p

ρ
+

1

2
v2
)

= −∇ · (v × ω). (7)

Once the convection has reached a steady state, a simple, classical vortex solution of the

axisymmetric 3D Navier–Stokes equations – without the vertical stratification – applies.

The steady state solution is the Burgers vortex. (Burgers vortex is an exact solution to

the Navier–Stokes equations governing viscous flow.) We apply this solution and use it

to assess the pressure field from the computer simulations of incompressible vortex flow.

The Burgers vortex gives the pressure drop from the high speed flows in the core of the

dust devil that are an expression of the Bernoulli law. The Bernoulli law in the vortex

flow states that the cross–product of the vorticity and flow velocity vectors give rise to

a force balancing the gradient of the dynamical pressure that is the sum of the thermal

pressure per unit mass and the kinetic pressure from flow velocity. The cross product of

the vorticity vector and the flow velocity are analogous in plasma physics vortex problem

to the j×B force where the incompressible velocity field plays the role of the magnetic

field and the vorticity is the current density j.

The core of the vortex is a viscous region where the flow is converted from radially–

converging to upward–increasing velocity. The flow in this core region is close to that

given by the Burgers vortex with stream function Ψ(x, z) = ωz = αr2z/2, which gives the

flow fields

vr = −αr/2
vz = αz
vφ = uφ(r).

(8)
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The toroidal flow velocity vφ is determined by the radial force balance equation and the

equation for the axial vorticity ωz with viscosity ν. The toroidal velocity is given as

uθ =
αΓ

2πν

(

1− exp

(

−αr
2

4ν

))

. (9)

Returning to the radial force balance equation and calculating the radial integral of the

centrifugal acceleration, one obtains the depression in the pressure field given by

p

ρ
=
po
ρo

− 1

2
α2z2 − 1

8
α2r2 −

(

αΓ

2πr

)2 ∫
∞

r
dr1r

−3
1

[

1− e−α(r1)2/4ν
]2
. (10)

In this vortex [Kida and , 1998] the pressure drops in the core of the dust devil by

p− po
ρo

≃ −(αΓ/2π)2

2r2
for r ≥ 2.24

(

ν

α

)1/2

. (11)

Measured pressure drops in the core of the dust devils are of order 100Pa [Balme and

Greeley, 2006]. The pressure drops to a local minimum at rmin given approximately by

rmin = 2
(

Γ

2π

)

1

2

(

ν

r2dα

)1/3

. (12)

The exponential growth of the vertical vorticity from the nonlinear interactions between

the poloidal and toroidal velocities in the nonlinear dynamics is derived following the

analysis of Onishchenko, et al. [2014].

2.2. Axisymmetric solutions of the 3D dust devil flows

In the current study of the waves in the atmosphere we neglect the influence of dissi-

pative processes, i.e. viscosity, thermal conductivity, heat flow from outside, friction, etc.

The initial set of equations is the equation of motion (18) and (14) and the transport

equation (19) for the potential temperature θ = p1/γ/ρ:

dv

dt
= −1

ρ
∇p+ g, (13)
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and

dθ

dt
= 0. (14)

Here ρ and p are the density and pressure respectively, d/dt = ∂/∂t + v∇ is the Euler

(convective) time derivative, v is the velocity of matter, g = −gẑ is the gravity acceleration

and ẑ is the unit vector directed along the vertical axis z. We use the ideal gas law

p/ρT = const, where T is the temperature to complete the set of equations .

In terms of the vorticity vector, ω = ∇× v, the dynamics reduces to

∂ω

∂t
+ (v · ∇)ω = (ω · ∇)v +

1

ρ2
[∇ρ×∇p]. (15)

As a result, from Eqs. (13) and (14) one obtains a system of two nonlinearly coupled

equations for the poloidal stream function ψ and the normalized mass density fluctuation

χ = gρ̃/ρ0 combine to give

∂

∂t

(

∆∗ψ +
d ln (ρ0)

dz

dψ

dz

)

+
1

r
J (ψ,∆∗ψ)

= −r∂χ
∂r

+
r

ρ20
J(ρ̃, p̃) (16)

coupled to

r
∂χ

∂t
− ω2

g

∂ψ

∂r
+ {ψ, χ} = 0 (17)

where

∆∗ = r
∂

∂r

1

r

∂

∂r
+

∂2

∂z2
, (18)

In obtaining Eq. (17) we neglect by the wave–pressure perturbations compared to

the density perturbations, considering low–frequency waves when (ω2/c2sk
2
r)Lρ∂/∂z ≪

1, where ω and kr are the characteristic wave frequency and respective wavenumber,
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L−1
ρ = d(ln ρ)/dz is the characteristic density inhomogeneity scale in vertical direction.

