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Abstract

Carbon capture and storage (CCS) presents the short-term option for signif-

icantly reducing the amount of carbon dioxide (CO2) released into the atmo-

sphere from the combustion of fossil fuels, thereby mitigating the effects of

climate change. Enabling CCS requires the development of capture, storage

and transport methodologies. The safe transport of CO2 in CCS scenarios

can be achieved through pipelines or by shipping. Either way, transport and

temporary storage of pressurised liquid CO2 will be required and subject to

quantitative risk assessment, which includes the consideration of the low-

risk, low-probability puncture or rupture scenario of such a pipeline, ship or

storage facility. In this work, we combine multiple experimental datasets all

concerned with the atmospheric free release of pure and impure liquid CO2

from CCS-transport-chain-relevant high pressure reservoirs and perform the

first multiple dataset comparison to numerical models for both pure and im-
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pure jets in dry ambient air with no water vapour. The results validate the

numerical approach adopted and for the prediction of such releases, high-

light the significance of the mixture fraction at the release point, over the

mixture composition itself. A new method for impure CO2 dispersion mod-

elling is introduced and limited preliminary comparisons of impure CO2 data

and predictions are performed. No clear difference between pure and impure

releases is found for the cases considered.
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1. Introduction

Carbon capture and storage (CCS) refers to a set of technologies designed

to reduce carbon dioxide (CO2) emissions from large industrial point sources

of emission, such as coal-fired power stations, in order to mitigate greenhouse

gas production. The technology involves capturing CO2 and then storing it

in a reservoir, instead of allowing its release to the atmosphere, where it con-

tributes to climate change. Once captured, the CO2 is generally transported

in a liquified state and stored, typically underground, or used for processes

such as enhanced oil recovery.

The fluid dynamic modelling of liquid CO2 poses a unique set of problems

due to its unusual phase transition behaviour and physical properties. Liq-

uid CO2 has a density comparable with that of water, but has a viscosity of

magnitude more frequently associated with gases. These properties make the

transport of dense phase CO2 an economically viable and attractive propo-
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sition. However, due to it possessing a relatively high Joule-Thomson ex-

pansion coefficient, calculations and experimental evidence confirm that the

rapid expansion of an accidental release reaches temperatures below 194K.

Due to this effect, solid CO2 forms at temperatures below the triple point

temperature (216.6K) following a pipeline puncture or rupture, whether di-

rectly from liquid or via a vapour-phase transition. Additionally, CO2 sub-

limes at ambient atmospheric conditions, which is a behaviour not seen in

most other solids, and is an additional consideration when modelling flows

such as these. Predicting the correct fluid phase during the discharge pro-

cess in the near-field is of particular importance given the very different

hazard profiles of CO2 in the gas and solid states. The safe operation of CO2

pipelines is of paramount importance then, as the inventory associated with

a cross-country pipeline would likely be several thousand tonnes, and CO2

has a toxic effect above 5% concentration and causes hyperventilation above

2% (Connolly and Cusco, 2007; Wilday et al., 2009).

The University of Leeds near-field CO2 dispersion mathematical model

(Wareing et al., 2013a), has been developed and validated for free releases

of CO2 into air for two data sets; the CO2PipeHaz project (Woolley et al.,

2013a,b) and the National Grid COOLTRANS project (Wareing et al., 2014a).

It has also been validated against small-scale laboratory releases and dry

ice particle behaviour (Wareing et al., 2013b, 2015a), punctures of buried

pipelines (Wareing et al., 2014b) and ruptures of buried pipelines (Wareing

et al., 2015b,c).

In this paper, we perform a comparison to a wider range of experimen-

tal data currently available regarding near-field liquid CO2 dispersion. We
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also introduce an impure equation of state and compare with new impure

near-field CO2 dispersion experimental data from multiple sources. In the

next Section we reproduce the relevant background to this area. Following

that in Section 3 we present the details of the experimental data sources.

In Section 4 we briefly present details of our mathematical model and intro-

duce the modifications for impure CO2, including determination of a suitable

equation of state. In Section 5 we describe the numerical methodology used

herein. The comparison between data and predictions is discussed in Section

6. Finally, conclusions are presented in Section 7.

2. Background

In this section, we consider the growing number of recent publications that

have examined the release and dispersion of CO2, revisiting our review from

Wareing et al. (2014a) that summarised the extensive review provided by

Dixon et al. (2012) in the light of new and related additions to the literature.

MMI Engineering presented dispersion simulations (Dixon and Hasson,

2007) employing the ANSYS-CFX computational fluid dynamics (CFD) code.

Solid CO2 particles were simulated by a scalar representing the particle con-

centration, avoiding the overhead of full Lagrangian particle tracking. Dixon

et al. (2012) note that this method assumed a constant particle diameter and

temperature at the sublimation temperature of 194.25K in order to calculate

heat and mass exchange between the particles and the gas phase. Following

this work up, Dixon et al. (2009) used a full Lagrangian particle tracking

method, but still assumed particles to be at the sublimation temperature.

Dixon et al. (2012) noted that since the rate of sublimation increases as par-
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ticle size decreases, an improved distribution of the source of the CO2 gas

resulting from particle sublimation could be obtained by allowing for varying

particle size and for the fact that temperature is expected to fall below the

sublimation temperature in the near-field of a release.

Webber (2011) considered a methodology for extending existing two-

phase homogeneous integral models for flashing jets to the three-phase case

for CO2. Webber noted that as the flow expands from the reservoir conditions

to atmospheric pressure, temperature, density and the jet cross-sectional area

would vary continuously through the triple point, whilst the mass and mo-

mentum would be conserved. This led to the conclusion that there must be a

discontinuity in the enthalpy and CO2 condensed phase fraction, in a similar

manner to the energy change associated with passing through a hydraulic

jump. In the development of our composite equation of state for modelling

CO2 near-field sonic dispersion (Wareing et al., 2013a), we confirmed this in

a conservative shock capturing CFD code and highlighted the importance of

fully accounting for the solid phase and latent heat of fusion; the near-field

structure of the jet as well as the fraction of solid phase material is different

when this is correctly accounted for.

