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ScienceDirect
With a fully reconstructed and extensively characterized

neural circuit, the nematode Caenorhabditis elegans is a

promising model system for integrating our understanding of

neuronal, circuit and whole-animal dynamics. Fundamental

to addressing this challenge is the need to consider the tight

neuronal–environmental coupling that allows the animal to

survive and adapt to changing conditions. Locomotion

behaviors are affected by environmental variables both at the

biomechanical level and via adaptive sensory responses that

drive and modulate premotor and motor circuits. Here we

review significant advances in our understanding of

proprioceptive  control of locomotion, and more abstract

models of spatial orientation and navigation. The growing

evidence of the complexity of the underlying circuits

suggests that the intuition gained is but the first step in

elucidating the secrets of neural computation in this relatively

simple system.
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Introduction
To survive, animals process sensory information to drive

motor behaviors and to move about their environment.

Among locomotion strategies, undulations are remarkably

effective across scales and in a variety of environments

[1–3]. Common to most locomotion and to undulation-

based strategies, in particular, is the tight neuronal–
environmental loop, in which the shape of the body

and the way in which the sensory organs sample the

environment are integral to the neural dynamics. The

nematode Caenorhabditis elegans (C. elegans) is a powerful

system in which to study this loop, due to its small nervous

system and experimental tractability. Indeed, with a

largely specified neural circuit and rapidly advancing tech-

nologies for recording and manipulating neuronal activity

[4��,5], significant progress is being made in deciphering

the dynamics this neural circuit supports.
www.sciencedirect.com 
Here we review recent progress in understanding the

motor programs underpinning undulatory locomotion as

well as higher level command of locomotion primitives

and sensorimotor programs in C. elegans. We discuss how

progress in understanding the neuronal–environmental

loop is contributing to the ongoing effort and fundamental

challenges in assembling a whole animal model of

C. elegans behavior.

The ventral nerve cord
C. elegans is a small (�1 mm long) unsegmented worm

with 302 nerve cells [6–8]. The animal’s undulations are

controlled by head and ventral nerve cord (VNC) circuits.

Extensive characterization of defects (through ablation of

individual classes of neurons) [9–11] has provided a strong

basis for an intuitive understanding of the operation of

this otherwise irregular circuit architecture [12��,13].

Indeed, evidence suggests that semi-independent VNC

subcircuits control forward and backward locomotion

[6,14,15,16�,17��,18�,19�] and are gated by distinct pre-

motor (so-called command) interneurons.

The forward locomotion circuit in the ventral
nerve cord
In forward locomotion, cholinergic motor neurons excite

muscles on either side of the body while indirectly

inhibiting muscles on the other side via excitation of

GABAergic inhibitory motor neurons [3,20,21]

(Figure 1). Surprisingly, locomotion can be generated

even in the absence of inhibitory neurons [11,22], raising

fundamental questions about the rhythm generating

mechanisms. The conspicuous absence of candidates

for a half-center oscillator motif in the VNC circuit

[6,23–25] has led to alternative models of the rhythm

generating mechanism along the body.

Most models to date [23,25,26,27��,28��] have adopted

the assumption that proprioception forms an integral part

of the rhythm generating mechanism in C. elegans
[15,28��,29]. By entirely lacking a central pattern gener-

ating (CPG) circuit along the body (although some

models rely on the existence of an oscillator in the head),

these models differ substantially from other central–per-

ipheral pattern generating mechanisms in which proprio-

ception from stretch receptors entrains or modulates a

neuronal CPG circuit, from leech swimming [30] through

insect stepping [31] to human walking [32]. As we see

below, models assigning different roles to the physical

forces acting on the body lead to distinct predictions that

have resulted in major progress in our understanding of

this system.
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Figure 1
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The ventral nerve cord subcircuit associated with forward locomotion