Beforehand, we consider that |vz| ≫ |vr|, i.e. consider that ∂/∂r ≫ ∂/∂z.

In the linear approximation one derives the growth of the vertical vorticity from initial

poloidal flows. From equations (16) and (17) one finds that

∂2

∂t2

(

∆∗ψ − ψ

4L2
ρ

)

= −ω2
g

(

r
∂

∂r

1

r

∂

∂r

)

ψ. (19)

In the unstably–stratified layer (ω2
g < 0) and in the approximation ∂/∂r ≫ 1/Lρ, we

obtain from Eq. (19) ψ ∝ exp(γt) where γ = |ωg|.

2.3. Exponential Growth of the Toroidal Rotation

Consider a simplified model for the stream function

ψ =
αr2z

2
· exp

(

γt− r2

r20

)

, (20)

where r0 is the vortex radius. Then ∆∗ψ = −4α
(

2− r2

r2
0

)

ψ and

vr = −1

r

∂ψ

∂z
= −αr

2
· exp

(

γt− r2

r20

)

(21)

and

vz =
1

r

∂ψ

∂r
= αz

(

1− r2

r20

)

· exp
(

γt− r2

r20

)

. (22)

Thus, we have derived exponentially growing ascending flows vz > 0 in the vortex core

region at r < r0 and the descending flow vz < 0 in the external region at r > r0. The

computer simulations in Sec. 3 of the full hydrodynamics are consistent with this analytic

result but show the flows can be pulsating in time.

ωφ =
∂vr
∂z

− ∂vz
∂r

=
1

r
∆∗ψ = −

(

r2

r20

)(

2− r2

r20

)

ψ. (23)

In the linear approximation one obtains from (15) that

c⃝2016 American Geophysical Union. All Rights Reserved.



∂ωz

∂t
+ vr

∂ωz

∂r
= ωz

∂vz
∂z

. (24)

Thus the parameter α corresponds to the horizontal vorticity at 2rz = r2s , where r
2
s is the

radius at t = 0. To derive the evolution of the vertical vorticity ωz we use

∂ωz

∂t
+ vr

∂ωz

∂r
= ωz

∂vz
∂z

. (25)

For the initial flow ωz = ωz(0, r) is a large scale seed vorticity. Now we consider the initial

state with a small seed initial toroidal rotation given by the vertical vorticity

ωz(0, r) =
v0
R

[

1− exp

(

−r2
R2

)]

(26)

where R is the characteristic radius of the large–scale toroidal component of vorticity

ωz. We consider that R ≫ r0. In the approximation r2/R2 ≪ 1 we have ωz(0, r) =

Ωr2/R2. Taking into account (22) we derive an exponential growth of vertical vorticity

given approximately by

ωz(r, t) = exp

[(

2α

γ

)

· exp
(

γt− r2

r20

)]

. (27)

Thus, we have established that the kinetic energy released by the inverted mass density

stratification is converted into the toroidal flow velocity with exponential growth. The

associated growth is described by Eq. (27) of the vertical vorticity. This exponential

growth of the vertical vorticity saturates in fully nonlinear dynamics as shown in Sec. 3,

when the energy transfer rates come to balance with viscous dissipation and Eckman

friction. In the saturated state complex helical structures arise in the saturated nonlinear

dynamics.
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3. Simulation of the Rotational Spin–up of a Dust Devil

3.1. Outline of the simulations

In this subsection, we solve the compressible Navier–Stokes equations

∂ρ

∂t
= −∂ (ρvj)

∂xj
, (28)

∂ (ρvi)

∂t
= −∂ (ρvivj)

∂xj
− ∂p

∂xi
+

2

Re

∂

∂xj

(

Sij −
1

3
δij
∂vk
∂xk

)

− ρgδi,3, (29)