Witlox et al. (2009, 2011) discussed the application of the software pack-

age PHAST to CO2 release and dispersion modelling. Witlox et al. (2009)

described an extension to the model in PHAST (v.6.53.1) to account for the

effects of solid CO2, including the latent heat of fusion. The modifications to

the model consist principally of changing the way in which equilibrium con-

ditions were calculated in the expansion of CO2 to atmospheric pressure in

order to ensure that below the triple point, conditions followed the sublima-
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tion curve in the phase diagram, rather than extrapolating the evaporation

curve (which diverges considerably from reality, hence the limitations of the

Peng and Robinson (1976) and Span and Wagner (1996) equations of state

to above the triple point only). In Witlox et al. (2011), the results of sensi-

tivity tests were reported for both liquid and supercritical CO2 releases from

vessels and pipes calculated with the revised PHAST model. The public

release of the CO2PIPETRANS datasets and associated industrial projects,

e.g. (Ahmad et al., 2013), has validated the development of this approach,

which we also adopted in part for our composite equation of state (Wareing

et al., 2013a).

E.ON have published a number of studies (Mazzoldi et al., 2008a,b, 2011;

Hill et al., 2011). Of these, the most relevant to this work are Mazzoldi et al.

(2011) and Hill et al. (2011). These consider atmospheric dispersion from

pipeline and vessel releases. The former paper compared simulations from

the heavy gas model ALOHA to the CFD model Fluidyn-Panache. Only the

gaseous stage of the release was modelled. In the second work (Hill et al.,

2011), the authors presented CFD and PHAST simulations of dense-phase

CO2 releases from a 500mm diameter hole in a pipeline, located at an ele-

vation of 5m above level ground. Steady-state flow rates were calculated at

the orifice assuming saturated conditions. CFD simulations were performed

using the ANSYS-CFX code with a Lagrangian particle tracking model for

the solid CO2 particles, with three size distributions: 10 to 50 micrometers,

50 to 100 micrometers and 50 to 150 micrometers. Simulations were also

performed without particles. Their results showed that sublimation of the

particles led to a cooling of the CO2 plume, affecting dispersion behaviour,
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although the results were relatively insensitive to particle size. Gas concen-

trations downwind from the release were reportedly somewhat lower using

PHAST (v.6.6) as compared to the CFD results. No comparison to experi-

ment was performed.

Dixon et al. (2012) note that in the Lagrangian model of Hill et al. (2011)

their particle tracks followed closely the plume centreline, rather than being

spread throughout the plume. Dixon et al. (2012) went on: turbulence will

have the effect of bringing particles into contact with parts of the jet at a

higher temperature and lower CO2 concentration, thereby tending to increase

the rate of sublimation and increase the radius of the region cooled by the

subliming particles. In their work, Dixon et al. (2012) included turbulent

dispersion effects in the CFX model. Further, they assumed that the solid

particles are much smaller with an initial particle diameter of 5 micrometers.

They made that choice based on an analysis of CO2 experiments. In addition,

this particle size distribution is supported by the model recently developed

by Hulsbosch-Dam et al. (2012a,b), which suggested that the particle diame-

ter would be around 5 micrometers for CO2 releases at a pressure of 10MPa,

when the difference between the CO2 and ambient temperatures is around

80◦C. They stated that the effect of having smaller particles in their model

was likely to cause more rapid sublimation, which should produce a more

significant reduction in gas temperature in the free jet. Recent examination

of particle size distribution in releases of supercritical CO2 from high pres-

sure has shown that even smaller particles immediately post Mach shock are

indeed the case (Liu et al., 2012b), on the order of a few micrometers, which

we confirmed in laboratory releases from the liquid phase (Wareing et al.,
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2013b).

Dixon et al. (2012) employ a Bernoulli method which they found ”to

provide reasonable predictions of the flow rate for the sub-cooled liquid CO2

releases”. Differences were apparent between the integral model and the

CFD model results. The integral model predicted temperatures that they

noted were too low in the near-field, and which then returned too rapidly to

atmospheric levels (see Dixon et al. (2012) Figure 3.). The CFD model was

noted to be in general better, although in the near-field (< 10m from the

orifice) it was still not clear whether this was the case. Further, the CFD

model appears to under-predict the spreading rate of the jet.

Liu et al. (2014) present simulations of free-jet CO2 dispersion from high

pressure pipelines using a non-ideal gas equation of state - specifically the

Peng-Robinson (Peng and Robinson, 1976) equation. They obtained good

agreement compared to the limited data available from the CO2PIPETRANS

datasets (no data is available close to the shock-containing expansion region),

but do not model the solid phase of CO2 and hence are limited to predicting

supercritical releases that do not cool below the triple point.

Wareing et al. (2013a) presented a composite equation of state for the

modelling of high pressure liquid CO2 releases that accounts for phase changes

and the solid phase and went on to validate against venting releases from the

CO2PipeHaz project (Woolley et al., 2013a,b) and the COOLTRANS re-

search programme (Wareing et al., 2014a). The model demonstrated good

quantitative and qualitative agreement with the experimental data regarding

temperature and concentration in the near- and far-field. More recently, we

have applied the same model to punctures of a buried high pressure dense
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phase pipeline (Wareing et al., 2015a) and a rupture of a buried 150mm-

diameter pipeline (Wareing et al., 2015b), at a quarter-scale of the full-scale

pipelines intended in the UK White Rose CCS network (Cooper and Barnett,

2014). In both cases, the model shows reasonable agreement with the data,

predicting jet temperatures, structures and behaviour, as well as predicting

particle behaviour.

Woolley et al. (2014a) published a paper linking the elements of the

CO2PipeHaz project together, for the first time numerically modelling a

complete chain rupture and consequent dispersion event in realistic topogra-

phy. This included pipeline decompression linked to near-field sonic shock-

capturing simulation of the flow from the pipe ends through the crater linked

into the far-field, where constant source conditions on a plane above the crater

were taken as input into FLACS and ANSYS-CFX simulations. These were

taken as constant source conditions and the transient nature of the near-field

decompression was not modelled. Gant et al. (2014) had previously con-

sidered the validation of FLACS and ANSYS-CFX in the far-field for this

application, using predictions for the near-field from our composite model

(Wareing et al., 2013a), albeit again modified for input into such commer-

cial software. Wen et al. (2013) presented a number of far-field simulations

of venting and horizontal above ground releases, with successful validation,

also using predictions for the near-field from our composite model (Wareing

et al., 2013a) for input conditions, but with less modification for input into

their software.