contains four main classes of motor neurons: 11 neurons of class VB, 7

DB, 13 VD, and 6 DD as well as two key pairs of command interneurons

(classes AVB and PVC). Longitudinal body wall muscles line the body,

contracting and relaxing in the dorso-ventral plane. The schematic

depicts a reduction in the complexity of the circuit to a series of

repeating units, each consisting of one neuron of each class. AVB is

coupled to VB and DB motor neurons via gap junctions. DBs and VBs

are excitatory (arrow heads), whereas DD and VD are inhibitory (circle

heads).
In one approach [23] the environment was sufficiently

stiff that it effectively imposed the waveform of the

undulations so the neural circuit needed only to generate

thrust, as each part of the body pushed backwards rhyth-

mically against the medium. Reducing the resistivity of

the environment in such a model (to match more realistic

conditions, such as agar gels) would lead to a flaccid worm,

unable to locomote. An alternative model [25] introduced

neural control, but now with an abstract embodiment and

in the absence of physical forces. This approach demon-

strated that proprioceptively patterned control could in

principle be responsible for the generation of a sinusoidal

waveform of undulations (in this case with no thrust, as

the physics was entirely neglected). These two comp-

lementary views of the respective roles of the neural

dynamics and external forces in locomotion could only

be resolved by closer investigation of the biomechanics.

The crucial hint came from observations of swimming

patterns, when the worm is placed in liquid. Unlike the

slow sinuous undulations characteristic of crawling

motion on agar, swimming consists of much faster, longer

wavelength undulations. Until recently swimming and

crawling were considered to be distinct biomechanical
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gaits that the animal switches between in response to the

environment [33], although Niebur and Erdös already

hypothesized that a single underlying circuit generates

both swimming and crawling [23]. Berri et al. [34] and a

large body of work that followed [17��,35,36] now give a

strong indication that the two behaviors are extremes of a

continuous spectrum, calling for a computational model

that would account for the entire range of behaviors.

Indeed, in a computational model by Boyle et al. [27��], a

single fixed-parameter and ‘headless’ model worm could

produce both swimming and crawling, as well as undula-

tions in intermediate linear viscoelastic and obstacle-rich

environments. Crucially, the modulation of the neural

control as a function of the resistivity of the environment

was accomplished solely via proprioceptive integration of

the different body shapes. A basic intuition of the pattern

generating mechanism is given in Figure 2. This model

suggests that gait modulation (at least in the wild type)

can be achieved even in the absence of any chemical

neuromodulation. In fact, ample evidence exists for a

range of neuromodulators, monoamines and peptides

acting in this system [18�,37,38�,39]. In particular, recent

evidence that ciliated sensory neurons help determine

the worm’s locomotion pattern [17��,38�] points to added

levels of complexity in the motor control of forward

locomotion [17��,40,41].

In Boyle et al.’s model [27��], as the resistivity (or

viscosity) of the environment increases, mechanical load

by the external medium helps to support the body shape

and facilitates the generation of thrust. Thus, this model

predicts that sufficiently minor defects in the locomotion

nervous system that may be masked or disguised in

crawling worms may be more apparent in liquid. For

example, the model predicts a role for inhibitory neurons

in forward locomotion (Figure 2): whereas GABA-defec-

tive crawling worms (biological and simulated) can exhi-

bit near wild-type locomotion [11,22], model worms

lacking inhibition fail to generate swimming patterns in

liquid [27��]. Indeed, the model suggests that GABAergic

motor neurons serve a dual role in the robustness of the

motor system: ensuring smooth undulations by inhibiting

muscles on the opposite side of the body and resetting the

neural circuit by inhibiting excitatory motor neurons on

the same side of the body (Figures 1 and 2). A further

model prediction is an increased dependence on the

mechanosensitive receptive field in less resistive media:

an effectively local receptive field suffices for simulated

crawling, but not for swimming [27��].