∂ET

∂t
= − ∂

∂xj
[(ET + p) vj] +

1

M2
0Pr Re(Γ− 1)

∂2T

∂xj∂xj

+
1

Re

∂

∂xj

{

vi

[(

Sij −
1

3
δij
∂vk
∂xk

)]}

− ρv3g, (30)

ET =
p

Γ− 1
+

1

2
ρvivi, (31)

p =
1

ΓM2
0

ρT, (32)

Sij =
1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

(33)

for the dust devil dynamics. These equations have been normalized by the reference

length L0, the velocity V0, the mass density ρ0, obtaining the reference Reynolds number

Re0 = ρ0V0L0/µ (µ is the shear viscosity), the reference Prandtl number Pr = Cpκ/µ

(Cp is the specific heat at constant pressure and κ is the diffusion coefficient), and the

reference Mach number M0 = V0/c0 where c0 =
√
ΓRT0 is the typical sound speed and Γ

is the ratio of the specific heats. The symbol δi,j is the Cronecker delta. This form of the

Navier–Stokes equations is the same as that in Miura and Kida [1994], and in Miura et

al. [2002, 2004]. In the inviscid and non–diffusive limit µ → 0 and κ → 0, the system of

equations (28)–(33) allows the Grad–Shafranov solution presented in the previous section.

In this section the equations (28)–(33) are solved numerically firstly for the dust devil

problem with no–slip boundary condition at the bottom sand surface and with the free
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boundary condition at the other boundaries. We approximately cut out the vortex solution

at the center of the computational box of the dust devil simulation by the Oseen’s vortex

with an axial flow, embed the solution in the triply–periodic box and simulate its nonlinear

evolution by the use of a pseudo–spectral code, which has been used in Miura [2002,2004],

in order to see the evolution more closely with higher numerical precision.

The numerical simulations have been carried out by the use of the MUlti Theoretical

Subjects Utility/compressible Navier–Stokes 3D (MUTSU/cNS3D) code. This code is

the Navier–Stokes–solver version of the MUTSU/MINOS (MINOS is for MHD In Non–

Orthogonal System) code, which has been used for studies of MHD instability in nuclear

fusion [Miura and Nakajima, 2010]. These codes are equipped with computation modules

to approximate a partial difference either by the fourth–order finite difference scheme,

the eighth–order compact finite difference scheme, or the Fourier–spectral method. In the

MUTSU/cNS3D code, the compressible Navier–Stokes equations (28)–(33) are described

in a fully conservative form and are applicable to generalized curvilinear coordinates,

to rectilinear Cartesian coordinates or in uniform Cartesian coordinates. The applica-

bility of the code to fluid instability has been verified in Miura and Nakajima [2010]

through detailed comparison of simulation results to the linear eigenfunctions of fully

three–dimensional instabilities. Miura and Nakajima [2010] show that strong poloidal

motions can generate still stronger toroidal motions. In this dust devil work we choose

uniform, orthogonal Cartesian coordinates in the three–dimensional space so that the met-

rics are all constant in the space. The essence of our simulations is two–fold: (1) we show

that the swirling motions on a horizontal plane (toroidal flow) is generated autonomously

due to the instability described in the previous sections, and (2) we observe how the sand
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particles are transported in the simulations. Although dynamics of Burgers vortex have

been studied extensively, autonomous generation of a swirling flow due to the instability

of the axial (poloidal) flow in the context of Secs. 2 and 3 is not well studied. Also,

the particle transport of the test particles in the Burgers vortex is not sufficiently stud-

ied in 3D. As we will see in the succeeding paragraph, numerical simulations with these

boundary conditions which generate dust devil flows are a form of the Burgers vortex

with complex axial flows. After we show the generation of the toroidal flow out of the

poloidal flow due to the instability, we take out a central region of the dust devil–like flow

and put in a triple–periodic condition so that the velocities can be resolved on a higher

resolution grid. For simplicity in the second simulation, the temperature is uniform in the

axial (z–direction).

3.2. Numerical simulations of dust devil generation by the unstable vertical

convection

By the use of the MUTSU/cNS3D code, we first carry out a simulation similar to those

in Gu, et al. [2006] by solving Eqs. (28)–(33) for a rectangular box of L1 × L2 × L3 =

4π×4π×10π. The principal difference from the analytic solutions shown in Sec. 3 is that

the equations of the continuity, momenta and total energy are solved numerically with the

viscosity and the heat conductivity, under the boundary condition for the dissipative flows.