In this paper, we return to near-field free dispersion releases above ground

into dry air, and extend previous experimental data comparisons to all the
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available data in the literature. We also present our extended numerical

model for impure CO2 and compare this to impure experimental data, as

well as highlighting similarities and differences compared to pure predictions

and data.

3. Sources of experimental data

3.1. CO2PIPETRANS

Phase 2 of the DNV-GL led CO2PIPETRANS1 joint industry project

(JIP) obtained a large amount of data from experiments designed to assist

in the design of CO2 pipelines and fill knowledge gaps that were identified

during the execution of CO2PIPETRANS Phase 1, which resulted in the

DNV GL recommended practice document DNV-RP-J2022 entitled “Design

and operation of CO2 pipelines.”

Relevant to the work herein, CO2PIPETRANS Phase 2 contained dense

phase CO2 release modelling validation data from two complimentary pro-

grammes of medium scale CO2 release experiments conducted by DNV GL

for BP (data set 1, hereafter DS1) and by DNV GL for Shell (data set 2,

hereafter DS2). Further depressurisation tests on a CO2 pipeline (data set

3) and experimental discharge data for large diameter CO2 releases (data

set 4) were carried out. Full details can be found in Brown et al. (2014a).

DS1 consisted of tests 1-11 with a repeat of test 8. All were liquid phase

1https://www.dnvgl.com/oilgas/joint-industry-projects/ongoing-

jips/co2pipetrans.html Accessed 2016-Aug-02.
2http://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2010-04/RP-J202.pdf Accessed

2016-Aug-02.
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releases. Test 1 did not record temperature data in the plume and we there-

fore exclude it. Tests 3 and 6 involved an extension tube and we therefore

exclude them for the reason of not being free releases. Tests 4 and 7 involved

an instrumented target and we therefore exclude them for the reason of not

being free releases. Test 10 was pointed downwards into the ground and we

therefore excluded it for not being a free release. Tests 8, its repeat test 8R

and test 9 all considered releases without buffer pressure and therefore did

not mimic large-scale pipeline, shipping or storage facilities and did not pro-

duce steady-state data. We therefore exclude them. Tests 2, 5 and 11 have

been included here. From DS2, tests 3, 5 and 11 are the only suitable liquid

phase releases that approximate steady state conditions. Again, all are pure

CO2 releases and all have been included here. The other tests are transient

releases. Data sets 3 and 4 contain large diameter CO2 releases where ac-

curate measurements in the near-field close to the release were not possible.

Hence no data from data sets 3 and 4 have been included in this comparison.

We present the pertinent details of experimental data used in this work in

Table 1. Complete details can be found in the reports accompanying the

CO2PIPETRANS data releases.

3.2. COOLTRANS

National Grid initiated the 3-year TRANSportation of Liquid CO2 re-

search programme (COOLTRANS) (Cooper, 2012) at the end of 2010 in or-

der to “address knowledge gaps relating to the safe design and operation of

onshore pipelines for transporting dense-phase CO2 from industrial emitters

in the UK to storage sites offshore”. This included developing the capability

for modelling the low-probability, high-impact worst case - an accidental re-
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lease from a buried pipeline that contains CO2 in the dense-phase. Learning

from these studies was subsequently combined with a range of other infor-

mation to develop an appropriate quantified risk assessment (QRA) for a

dense-phase CO2 pipeline. The programme included theoretical studies by

University College London (UCL), the University of Leeds and the University

of Warwick, carried out in parallel to provide high-fidelity numerical models

for the pipeline outflow (UCL), near-field dispersion behaviour (University of

Leeds) and far-field dispersion (University of Warwick) behaviour associated

with below-ground CO2 pipelines that are ruptured or punctured. Experi-

mental work and studies using currently available practical models for risk

assessment were carried out by DNV GL (Allason et al., 2012). Full details of

the experimental data used herein from this project can be found in Wareing

et al. (2014a). We present the pertinent details of experimental data used in

this work in Table 2.

3.3. CO2PipeHaz

The EU FP7-funded CO2PipeHaz (2010-2013) project “addressed the

fundamentally important and urgent issue regarding the accurate predictions

of fluid phase, discharge rate, emergency isolation and subsequent atmo-

spheric dispersion during accidental releases from pressurised CO2 pipelines

to be employed as an integral part of a large scale carbon capture and storage

chain”3. More details of the project can be found in Woolley et al. (2014b).

Details of the experimental data used herein from CO2PipeHaz can be found

in Woolley et al. (2012, 2013a) for Tests 6, 7 and 8, and in Woolley et al.

3http://www.co2pipehaz.eu/overview.htm Accessed 2016-Aug-02.
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(2013b) for Tests 11, 12 and 13, all concerning releases from a liquid phase

pure CO2 reservoir. We present the pertinent details of experimental data

used in this work in Table 3, reproduced from Woolley et al. (2012, 2013a,b).

3.4. HSL data set

In Pursell (2012) data are presented from laboratory-scale CO2 release

experiments. Measurements were taken of the outflow and near-field disper-

sion behaviour in an expanding CO2 jet, from both liquid and gaseous phase

reservoirs. For this work, we consider two tests: HSL Test C and HSL Test

D, both from a pure CO2 liquid phase reservoir. Compared to the other data

sets used in this comparison, it is notable that these measurements are taken

on a smaller scale using 2.0mm and 4.0mm diameter nozzles. We present

the pertinent details of experimental data used in this work in Table 4.

3.5. CO2QUEST

Following on from CO2PipeHaz, the most recent CO2 dispersion data

comes from the EU FP7-funded CO2QUEST project (2013-2016) that in-

volves ”the collaboration of 12 industrial and academic partners in Europe,

China and Canada and focusses on the development of state-of-the-art math-

ematical models along with the use of large scale experiments to identify the

important CO2 mixtures that have the most profound impact on the different

parts of the CCS chain”4. A more complete description of the CO2QUEST

project can be found in Brown et al. (2014b). In this work, we take ex-

perimental data from a number of pure and impure releases performed by

4http://www.co2quest.eu/index.php Accessed 2016-Aug-02.
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INERIS in France (Proust, Hebrard and Jamois, 2016) and DUT in China

(Chen et al., 2016). Specifically, INERIS tests QUEST T12 and QUEST

T14 concern near-field measurements of pure CO2 releases. INERIS tests

QUEST T9, T13, T15, T16, T19 and T22-T25 all concern comparable re-

leases of impure CO2 and were designed to be directly comparable to the

pure test results, in order to elucidate any differences introduced by CO2

impurities. Both DUT tests concern pure CO2, but are on the largest scale

that we are aware of that measure near-field conditions relevant to this work.