Interestingly, excitatory motor neurons along the VNC

have long been postulated to express mechanosensitive

stretch receptors. However, the morphology of the

neurons suggested that motor neurons integrate sensory

information from the tail when moving forward, and vice

versa during reversals, despite general agreement that
www.sciencedirect.com
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Figure 2
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The forward locomotion pattern generator based on [27��]. The

schematic depicts a simplified neural subcircuit representing a local unit

along the VNC with binary and bistable DB and VB excitatory motor

neurons and implicit DD and VD inhibitory motor neurons (with the head

to the right). An input drive (assumed constant) from forward locomotion

command interneurons onto VB and DB motor neurons is required to

switch the circuit on and induce an oscillatory response. This input must

be within a given range, implying the existence of two bifurcations (not

shown). Starting from a dorsally bent configuration over the appropriate

proprioceptive receptive field, and assuming both DB and VB are initially

off, denoted by state (0,0), stretch input on the ventral side will activate

VB (0,1); ventral bending will gradually increase stretch on the dorsal

side, eventually activating DB (1,1), which automatically resets VB via

indirect inhibition (1,0). Dorsal bending continues until the stretch input

to the dorsal side falls below threshold, releasing VB from inhibition. This

mechanism will sustain stable rhythmic oscillations, starting from any

initial condition. Modeling VB and DB as bistable binary elements

provides robustness, dynamic range to support a range of frequencies

and amplitudes of undulations, and perfectly coordinated ON/OFF

driving of muscles on either side of the body, which overcomes

inefficiencies associated with gradually varying and opposing inputs.

Binary muscle input (from VB/DB motor neurons) implies that gait

modulation is achieved by modulating the ON/OFF timing of these motor

neurons, rather than the bending or muscle force; the latter would

require alternative models to be investigated.
forward undulations are initiated in the head and propa-

gated backwards along the animal. For approximately

sinusoidal undulations, of course, undulations anterior

and posterior to a reference point differ only by phase,

and so are mathematically interchangeable. However, to

support turning, as directed by the head, an anteriorly

facing receptive field would offer a better engineering

solution. Experimental support for anterior stretch control

in forward locomotion motor neurons is growing [15,28��]
and may pave the way for integrated models of head and

VNC motor control.

The beauty of the worm’s control, as captured by inte-

grated biomechanical models, is the natural exploitation
www.sciencedirect.com 
of the body’s interaction with the environment via the

proprioceptive loop to achieve robust and adaptive loco-

motion across a wide range of physical environments. If

this intuition holds — and given the short neuronal time

constants compared to the relevant physical ones — then

a minimal mechanical model, short-circuiting the neural

circuit, should also qualitatively account for the swim-

crawl transition. Indeed, Wen et al. modeled the body as

an elastic beam, with an oscillator harmonically driving

one end (the head) [28��,35]. A feedback mechanism

representing the proprioceptive response to stretch (or

curvature) activates bending forces along the body, ampli-

fying and entraining the otherwise passive undulations.

The neuronal–environmental loop, as captured above,

need not be restricted to microswimmers at low Reynolds

number [3]. Indeed, the concept of feedback-driven

control is appealing even for robotic navigation of com-

plex terrains [42]. Exclusively feedback (reflex or pro-

prioceptive) driven motor control, if it exists in the VNC,

is unheard of in the animal kingdom. Even in C. elegans,
feedforward control is likely to play a major part in other

motor programs [43], and the head motor circuitry is

highly suggestive of containing at least one CPG circuit.

The alternative, of course, is that the VNC does generate

endogenous rhythmic patterns. If so, such patterns could

emerge from the distributed, recurrent architecture of the

circuit, possibly with approximately repeating structures

[12��,13], that may further facilitate the propagation of

signals down the body.

Navigation
What roles do neuronal–environmental loops play in

sensory processing, and how might they impact on loco-

motion behavior? One hint is given by the remarkably

wide dynamic range in the sensitivity of the animal to

different chemical cues [44–46] that is highly suggestive

of underlying adaptive sensory perception and responses.