The no–slip condition with the initially–given temperature is imposed on the bottom

(ground surface) plane. The absorbing condition with the constant pressure gradient

which stabilizes the upward flow is imposed on the top plane, with gradually–increasing

viscosity for z > 5π. The temperature on the bottom plane is taken as consistent with

that in Gu, et al. [2006]. In the initial condition, the flow is given by Eq. (22) with a
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small–amplitude perturbation. We also allow that the upward velocity is below or above

the Mach number 0.1.

In Fig. 3, the initial velocity vector is shown on (a) (x, z)–plane at y = 0, and in

(b)–(d) on the (x, y)–plane at z ≃ π/4, π/2, 2π, respectively. Figure 3(a) shows how a

column of upwelling air convergent in the core drives an increasing strong toroidal velocity

increasing with height and decreasing with radius. Figure 3(b)–(d) shows that there are

only converging/diverging flows at each horizontal plane and that the flow swirling on the

planes is initially very weak. In Figs. 4 and 5, the velocity vectors on the same four planes

at later times, t = 3.8 and t = 4.8, are shown. It is clear that the swirling motions on the

horizontal plane is strongly enhanced in the course of the time evolution. In these figures

we see the flow velocities increase from the base to the top of the structure. At sufficient

height where the Brunt Väisällä frequency has become strong again the flow turns around

and falls vz(r, z) < 0 with gravity to form the poloidal part of circulation. Though several

mechanisms for generating vertical vorticity in dust devils have been suggested [Ito, et

al., 2013], this is the first clear simulation of the mechanisms. Our simulations show

clearly that the nonlinear phase of the buoyancy instability is transferring energy to the

toroidal flow by the dynamics of the vertical–vorticity equation described in Sec. 3. In the

terminology of atmospheric dynamics, the process is one in which the horizontal vorticity

generated baroclinically where there is a downdraft or updraft region plays a critical role

for generating vertical vorticity through the nonlinear couplings. The observations in

Figs. 3–5 show the details of the process that gives rise to the exponential growth of the

initial seed of horizontal rotation Ω. The figures also show that the fluid motions on the

horizontal planes are not dominated by a single vortex anymore at t = 4.8. The nonlinear
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dynamics moves to complex structures which consist of multiple vortices. The complexity

of flow is studied more closely in the next subsection.

In Fig. 6, the time evolution of the poloidal and toroidal components of the vorticity

squared, ΩH = ⟨ω2
r⟩ + ⟨ω2

θ⟩ and ΩZ = ⟨ω2
z⟩ are shown. Here the brackets indicates the

volume average ⟨·⟩ = ∫ π
0 dr

∫ 2π
0 dθ

∫H/4
0 dz, where x = r cos(θ) and y = r sin(θ). Initially,

ΩH is much larger than ΩZ because of the initial condition. In the initial transient phase of

the simulation t < 1, the averaged horizontal vorticity ΩH decreases. Then ΩH increases

because the vertical flow is enhanced by the buoyancy instability until the growth is

saturated at t = 3. During the time evolution ΩZ is enhanced. The enhancement of

ΩZ is essentially due the conversion of the vertical flow into the swirling motions on the

horizontal plane while conserving energy.

3.3. Vortex core simulations for fine structures in dust devil

Next, we focus on the vortex deformation at the dust devil core. We trim the dust devil

vortex solution at the center out of the computational box, approximately expressing the

solution initially by the Oseen’s vortex (the Burgers vortex without the shear) with an

axial flow, and embed the solution in the triply–periodic box. Then the evolution of the

vortex is simulated by the use of the pseudo–spectral code in order to see the evolution.

In Fig. 7 we show three frames from the pseudospectral computation. The initial

axial flow is similar to that in Eq. (22) but initially uniform in the vertical direction.

The simulation shows the core evolution of the dust devil with sand particles passively

convected. The grains of sand shown as the dots in these three frames rise and fall with

the flow of the neutral atmospheric gas [air]. These three frames in Fig. 7 show an

intermittency in the development of the helical structure of the column. The left frame

c⃝2016 American Geophysical Union. All Rights Reserved.