We present the pertinent details of experimental data used in Table 5.

4. Mathematical model and numerical method

The mathematical model and numerical approach is essentially the same

as that adopted and validated in our earlier papers. Complete details of this

model can be found in Wareing et al. (2013a). This model has previously

been validated in the literature in separate works against the COOLTRANS

data (Wareing et al., 2014a), Tests 6, 7 and 8 of the CO2PIPEHAZ data

(Woolley et al., 2012, 2013a) and the remaining CO2PIPEHAZ data (Tests

11, 12 and 13) in a conference paper (Woolley et al., 2013b). In this paper,

the validation is extended from those 7 tests, to three further independent

datasets - CO2PIPETRANS, HSL and CO2QUEST - that contain 17 further

suitable pure CO2 tests. Therefore we are able to investigate the validity of

the model and the consistency of the experimental data in a much larger

number of pure CO2 tests. Here, as we are also extending this model to

consider impure CO2 dispersion, we summarise details of our original com-

posite equation of state (EoS) for pure CO2 and present the implementation
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of an impure CO2 EoS in our model. The nature of the new extension is in

the inclusion of complex new equations of state and associated changes to

the homogeneous model, detailed below. The extended number of datasets

introduce 9 new impure CO2 tests against which we can validate the new

impure CO2 dispersion model.

4.1. Equation of state for pure CO2

Our composite EoS, as described in Wareing et al. (2013a) predicts the

thermophysical properties of the three phases of CO2 for the range of tem-

peratures of relevance to CO2 dispersion from releases at sonic velocities i.e.

those of interest to the CCS industry. This EoS is designed to be convenient

for computational fluid dynamic applications; the gas phase is determined

from the Peng-Robinson EoS (Peng and Robinson, 1976), and the liquid and

condensed phases from tabulated data generated with the Span and Wagner

EoS (Span and Wagner, 1996). Previously, we modelled the solid phase using

the DIPPR R© Project 801 database 5, academic access to which can be gained

through the Knovel library 6. We now use the Jäger and Span EoS (Jäger

and Span, 2012) for solid CO2. Air is modelled by an ideal gas equation of

state with γa = 7/5.

4.2. Impure CO2

Very few forms of EoS are available for the range of pressure and tem-

perature in these near-field simulations. Specifically, we are aware of two

in the literature that have been validated that include the necessary solid

5http://www.aiche.org/dippr/ Accessed 2016-Aug-02.
6http://why.knovel.com Accessed 2016-Aug-02.
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phase - EOS-CG (Gernert and Span, 2016) embedded in the TREND soft-

ware (Span et al., 2015), and PC-SAFT (see Diamantonis et al., 2013, and

references therein) embedded in the Physical Properties Library (PPL). Oth-

ers are limited to pipeline pressures and temperatures (e.g. Demetraides and

Graham, 2016) and/or do not model the solid phase - e.g. most cubic EoS,

see the comparisons of Diamantonis et al. (2013) and those in the thesis of

Li (Li, 2008) for more details. Here we examine TREND version 2.0 (ob-

tained by private communication, August 2015) and PPL as developed in

CO2QUEST for impure CO2 (obtained through the CO2QUEST collabora-

tion, September 2015). For both, we assume a mixture of 96% CO2 and 4%

N2, typical of the type of and maximum level of impurity expected in UK

CCS pipelines Cooper and Barnett (2014). It should be noted that this is

not a mature research area: both TREND and PPL are still in development.

Both currently use the Jäger and Span (2012) EoS in the solid phase and

assume no solubility of impurity in the solid phase.

As neither EoS has been demonstrated to work in the near-field for an im-

pure CO2 release, we first looked at simple decompression from high pressure

CO2 to low pressure, both with and without a heat source. The inclusion

of a heat source partially mimics the mixing with ambient air that occurs

during the release. This is described by

dU = −PdV − κ(T − Ta), (1)

where U(P, T ) is the internal energy per unit mass, P is the pressure, V (P, T )

is the specific volume, T is the temperature, Ta the (constant) ambient tem-

perature and κ a constant that determines the amount of heating.
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Figure 1: Condensed phase CO2 and pressure in a decompression computed with TREND

in (a) and computed with PPL in (b). Solid lines: solid fraction during isentropic decom-

pression (κ = 0). Dashed lines: solid fraction during decompression with heating (κ = 1).

Dotted lines: pressure during decompression with heating (κ = 1).

As can be seen comparing TREND in Figure 1(a) to PPL in Figure 1(b),

there is little difference for the isentropic expansion (solid lines). However,

when a heat source is added, TREND produces a smooth evaporation of

solid CO2 (dashed line in Figure 1(a)), but with PPL the solid mass fraction

increases rapidly as atmospheric pressure is reached (shown in Figure 1(b)).

Further investigation has revealed this is because there is a discontinuity

at the dew line at low temperatures with PPL, making this version of PPL

unsuitable for the current dispersion simulations. TREND is used for impure

CO2 modelling for the rest of this work. As noted, however, these EoS

are undergoing further development with the intention that both should be

applicable to the types of release of interest in CO2 pipeline risk assessments,

and for a wide range of impurities.
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4.3. Homogeneous model

In previous work on dense-phase CO2 releases from small nozzles and

punctures (Wareing et al., 2014a,b), particles of solid CO2 do not reach equi-

librium with the CO2 gas flow in the initial expansion due to the short

distance between release point and Mach shock when compared to particle

thermal and dynamic relaxation times and velocities (Wareing et al., 2013b).

We therefore used a homogeneous relaxation model to take this into account.

Since the EoS with impurities is only available for equilibrium, we use a very

small relaxation time for pure CO2 so that it is very close to equilibrium.