The inherently adaptive nature of sensory processing is in

fact fundamental to achieving robust motor behavior. In

nematodes this form of the neuronal–environmental loop

manifests itself most clearly in navigation.

To explore and navigate its environment, C. elegans inte-

grates over a wide variety of physical and chemical cues

[47,48]. On food, C. elegans mostly dwells in the same area,

occasionally roaming to seek a better patch of food

[49,50]. Off food, the animal may perform an area

restricted search, consisting of bouts of forward loco-

motion, interrupted by reversals and turning events called

pirouettes [49]; it will follow gradients by modulating this

pirouette rate, in a biased random walk, as well as by more

deterministic steering [49,51,52]. While steering occurs

on timescales of undulations, the frequency of pirouettes

is low (1–2/min, excluding rapidly evoked pirouettes in

response to nociceptive stimuli) and its modulation can

be even slower. When sufficiently starved, the animal will
Current Opinion in Neurobiology 2014, 25:99–106
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gradually suppress turns and accelerate away, exhibiting

so-called dispersal behavior [49,50].

In a series of modeling papers on C. elegans navigation,

Lockery and coworkers [53–56] embraced a modeling

approach in which the adaptive behavior of an agent is

harnessed to artificially evolve robust neural circuits [57].

Fundamental premises of this approach are first that the

situatedness of the agent matters: hence a model should

include a full sensorimotor pathway in a situated worm to

mimic responses to realistic inputs over time; and second,

that the neuronal and circuit dynamics are themselves

adaptive (in these models, neuronal self-connections,

denoting, e.g., slow conductances, can be thought of as

encoding an adaptive internal state). Navigation was

implemented via a nonlinear modulation of the pirouette

rate [53,54], or via steering [55,56], in a point worm. The

models consisted of abstract feedforward neuronal circuits,

with simplified neural dynamics (justified by the sparse-

ness of reliable recordings of the neuronal activities).

These computational models have led to a compact

intuition about sensorimotor control in C. elegans, consist-

ing — for each sensory signal — of a single three-stage

pipeline: first, a time derivative detecting changes over

time in sensory signals such as temperature or chemical

concentrations; second, a linear filter, and third, some

nonlinear input–output transformation [58,59]. Recent

evidence increasingly points to the time derivatives

and filtering as being performed in a largely cell autonom-

ous manner within sensory neurons [4��,52,55,59,60].

While the detailed biophysical mechanisms underpin-

ning the derivative response are as yet unknown, the

form of the response (a depolarization in the membrane

potential, followed by a slow relaxation back to baseline)

is suggestive of two opposing and time-scale separated

forces, for example, a faster depolarizing conductance,

and a delayed rectifier. In this way, the change of con-

centration is always calculated relative to a baseline

(background concentration), that may itself be adaptive,

to allow for dynamic range.

An alternative activator–inhibitor combination, suggested

for chemotaxis in unicellular eukaryotes (reviewed in

[61]), relies on a fast local activator signal and a slow

globally diffusing inhibitor. Perhaps surprisingly, the

decay times for at least some sensory neurons in C. elegans
appear to be remarkably slow (60 s and more) [59,60].

Thus, the small cell sizes and slow time scales of the

neuronal responses appear to rule out such an intracellular

diffusion-based mechanism. Slow neuronal time scales

are particularly surprising for a number of reasons. First,

they suggest significant information loss in the encoding

of the concentration change. Moreover, the response time

scales can be significantly slower than the motor

responses they control (e.g., steering occurs on time scales

of undulations, of the order of seconds), suggesting strong
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constraints on the efficacy of fast sensorimotor responses.

Indeed it is easy to confirm that steering could work

significantly better with faster sensory neurons (e.g.

[53–56]).