[001] at early time has a weak helical modulation, the middle frame [150] shows a strong

helical modulation and the right frame [223] at late time has again a smaller amplitude

helical modulation. The time interval spans approximately four revolutions of the dust

devil. The movies show that the structure fluctuates slowly in time as it rotates. Over

the course of 4 rotations we see low mode number m = 2, 3, 4 corrugations develop and

dissolve in the column. Here we give the first, middle and final time structures from the

movie in Fig. 7 after several rotations and frame after several more rotations. The overall

structure is stable for many rotations and these substructures of helical corrugations are

found to come and go in time. We do not attempt to analyze this complex dynamics

further in this work.

Thus, we see the complex nonlinear helical structure results from the combination of

the negative buoyancy of the lower density hot air driven by the solar heating of the

soil. Followed by the onset of the poloidal flow pattern. Once the poloidal flow velocity

has significant energy then any seed perturbation in the symmetry of the flow results in

the exponential growth and saturation of the rotation motion. This complex nonlinear

structure is then robust and moves horizontally easily as small external sheared flows

dictate. In the process the structure finds new low lying areas of heated air to drive the

thermal convection engine for hundreds of rotations.

3.4. Electrically–charged dust particles and their dynamics

The physics of the tribocharging and an estimation of the charge on silica dust particles

for particles between 1-100µm is given in Ireland [2010]. The physical and electrical

properties of the reference dust particles used in the simulation are given in Table 1. The
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dominant mechanical drag force vector FD acting on the dust particles of mass m is

FD(r) = −
(

πd2ρ

8

)

CD |vR|vR, (34)

where vector vR denotes the relative velocity of the particle with respect to the fluid (air).

The drag coefficient CD varies with Reynolds number Re = ρ |vR| d/µ approximately as

CD = 24

(

1 + 0.15Re2/3

Re

)

. (35)

The forces on particles during tribocharging is an active area of research since the processes

are poorly understood, but are used in a number of practical applications [Ireland and

Jameson, 2013]. Ireland and Jameson give comparisons of the force formulas using data

in cylindrical cyclone tribochargers.

For the dust, in addition to this collisional drag force, there are three forces from (1) the

pressure gradient Fp over the diameter d of the dust particle, (2) the buoyancy force FB,

and (3) the drag from the accumulation (mass accretion) of mass Fm. We follow Gu, et

al. [2006] and take these forces as

Fp = −
(

πd2

4

)

∇p

FB =
πd3 (ρp − ρ)

6
g, (36)

Fm =
πd3ρ

12

du

dt
,

where ρp is the mass density of the dust particle and ρ is the mass density of the air.

3.5. Hydrodynamics with test particles

The boundary conditions are that at z = 0 the fluid velocity is v = 0 and the surface

temperature profile is fixed as T (r) = Ta + 0.4(R− r) with Ta = 313K for example. The

sides of the cylinder and the top have Neumann boundary conditions when vr(r = R) > 0,

c⃝2016 American Geophysical Union. All Rights Reserved.



but when there is an inward boundary velocity vr(r = R) < 0, the vortex solutions give the

hourly condition. We compare the results with vt(r = R, z) = 0 with driving tangential

flow vt(r = R, z) = (2m/s)(1− exp(−z)) as used by Gu, et al. [2010].

Gu, et al. [2010] compare their results with wind tunnel data from Dong, et al. [2002],

who express their data in terms of the parameterization of sand transport flux q(z) given

by

qn(z) = a exp
(

−z
b

)

. (37)

Data from Gu’s simulation use the flux parameters as a = 0.01 g/ms and b = 10− 20 cm

with a scan over grain sizes giving that grains of size 100-250µm are most effectively

lifted.

We are currently performing simulations using the hydrodynamic and magnetohydro-

dynamic codes of Miura and Nakajima [2010], using the parameters given by Gu, et

al. [2010]. From experience in Texas, we know that the dust storms in the panhandle and

west Texas bring significant layers of dust even into homes in Austin and San Antonio.

Dust storms can reduce visibility to 1 km [Goudie, 1983].