The homogeneous relaxation model is described in Wareing et al. (2013a)

Modifications required for impure CO2 are as follows. TREND can be

used to determine the thermophysical properties of impure CO2 as functions

of pressure, P , and temperature, T . Since the properties vary rapidly near

the dew line, we use a scaled pressure variable, x, defined by

x = 1 + log
[

e(1−y) +
√{

e2(1−y) − 1
}]

y ≤ 1,

x = 1 + log
[

e(1−y) −
√{

e2(1−y) − 1
}]

y > 1,
(2)

where

y = P/Pd(T ), (3)

and Pd(T ) is the pressure at the dew line. This ensures that x varies rapidly

with P near the dew line and linearly elsewhere. Equation (2) can readily

be inverted to give

y = 1− log [cosh(x− 1)] x ≤ 1,

= 1 + log [cosh(x− 1)] x > 1.
(4)
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Given a table in terms of (x, T ), it is simple to generate a table in terms of

(ρ, T ).

A conservative hydrodynamic code works in terms of the total density, ρ,

and total internal energy per unit mass, U , so it is necessary to obtain the

pressure and other quantities given ρ and U . Let α be the mass fraction of

the CO2 that is in the condensed phase and β be the mass fraction of CO2

in a CO2 - air mixture. The temperature is found by solving

U = βUCO2
(βρ, T ) + (1− β)Uair(T ), (5)

where UCO2
and Uair are the internal energies for CO2 and air. The pressure

is then given by

P = (1− β)
RTρ

[ma(1− αβρ/ρc)]
+ PCO2

(βρ, T ), (6)

where ρc(βρ, T ) is the density of condensed phase CO2, ma is the molecular

mass of air and α = α(βρ, T ).

This assumes that the CO2 - air mixture behaves as if the CO2 has density

βρ and temperature T . This is obviously not true at high pressures where the

behaviour of the gaseous phase departs from the ideal gas equation of state.

Fortunately, the mixing between CO2 and air occurs at atmospheric pressure

and temperatures significantly below the triple point. In this regime the

gaseous phase does obey the ideal equation of state and one can also neglect

the solubility of nitrogen and oxygen in solid CO2 (as TREND does).
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4.4. Implementation

Both equations of state are implemented via look-up tables in MG, an

adaptive mesh refinement (AMR) RANS hydrodynamic code (Falle, 1991).

The code employs an upwind, conservative shock-capturing scheme and is

able to employ multiple processors through parallelisation with the message

passing interface (MPI) library. Integration in time proceeds according to a

second-order accurate upwind scheme with a Harten Lax van-Leer (van Leer,

1977; Harten et al., 1983) (HLL) Riemann solver to aid the implementation

of complex EoS. The code also uses AMR (Falle, 2005), which reduces the

memory and computation time by an order of magnitude. Further details

can be found in Wareing et al. (2013a) and in the references above.

5. Numerical methodology

In computationally simulating the releases considered below, we employed

the same methodology as Wareing et al. (2013b), solving Favre-averaged,

density-weighted forms of the transport equations for mass, momentum, to-

tal energy (internal energy plus kinetic energy) and scalar transport, closed

using a compressibility-corrected version of the k − ǫ turbulence model. We

used a two-dimensional cylindrical polar axisymmetric coordinate system.

Numerical simulations were performed employing the inlet conditions listed

in Table 6 as input conditions in the region defined by r < 0.5D (dimen-

sions are scaled by the vent exit diameter, D) on the z = 0 boundary. The

initial state of the fluid in the domain consists entirely of stationary air at a

pressure and temperature given in Table 6. Conditions in air are calculated

via an ideal gas equation of state with γa = 7/5. The r = 0 axis was treated
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as symmetric and the other r boundary as free flow, introducing air with

the initial atmospheric condition if an in-flow was detected. This neglects

the effects of a cross-flow in the atmosphere, but this is a reasonable approx-

imation to make over the near-field range, where the momentum from the

release is expected to dominate, and is supported by previous work (Wareing

et al., 2013b; Woolley et al., 2013a). The z = 0 axis was fixed by the input

conditions for r < 0.5D and as a solid wall outside this region, ignoring any

ability of the release to entrain air from behind the inlet for the purposes of

this work. The other z axis was free-flow, again only allowing the in-flow of

air with the initial atmospheric condition if in-flow was detected, for exam-

ple as a result of vortices formed before the jet reaches steady state. Given

that vortex structures may be present in the jet as it reaches steady state,

velocities that lead to inflow can occur at the free-flow boundaries. Hence

the boundary conditions are adjusted to ensure that only ambient air can

flow into the domain, with the same properties as the initial condition, and

no CO2.

For the purposes of comparison to experimental data, we show predic-

tions extracted from five numerical simulations in later figures. The inlet

conditions for these simulations are shown in Table 6 and are enforced on

every step at the z = 0 boundary for r < 0.5D. The first three inlet condi-

tions have the same pressure and temperature and only vary liquid fraction

at the nozzle to demonstrate the importance of this key parameter. They are

based on COOLTRANS T7 and we refer the interested reader to Wareing

et al. (2014a) for full details of these inlet conditions. The fourth set of inlet

conditions are matched to QUEST T12 concerning a release of pure CO2 in
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the CO2QUEST project. The fifth set of inlet conditions idealise the fourth

set of conditions for a mixture of 96% CO2 and 4% N2, typical of impurity

levels expected in pipeline transport of CO2 from power generation (Cooper

and Barnett, 2014; Porter et al., 2015). Specifically, they achieve the same

mass-flow rate and hence are directly comparable to the fourth set of inlet

conditions and also the impure CO2 tests from CO2QUEST. Both the fourth

and fifth sets of inlet conditions were obtained from UCL as part of the

CO2QUEST project. We have chosen to idealise the fifth set of inlet con-

ditions in this way in order to explore whether there is a difference between

pure and impure dispersion predictions that otherwise keep the dominating

release factor - mass-flow - the same. There is no such pair of experiments

in the CO2QUEST dataset. Pure Test 12 and impure Tests 14 and 15 are

all similar. In the case of Test 14, the impurity and level of impurity is very

similar to Test 12, but the pressure and temperature are different and hence

mass flow rate is different. In the case of Test 15, the pressure and tem-

perature are similar to the idealised case, but the impurities are different,

even if the total level is very similar. If we had chosen for the fifth set of

inlet conditions to model, e.g. Test 14, the mass-flow rate would have been

different and hence the Mach shock would have been in a different location.

This is a valid thing to do, but outside the scope of this work as we note in

our conclusions.