The slow responses of C. elegans sensory neurons and their

ability to calculate concentration changes over time point

to extensive cell-autonomous information processing that

in other systems may be associated with circuit-level

computation. A further example is the above-mentioned

ability of the animal to navigate over a wide range of

concentrations [44]. In some behavioral experiments,

indices measuring the effectiveness of navigation suggest

a logarithmic response to attractive as well as to repulsive

sensory cues [45]. Recent calcium imaging experiments

explicitly show robust responses of sensory cells to up to

six orders of magnitude in concentration changes [46].

While these data describe only a small sample of sensory

neurons, they could all be accounted for by approximately

logarithmic responses of these sensory cells. Such a

response may be captured by the Weber–Fechner law,

typically expressed as R / log S, where R and S are the

response (relative to some baseline) and signal, respect-

ively. The incremental form of the law DR / log DS/S
describes a threshold response to a minimal stimulus

change, also consistent with calcium imaging recordings

in C. elegans [60].

To summarize, the picture that emerges is of extensive

computation by sensory neurons. Furthermore, sensory

computation is likely to be complemented by the exten-

sive recurrent connections within the sensory layer. Thus,

for all practical purposes, the earlier intuition of a three-

step pipeline dispenses altogether with the need for a

head navigation circuit, as any nonlinear dynamics could

then be compressed into the sensory layer, or the pre-

motor circuit [4��]. Indeed, from an engineering perspect-

ive, placing nonlinear adaptation relatively upstream and

the nonlinear encoding of the output downstream (in the

premotor or motor circuit) could enhance robustness. A key

question for future experiments and theoretical investi-

gations, therefore, is pinning down the computational role

of the extensive navigation circuit (in particular, the 79

head interneurons downstream of head sensory neurons).

Integrated and adaptive sensorimotor control
of locomotion
The complexity of the interneuron network in the head is

suggestive of a role in decision making. One appealing

conjecture is that this circuit plays a role in sensory

integration. Support for this conjecture is lent by chemo-

sensory integration experiments in which animals were

faced with an aversive barrier that had to be crossed to

reach an attractant [45]. There, the number of worms

across the barrier was shown to be a nonlinear function of

both the attractant and repellent concentrations. Further-

more, a specific pair of head interneurons was directly
www.sciencedirect.com
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implicated in this sensory integration [45]. Despite the

nonlinearity of the computation, these results can be

accounted for with a purely linear integration unit, assum-

ing that the motor circuit and/or motor system down-

stream introduces nonlinearities. Nonetheless, the

existence of an integration unit (even if linear) provides

a target for neuromodulation (of synaptic weights, of the

resting potential, etc.) that can give rise to adaptive

behavior. Indeed, the synaptic weights onto the integ-

ration site (transmitting these antagonistic sensory sig-

nals), as well as the resting potential of a linear integration

unit, could determine or bias the tendency of the animal

to cross the barrier.

Importantly, the inclusion of a complete sensorimotor

pathway allows one to close the neuronal–environmental

loop. In fact, the likelihood that nonlinear transformations

are implemented within the nematode motor circuits

once again highlights locomotion as an important bottle-

neck in dissecting the neuronal–environmental loop: a

better and more complete understanding of the animal’s

premotor and motor control is likely to impose different

constraints on the computation that must be performed

by the navigation circuit, and vice versa.

Above, neuromodulation was mentioned as a mechan-

ism for tuning responses. For example, dopamine and

serotonin have been reported to modulate speed [39]

and turn probability in C. elegans [62��]. In fact, neuro-

modulation has been implicated in drastic reconfigura-

tion of circuits, and the view of the C. elegans nervous

system is gradually transforming from one specified by a

single connectome to a set of overlaid circuits, of which

only one is the synaptic wiring diagram and others

represent chemical extrasynaptic circuits. Similarly to

the neural circuit, these circuit interactions can be fast

and point-to-point, due to specific pairings of signal

producing neurons and those expressing the matching

receptor proteins [62��,63–67]. One example is the

monoamine tyramine that has lately been shown to

orchestrate touch-evoked escape behavior by sequen-

tially recruiting distinct motor programs: beginning with

rapid relaxation of the head and neck muscles, followed

by a brief reversal (backward undulations) and ending

with a ventral bend that allows the animal to perform a

sharp turn [63–65]. The extrasynaptic tyramine-

mediated activation of a single class of VNC motor

neurons (on the ventral side) was the key to unraveling

the secret of the ventral bend that could not be

accounted for by the neural circuitry alone.