4. Proposed Laboratory Experiments

The ability to add dust emission models to the Global Circulation Models (GCMs] would

be an important improvement for weather and climate modeling. To start this activity it

would be important and cost saving to test or validate the model with laboratory exper-

iments. Testing the model with atmosphere data would be difficult owing to the many

uncontrolled variables. Thus, we describe in this section a possible validation experiment

for the model. The proposed experiment is shown in Fig. 7. The atmosphere and dust
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are to be contained in a glass cylinder of 0.75-1m diameter and 1.5-2.0m height. The

cylinder will be closed at the bottom by a metallic electrode which will be temperature

regulated. The desired temperature range will be from room temperature up to 400K.

The top of the cylinder will also be closed by a glass electrode with a conductive metallic

layer which will be kept at room temperature. Each electrode will be independently biased

(Vbias ∼ 0 − 5 kV) in order to study the influence of an electric field on the formation of

dust devils. On the bottom electrode, a layer of calibrated dust particles will be spread

(mono–sized particles or a mixture of small and large particles). The material and size

of the dust particles as yet to be defined. The considered size range is 10-1000µm and

the proposed materials are silica, melamine formaldehyde and polystyrene. Gas (dry air,

nitrogen or argon) will be injected in the cylinder by a tube located a few centimeters

above the particle layer and extracted from the system by another tube located below the

top electrode. The pressure inside the cylinder will be controlled in the range 0.5-3 atm.

Experiments in both flowing gas and static gas configurations will be performed.

In order to track the motion of the dust particles, a two–laser sheet illumination system

will be installed. The first sheet will be horizontal and parallel to the lower electrode; its

position will be adjustable. The dust particles will be imaged with a high–speed video

camera placed above the transparent top electrode. The second laser sheet will be vertical

and will be positioned to go through the cylinder axis. A second high–speed video camera

will be used to record the particle motion from the side.

5. Conclusion

We derive the critical temperature gradient condition for the onset of a vertical and

horizontal convection from solar heating of the surface soil. Above the critical temperature
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gradient the internal gravity waves are unstable and grow exponentially in amplitude.

The limit on the growth occurs when the nonlinear coupling of the driven poloidal flows,

meaning the vertical and radial velocity components in the cylindrical model of the dust

devil, become sufficient to drive the toroidal flows. The poloidal flow has toroidal vorticity

vector which through the 3D equations for the vorticity drives a toroidal flow producing a

vertical vorticity. In the core of the structure the vortex is modeled with the Burgers vortex

that includes the viscosity of the air as the dissipation mechanism. A steady nonlinear

state is reached provided the vortex structure moves over freshly heated desert soil to

maintain the strength of the thermal instability in the vertical flow in the core of the dust

devil. A small external shear flow may serve as finite amplitude “kick” or perturbation

to start the nonlinear rotation dynamics and determine the direction of rotation. In the

field reports an approximately symmetric distribution of cyclonic and anti–cyclonic dust

devils are recorded. The 3D nonlinear simulations are shown to verify this sequence of

steps and allows one to visualize in detail with movies and with cross–sectional plots

of the velocity vector flow fields both in the growing phase and the quasi–stationary

nonlinear saturated states of the dust devil. The results show that there is a variety of

nonlinear states available depending on the geometry and the parameters. However, the

states found resemble well those reported in the field data summarized here. Thus, the

simulation code may be useful for building models for the source rate of injecting dust

into the atmosphere for global weather predictions for sub grid–scale sources of dust in

general circulations models.

Here we report new simulations with 3D codes for the complex nonlinear dynamics of

the dust devil that evolves when the near–surface air has a sufficient temperature gradient.
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We derive the critical temperature gradient for the onset of the initial vertical convection

that evolves from the buoyancy instability when the hot air near the sandy surface becomes

lighter than the heavier cooler overlying air. Then we show that once there is sufficient

amplitude or energy in the vertical convective cells or poloidal flows there is the onset of a

toroidal rotational instability of the nonlinear parametric instability type from nonlinear

interactions in this complex system. For a simple model of the poloidal convection we

derive the formula for the growth rate of the toroidal rotation.