6. Model comparisons with data

In the following figures we show comparisons of data and dispersion pre-

dictions. The plotted data points indicate experimental measurements of the
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temperature in the dispersion plume at that location and are the simple aver-

age for that particular sensor during the steady state period. The experimen-

tal data during the steady state period has a variance on each measurement

during the relevant time period of a degree or two. The temperature sensors

used are typically accurate over the observed range to within ±5K at worst,

hence throughout all the plots shown the experimental data points should

be assumed to have ±5K error bars, although for clarity these error bars

have not been plotted in the figures. The response time of the sensors is less

than a second in all cases and hence less than the steady state period, which

is at a minimum of 3 seconds, up to tens of seconds for some of the small

diameter, large reservoir releases. Predictions shown are taken from steady

state 2D axisymmetric simulations for the various inlet conditions noted in

the figures, the full details of which were presented in the previous section

and examples of which can be seen in Wareing et al. (2013a,b)

In Figure 2 we compare centreline temperature predictions with varying

liquid fraction at the release point to centreline experimental temperature

data. The first thing to note is that the experimental data is coincident within

the ±5K error up to 100D, at temperatures around 190K. After 100D, the

different experimental datasets diverge, each warming towards ambient con-

ditions at a different rate. Scaling the centreline distance in nozzle diameters

has created a nozzle-diameter-independent plotting of the experimental data.

The predictions of temperature drop very rapidly through the Mach shock,

which in this figure is at ∼8D, so is visible by the drop to 166K pre-shock

and then the rise to 194.25K post-shock. For the first 100D the predic-

tions are slightly warm compared to the data. The pure CO2 predictions
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Figure 2: Experimental data (points) versus predictions (lines) of temperature along the

centreline of an expanding liquid CO2 jet release through a nozzle/vent/puncture from/in

a high pressure reservoir. Multiple datasets are identified in the legend and every datapoint

should be assumed to have a ±5K error, not shown in the figure. Predictions are shown

based on the COOLTRANS T7 inlet conditions for 60%, 80% and 100% liquid fraction at

the nozzle (see Table 6).
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shown here employ the homogeneous relaxation model in the same way as

used in Wareing et al. (2013b), which allows the gas temperature to vary

compared to the solid temperature beyond the Mach shock. An equilibrium

model would necessarily have a temperature of 194.25K immediately after

the Mach shock as this is the sublimation temperature at which gas and solid

co-exist at atmospheric pressure. Evaporation of the solid then cools the flow

along the centreline, as noted by us and other authors (see Section 2 for a

discussion of this effect). Within error, the experimental data satisfyingly

falls between these two extremes. The smallest nozzle diameter experiments

(HSL Tests C and D) are the warmest at this point, which is to be expected

as the solid particles are the furthest from equilibrium due to the proximity

of the shock to the release point.

Further than 100D along the centreline, the 100% liquid fraction predic-

tion clearly remains the coldest of the three predictions into the far-field,

bracketing the coldest extreme of the data at specific centreline distances,

typically CO2PIPETRANS DS2 Test 11. This suggests that DS2 Test 11

was very close to 100% liquid at the release point. At the warm extremes

of the data going into the far-field are HSL Tests C and D. These are cap-

tured by the 60% liquid prediction, although inferred rates in Table 4 are

higher than that. This discrepancy could be related to the true liquid frac-

tion at the nozzle or the fact that these tests are somewhat different to the

other tests shown here, as they are the smallest diameter nozzles and were

also performed in controlled laboratory conditions rather than outdoors. We

have also shown in previous work that the choice of turbulence model in the

numerical prediction affects the plume temperature into the far-field. Here
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we have used a compressibility corrected k − ǫ model described in detail in

Wareing et al. (2013a). So far, we have found this model provides the best fit

to averaged CO2 temperature dispersion data. Further work considering the

unsteady jets produced by Reynolds-stress turbulence models will investigate

this further. The 80% liquid prediction falls half-way between the 60% and

100% liquid predictions, suggesting that DS1 Test 11 may have had a liq-

uid fraction at the nozzle around 80%. The variation in experimental data,

though all are releases from high pressure (close to) 100% liquid reservoirs,

can therefore be explained by variation of the liquid fraction at the release

point, as differences in the experimental apparatus range from direct release

from the reservoir, to release along elongated narrow-diameter pipes.

In Figure 3, we show radial comparisons of data and prediction at 80D,

∼100D, 165D and 400D along the centreline of the jet. Whilst we show as

many datasets as possible, here we only show the prediction for 100% liquid

CO2, which as might be expected brackets the lower temperature extreme

of the data. Agreement between the multiple datasets across the wide range

of centreline locations is clear from the figures, as well as a good fit by

the predicted temperature in the dispersion plume. The advantage of this

comparison is that it is now possible to clearly identify experimental data

which is not comparable to the majority. The temperature of 210K in the

case of COOLTRANS T7 at z=165D and r=32D appears to be an outlier

compared to the other measurements, both from that test and others. The

identification of such points should simplify future experimental and model

validation work.

Figure 4 shows a near-field comparison for both pure CO2 releases (in
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Figure 3: Experimental data (points) versus predictions (lines) for radial temperature

distributions at various locations along the centreline of an expanding liquid CO2 jet release

through a nozzle/vent/puncture from/in a high pressure reservoir. Multiple datasets are

identified in the legends and every data point should be assumed to have a ±5K error,

not shown in the figures. Predictions are shown based on the COOLTRANS T7 inlet

conditions for 100% liquid fraction at the nozzle (see Table 6).
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Figure 4: Experimental centreline near-field temperature data (points) for (a) pure and (b)

impure releases of CO2 from a high pressure reservoir. Multiple datasets are identified in

the legends and every data point should be assumed to have a ±5K error, not shown in the

figures. Shown also are predictions of the temperature (lines) based on the COOLTRANS