Another example of neuromodulation, from the sensory

layer, describes a context-dependent circuit reconfigura-

tion by the insulin-like INS-6 neuropeptide [67]. For high

— but not low — salt concentrations, a gustatory sensory

neuron (ASEL) recruits an olfactory sensory neuron

(AWCON). When recruited, the synapse connecting AWCON
www.sciencedirect.com 
onto a downstream interneuron switches from being inhibi-

tory to excitatory. In so doing, ASEL effectively extends

the dynamic range of the response to high concentrations

that is transmitted to the downstream interneuron.

Yet other examples challenge our most basic intuitions

about synaptic circuits. One such study identifies and

maps an extensive extrasynaptic subcircuit within the

head navigation circuit that regulates the initiation and

regulation of two behavioral states: dwelling and roaming

[68]. This extrasynaptic circuit bears no resemblance to,

and nearly no overlap with, the synaptic circuit it overlays,

and the intuitive directionality of synaptic control — from

sensory, through interneuron to motor neurons — is not

obeyed: One signal (serotonin, promoting dwelling) is

released by two motor neurons (NSM and HSN), whereas

the other signal (the neuropeptide PDF, promoting roam-

ing) is released by interneurons; targets include sensory

neurons (ASI) and multiple interneurons.

These examples, and many more, illustrate the profound

effect neuromodulators can have on neuronal compu-

tation. The high number (�250) of predicted neuropep-

tides in C. elegans warrants further research into the

multitude of overlaid circuits they may control.

Conclusions and future directions
The last decade has witnessed a significant increase in

theory-driven computational and quantitative approaches

to the study of C. elegans behavior and its neural control,

resulting in insights into the tight coupling between

neuronal dynamics and the environment. In forward

locomotion, we have learned how proprioception has

afforded the animal a ‘cheap’ way to maneuver through

complex and variable environments. In navigation, highly

simplified models of sensory responses and motor outputs

already capture key findings in relatively simple assays.

And yet, little progress has been made in explicitly

including adaptation and plasticity mechanisms in the

environmental-sensory loop, or its downstream effects on

the navigation and locomotion motor circuits.

Suggestions that locomotion can be described at a high

level as a dynamical system that may be continuously

modulated (e.g., in response to food deprivation [50]), or

may be driven by stochastic transitions between quasi-

stable states, such as forward and backward locomotion

[16�,69�], provide clues about the possible computations

different subcircuits perform. But open questions remain,

even in understanding the neural control of undulations,

such as mechanisms for backward locomotion [18�,19�],
the modulation of speed during forward locomotion [39],

and the role of sensory neurons in gait modulation

[17��,33].

Recent insights into more complex locomotion behaviors

[70,71], the orchestration of sequential behaviors
Current Opinion in Neurobiology 2014, 25:99–106
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[16�,62��,63,64], and the variety of modulation pathways

[71,72] suggest that extrasynaptic circuit mechanisms

should be given more prominence in future models.

Indeed what emerges is a much richer view of the

C. elegans nervous system, as a dynamic, reconfigurable

and overlaid circuit, in which neuronal–environmental

loops act in a variety of mechanisms across a wide range

of time scales. Studying all these circuits (both synaptic

and extrasynaptic) should bring us closer to our ultimate

goal of fully understanding decision making and motor

control along the sensorimotor pathway, with the hope

that insights into neural computation in this system may

translate to other invertebrate and vertebrate systems

[66,73].
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