The structure is mathematically analogous to the tokamak configuration where the

divergence free vector is the helical magnetic field with this vector field is the corresponding

current density derived from the curl of the magnetic field from Ampere’s law. Tokamak

also has show a spontaneous symmetry breaking when heated sufficiently, past a critical

external power, with the onset of fast toroidal flows [Greenwald, et al., 1995].
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Figure 1. Top figure (a) is a schematic diagram of the vertical flow with two stagnation points

given by Balme and Greeley [2006] who based the diagram on observations that sometimes show

a downward–flow core velocity in the dust devil above a certain height. They note that this

downward flow may not be present in all cases and is only measured in certain cases. The lower

figure (b) shows the gravitation force and the electric polarization P⃗ in the dust devil created

by the triboelectric charging of the dust grains. The negatively charged grains are supported

against gravity and the pull of the positive charges by the friction with up going air mass.
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Figure 2. Diagram of the basic mechanism of the temperature gradient driven incompressible

vertical toroidal vortex structure for the dust devil. The saltation in the sand layer is indicated

schematically and the triboelectric charging from the collisions between the small ∼< 20µm par-

ticles with the large 100µm sand particles produces the electric dipole moment in the structure.

The small, light negatively charged particles rise to the top of the structure z = H.
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Figure 3. Initial flow at t = 0 in the simulation box of 2π × 2π × 10π, on (a) (x, z)–plane at

y = 0, and (b)–(d) on (x, y)–plane at z ≃ π/3, π/2, 2π, respectively.
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Figure 4. Velocity vector plots at t = 3.8, on the same planes (a)–(d) as those in Fig. 3.
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Figure 5. Velocity vector plots at t = 4.8, on the same planes (a)–(d) as those in Fig. 3.
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Figure 6. Time evolution of the poloidal and toroidal components of the vorticity squared,

⟨ω2
r⟩ + ⟨ω2

θ⟩ and ⟨ω2
z⟩ In the period from t = ≈ 1.0 to 4.5 the exponential growth of the vertical

vorticity derived in Sec. 3 appears and then saturates. In this saturated complex state nonlinear

helical substructures emerge as shown in Fig. 7.
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Figure 7. Three frames from a nonlinear run with test particles in the mid–altitude height

of the dust devil simulation. The movie shows the formation of a deep, smaller–scale helical

formation in the initial column [001] shown in the left frame going to the middle frame [150] and

subsequently the decay of the deep helical modulation to a more symmetric central column in

going from the middle frame to a later time frame in the right frame [237]. Thus the nonlinear

dynamics has several frequencies forming a weakly chaotic time dependence of the structure

[Horton, Chaos and Structures, Ch. 4].
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Figure 8. Schematic of the proposed experiment
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Table 1. Properties of quartz and sand dust particles

Dust particle radius 1µm 100µm

Quartz sand mass density
ρm = 3g/cm3

Capacitance
Cd = 4πϵ0rd

Cd = 10−16F Cd = 10−14F

Charge on grain for poten-
tial of 10V and number
Ne of electrons

Qd = 10−15C →

Ne = 104
Qd = 10−12C →

Ne = 106

Mass of grains and num-
ber of SiO2 molecules
in grain

Md = 3× 10−12g
NSiO2

= Md/6
amu = 5× 1010

Md = 3× 10−6g
NSiO2

=Md/60
amu = 5× 1016

Mass Ma = of air
molecules
[70%N2 + 30%] O2

Ma = 4.2× 10−23 Ma = 4.2
×10−23g

Charge in volume Hd =
10m by Rd = 10m vol-
ume Vd = 103 m3 of dust
for density nd = 106/cm3

Q = 10−15C/
grain × 1011

grains = 1.1 ×

10−4C

Dust density for
1011 grains in
volume = 103 m3

is 1.6 × 108

grains/m3 = 160
grains per cc

Potential drop to ground
from Hd = 100m

V = 9× 109 Q/
Hd = 9kV

V = 900 kV

Electric field from ground
to center of the charge
cloud

E = V/hd =
1kV/m

E = 100 kV/m
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Table 2. Parameter of the proposed experiments

Cylinder height 1.5-2.0 m
Cylinder diameter 0.75-1 m
lower electrode metal
top electrode conductive glass
lower electrode temperature range 300-400 K
upper electrode temperature 300 K
Electrode bias 0-1 kV
Particle size 10-1000 µm
Diagnostics laser sheet and high

speed video camera
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