T7 inlet conditions for 100% liquid fraction in (a) and based on the pure and impure CO2

inlet conditions in (b), matching reservoir conditions in QUEST T12 (see Table 6).
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(a)) and impure CO2 releases (in (b)). Near-field data and predictions up

to 40D from the release point are shown for both cases. In the pure CO2

case, data from all five sources is shown to be remarkably consistent, apart

from the largest field-scale DUT tests, which given the release diameters

of 50mm and 233mm are large-flow rate releases at the limit of near-field

measurement capability. Larger scale experiments have been performed, but

with limited near-field measurements using different methods; the numerical

model used has been shown to be able to predict such experiments (Ware-

ing et al., 2014a, 2015a,b). Within the Mach shock structure (z < 8D),

experiment and prediction do not agree well, although the data shows some

indication of upward trending temperature close to the release point. Given

the rapid variation of pressure from tens of atmospheres to fractions of a

percent of atmospheric just before the Mach shock, the rapid expansion and

decrease in density and the large acceleration from typically 100m s−1 at

the nozzle to typically 400m s−1 at the shock, it is perhaps not surprising

that thermocouples designed to measure steady-state flows at atmospheric

pressure struggle to capture the extreme gradients in the expanding jet. Be-

yond the Mach shock, temperatures around the sublimation temperature of

194.25K at atmospheric pressure are again seen. The spread of the data is in

good agreement with this, bar the large-scale DUT Test 1 which has already

been discussed and QUEST T2 which would seem to possess a warming trend

suggestive of low liquid fraction. For future modelling, most of the datasets

would appear to be close to equilibrium, behaving in the way expected from

previous insights - the temperatures post-Mach-shock slowly drop from the

sublimation temperature until all the solid has evaporated and then the dis-
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persion plume begins to warm. The point at which this occurs is not shown

in this figure and varies with liquid fraction at the nozzle, but can be seen

in Figure 2.

Turning now to releases of impure CO2 as shown in Figure 4b, multiple

impure experimental datasets and two predictions are shown for compara-

tive purposes. QUEST Tests 12, 13, 14, 15 and 16 were designed to be di-

rectly comparable for the purposes of differentiating the effects of impurities.

The datasets are remarkably consistent but it should be noted that they are

entirely sourced from INERIS through CO2QUEST. The closest near-field

temperature measurements for small-scale releases have been obtained and

all seem to agree on 194.25K. The predictions, which model QUEST T12

and its impure idealisation, would indicate the measuring point is very close

to the Mach shock. The pure prediction (solid black line) models the re-

lease conditions from QUEST T12. The impure prediction is idealised to

match the same release temperature and mass-flow as QUEST T12 (for the

reasons set out in Section 5), and so is reasonably comparable to QUEST

T15 with 4.5% N2 for the level of impurity and QUEST T16 for the pressure

and temperature and hence mass-flow. Perhaps not surprisingly for matched

mass-flow, the two predictions are very similar - the low-level of impurity

has very little effect and the position of the Mach shock is dominated by the

initial pressure and mass flow rate. The recorded dispersion temperatures

are very similar to that in pure CO2 experiments and show no clear difference

between type of impurity and total amount of impurity. Near-field tempera-

ture measurements of the dispersing plume alone clearly cannot differentiate

between pure and impure CO2 in this case. This is supported by the close
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similarity of pure and impure predictions - the experimental accuracy of ±5K

is far greater than the difference between the predictions. This data would

be hard pushed to differentiate between pure and impure releases in the near-

field on that basis. We would like to reassure the reader that the EoS data

used in this work does pick up a difference between pure and impure pre-

dictions - the presence of a two-phase region between the bubble and dew

lines in the tabulated impure EoS data confirms this. Further experiments

with different experimental setups are required to investigate differences be-

tween pure and impure CO2 releases, at least for these levels of impurity.

For example, the impure data shown here indicates a difference between the

QUEST datasets T9 to T19 and T22-T25. Beyond the Mach shock, T22-T25

are characteristically warmer than the other tests. These are larger diameter

tests, but in the middle of the range of nozzle sizes shown in previous fig-

ures, so it is not clear why they should be characteristically warmer than the

other QUEST tests. Further work is required here to elucidate the reasons

for these experimental differences, including experiments designed to show

differences between pure and impure that are greater than the experimental

accuracy. Through this work, future modelling efforts should now be able to

refine their experimental validation procedures.

7. Conclusions

In this work we have performed the first multiple-dataset comparison

between experimental data and numerical predictions for the dispersion of

high pressure liquid CO2 from CCS transport pipeline scenarios into dry air,

extending previous validation from 7 tests to a total of 24 tests. A simple
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non-dimensionalisation of experimental data according to nozzle diameter

used here has provided the means to compare these multiple datasets from

different projects and experimental procedures. It has revealed remarkable

consistency between the experimental datasets. Predictions compare well to

the experimental data and highlight the fact that liquid fraction reducing

mass flow rate at the release point is of key importance in modelling CO2

dispersion. It is our hope that the presentation of data from multiple sources

in this extended validation highlights the differences between experimental

tests and will aid researchers looking to validate dispersion models in the

future.

Turning to impure CO2, for the limited range of low-level impurity con-

sidered here, no clear difference to pure CO2 releases is discernible in temper-

ature dispersion data. This is reflected by the close agreement between pure

and impure predictions of temperature in the dispersion plume. Differences

between experimental datasets are noted. The publication of this work in

the literature should allow future modelling work to account for these differ-

ences in their validation procedures. Further experimental work is required

to discern any differences between such pure and impure CO2 dispersion. It

is worth noting that we chose numerical inlet conditions for the pure and im-

pure cases in order to match mass-flow and explore whether an impurity level

of 4% N2 made any difference to the numerical predictions, as this was one

aim of CO2QUEST. Real-life pipelines and transport facilities are likely to

set pressure and temperature specifications. An impurity will therefore alter

the density of the mixture and hence the mass-flow through a given orifice.

Further exploration of such differences between transport-facility conditions
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is required to quantify the effects of impurities further.

The numerical prediction of impure CO2 dispersion requires complex

equations of state. The use of TREND here has shown there is little dif-

ference between pure and impure temperature predictions for low-levels of

impurity (4% N2), but further work is required as the necessary impure equa-

tions of state are still under development and the available experimental data

for validation is limited.

We have not considered the presence of water vapour in the air. The

region in which water vapour will make a difference in the near-field is limited

- the predictions have shown that no air mixes into the centre of the jet

until approximately 40 release diameters downstream from the release point.

Water vapour cannot affect this part of the jet, which includes the near-field

Mach shock. The centreline predictions shown herein will be unchanged.

Where water vapour in the air does become important is on the edges of

the jet. Water droplets will condense once the temperature is below the dew

point - this chiefly defines the visible extent of the jet. Further into the

mixing region, at lower temperatures, water ice will form. Since water has

a latent heat of fusion approximately five times greater than that of CO2, it

will act as an energy sink causing the CO2 jet to be less cold (on the order of

a few degrees at most in the edges of the near-field jet, depending on the level

of water vapour in the air). This may change the gradient of the predictions

in our radial temperature predictions (Figure 6), but clearly warming the

prediction in the mixing region close to the edge of these predictions is not

desirable as it will not improve this fit to data. CO2 hydrates may also form.

This adds an extra degree of complexity to the equation of state, and EoSs
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are only now considering this complexity. Here we have presented a first

order modelling solution, which still requires very complex EoS. We leave

the accurate inclusion of water vapour and CO2 hydrate formation to future

EoS and future dispersion calculations.
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Table 1: Initial conditions for the CO2PIPETRANS tests included here, reproduced from

CO2PIPETRANS test descriptions.

Description DS1 T2 DS1 T5 DS1 T11 DS2 T3 DS2 T5 DS2 T11

Pressure (barg) 155.5 157.68 82.03 147.3 148.8 80.3

Temperature (degC) 7.84 9.12 17.44 9.8 17.8 -0.2

CO2 fraction 1.00 1.00 1.00 1.00 1.00 1.00

Condensed phase fraction 1.00 1.00 1.00 1.00 1.00 1.00

Orifice diameter (mm) 11.94 25.62 11.94 12.7 25.4 12.7

Atmospheric conditions

Pressure (mbara) 958.2 985.4 960.2 1017 905 995

Temperature (degC) 7.5 5.8 11.6 11.2 9.0 3.6

Relative humidity (%) 96 97 94 66 91 78
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Table 2: Initial conditions for the COOLTRANS test included here, reproduced from

(Wareing et al., 2014a).

Description COOLTRANS T7

Pressure (MPa) 15.00

Temperature (degC) 7.45

CO2 fraction 1.00

Condensed phase fraction 1.00

Orifice diameter (mm) 25.4

Atmospheric conditions

Pressure (MPa) 0.1

Temperature (degC) 7.45
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Table 3: Initial conditions for the CO2PipeHaz tests included here, reproduced from

(Woolley et al., 2012, 2013a,b).

Description HAZ T6 HAZ T7 HAZ T8 HAZ T11 HAZ T12 HAZ T13

Reservoir Pressure (bar) 95.0 85.0 77.0 83.0 77.0 69.0

Reservoir Temperature (degC) 3.0 4.0 6.0 3.0 3.0 3.5

CO2 fraction 1.00 1.00 1.00 1.00 1.00 1.00

Condensed phase fraction 1.00 1.00 1.00 1.00 1.00 1.00

Orifice diameter (mm) 9.0 12.0 25.0 12.0 25.0 50.0

Observed flow rate (kg s−1) 7.7 24.0 40.0

Atmospheric conditions

Pressure (MPa) 0.1 0.1 0.1 0.1 0.1 0.1

Temperature (degC) 3.0 6.0 4.0 3.0 3.0 3.5

Relative humidity (%) > 95.0 > 95.0 > 95.0 > 95.0 > 95.0 > 95.0
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Table 4: Initial conditions for the HSL tests included here, reproduced from (Pursell,

2012).

Description HSL Test C HSL Test D

Average feed pressure (bar) 54.5 3.55

Nozzle pressure (bar) 46.9 36.7

Nozzle temperature (degC) 11.6 2.2

CO2 fraction 1.00 1.00

Condensed phase fraction 0.86 0.84

Orifice diameter (mm) 2.0 4.0

Laboratory conditions

Assumed pressure (MPa) 0.1 0.1

Assumed temperature (degC) 20 20
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Table 5: Initial conditions for the CO2QUEST tests included here.

Description Pres Tres Mixture Dnoz Patmos. Tatmos.

(bar) (degC) (mm) (MPa) (degC)

Pure CO2 tests

QUEST T12 56 16-18 100% liquid CO2 6.0 0.1 18

QUEST T14 37 -5 - -2 100% liquid CO2 6.0 0.1 10

DUT Trial 1 53 20 100% CO2, two-phase 233.0 0.1 36

DUT Test 1 42-54 10-20 100% gas CO2 50.0 0.1 1.5

Impure CO2 tests

QUEST T9 73 23-30 98.4% CO2, 1.6% CH4 6.0 0.1 26

QUEST T13 63 16 95.6% CO2, 4.4% CH4 6.0 0.1 18

QUEST T15 65 13 95.5% CO2, 4.5% N2 6.0 0.1 13

QUEST T16 57 8 95.6% CO2, 2.2% N2, 2.2% CH4 6.0 0.1 11

QUEST T19 51 6 95.9% CO2, 4.1% CH4 6.0 0.1 9

QUEST T22 56 10 95.9% CO2, 4.1% CH4 12.0 0.1 14

QUEST T23 63 11 95.5% CO2, 4.5% N2 12.0 0.1 14

QUEST T24 57 10 96.0% CO2, 2.1% N2, 1.9% CH4 12.0 0.1 10

QUEST T25 63 11 95.5% CO2, 4.5% N2 12.0 0.1 12
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Table 6: Inlet conditions considered here.

Description: Liquid CO2 tests Pure CO2 Impure CO2

Based on: COOLTRANS T7 QUEST T12 adapted QUEST T12

Reference: Wareing et al. (2013b)

Reservoir conditions

Pressure (MPa) 15.00 5.70 5.70

Temperature (degC) 7.45 15.2 3.0

Mixture 100% liquid CO2 100% liquid CO2 96% CO2, 4% N2

Atmospheric conditions

Pressure (MPa) 0.1 0.1 0.1

Temperature (degC) 7.45 18.0 18.0

Inlet conditions

Diameter (mm) 24.3 6.0 6.0

Pressure (MPa) 4.14 1.469 1.498

Temperature (degC) 6.85 -29.15 -33.15

Mean velocity (m s−1) 105.60 136.5 135.7

Liquid fraction (kg/kg) 1.00 / 0.80 / 0.60 0.684 0.693

Density (kgm−3) 883.5 / 392.1 / 252.0 111.86 112.68

Mass-flow (kg s−1) 43.3 / 19.2 / 12.3 0.432 0.432
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