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One of the most widely implemented models for multi-
alternative decision-making is the multihypothesis sequential
probability ratio test (MSPRT). It is asymptotically optimal,
straightforward to implement, and has found application in
modelling biological decision-making. However, the MSPRT
is limited in application to discrete (‘trial-based’), non-time-
varying scenarios. By contrast, real world situations will
be continuous and entail stimulus non-stationarity. In these
circumstances, decision-making mechanisms (like the MSPRT)
which work by accumulating evidence, must be able to discard
outdated evidence which becomes progressively irrelevant. To
address this issue, we introduce a new decision mechanism
by augmenting the MSPRT with a rectangular integration
window and a transparent decision boundary. This allows
selection and de-selection of options as their evidence changes
dynamically. Performance was enhanced by adapting the
window size to problem difficulty. Further, we present an
alternative windowing method which exponentially decays
evidence and does not significantly degrade performance,
while greatly reducing the memory resources necessary. The
methods presented have proven successful at allowing for the
MSPRT algorithm to function in a non-stationary environment.

1. Introduction
In our daily lives, we are continually faced with the problem
of ‘deciding what to do next’ based on a plethora of sensory
information and our internal cognitive, and homeostatic state.
This process of decision-making continues to attract substantial
interest in the computational modelling literature (for reviews,
see [1,2]). Mechanistically, many of these models assume
that noisy sensory streams provide samples of ‘evidence’ for
each of several alternatives, and that these evidence samples
are accumulated in some way until a reference criterion of
distinguishability is reached (defined by one or more thresholds).
This is an idea that meshes well with neuroscientific evidence

2016 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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showing ‘evidence accumulation’ in brain areas involved in decision-making [3–5]. Such decision-
making processes are also subject to a speed–accuracy trade-off which accords well with psychological
studies of reaction times and error rates [1]. Thus, by manipulating the threshold(s), more or less evidence
may be allowed to accumulate before the decision is made. Here, longer accumulation (‘reaction’) times
lead to greater accuracy or lower error rates.

Most previous studies of decision-making have focused on the choice between two alternatives [6–9].
In this regard, it has been shown that one mechanism in particular—the sequential probability ratio test
(SPRT)—is optimal in that it takes the least number of evidence samples to reach a decision for a given
error rate [10]. Recently, however, there has been a growing interest in understanding the processes
involved in multi-alternative decision-making (more than two options) [5,11] and extending models
originally developed for binary decision to multi-alternative computation [12–14].

Perhaps, one of the most widely implemented models for multi-alternative decision-making is the
multihypothesis sequential probability ratio test (MSPRT) [12,15–17]. While this reduces to SPRT for two
alternatives, it fails, in general, to reach similar optimality criteria. Thus, MSPRT can be shown only
to achieve what is known as ‘asymptotic optimality’ in that it minimizes mean response time as the
error rate tends to zero. Even though optimality is not achieved if error rates are not negligible, the
performance of MSPRT in this case is still better than some of its competitor mechanisms [13].

Further, the MSPRT has also been mapped onto a neurobiological substrate associated with decision-
making, namely—the basal ganglia [18,19]. The latter are a set of evolutionarily old, subcortical nuclei
which are believed to play a critical role in action selection and decision-making [20,21]. The fact that the
MSPRT is so closely mapped to the basal ganglia anatomy and that this mapping requires very specific
anatomical and physiological aspects to be satisfied supports the view that these nuclei may be at least
approximating the decision algorithm under certain circumstances.

However, irrespective of mechanism studied, or the number of choices involved, most work on
decision-making thus far has assumed a discrete trial-based paradigm in which evidence is accumulated
from streams with stationary statistics, a decision reached, and then all state variables are reset.
Usually, in trial-based schemes, the decision is made when the threshold criterion is reached but, in the
interrogation paradigm [1], a decision is forced after a predetermined time period. In either case, statistical
stationarity and mechanism reset is assumed before the next trial period.

Recently, the ethological validity of these assumptions has been questioned by considering non-
stationary stimuli [22,23]. However, these studies still assume trial-based schemes, and also use the leaky
competing accumulator decision mechanism (rather than MSPRT). In a fully ethological situation, we
expect that, as well as stimulus non-stationarity, there will be no clearly delineated ‘trials’, implying no
obvious way of resetting the decision mechanism, and thereby de-selecting the current choice.

The question we address here therefore is: how can a decision mechanism continually select and de-
select actions or choices governed by multiple streams of noisy sensory information? In a trial-based,
reset-endowed scheme, ‘old’ evidence from the previous trial is explicitly discarded (at reset) before
a new decision is made. In the proposed paradigm, we have to implement an automatic, dynamic
mechanism for ‘forgetting’ old evidence. We take as our starting point the MSPRT because we wish
to allow subsequent contact with possible basal ganglia implementation, and benefit from the potential
for approximate optimality offered by this mechanism.

2. Material and methods
We describe here our starting point—the MSPRT algorithm, conceived as a trial-based process, and
interpreted in a form suitable for mapping to basal ganglia operation.

Consider N streams or channels of sensory information xi(t), which are sampled at discrete times
t, from stationary random variables (fixed mean and standard deviation). We now form a hypothesis
Hi, for each channel i, which is that xi(t) is sampled from a distribution f + with mean and standard
deviation μ+, σ , while all the others are sampled from counterparts f − with parameters μ−, σ , where
μ+ > μ−. If X(T) is the entirety of sensory information up to some time T, we wish to find the posterior
probability P(Hi | X(T)). It can be shown [18,19] that the required input to a Bayesian decision mechanism
for determining these are the ‘evidence’ samples formed from the per-sample log-likelihood ratios

LRi(t) = ln
f +(xi(t))
f −(xi(t))

. (2.1)
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We now specialize to Gaussian random variables as we do so in the rest of the paper. In this instance,
equation (2.1) becomes

LRi(t) = gxi(t) − g
μ+ + μ−

2
, (2.2)

where

g = μ+ − μ−

σ 2 . (2.3)

It transpires that channel-independent terms do not affect the posterior, and so we may ignore the
second term in (2.2) and use LRi(t) = gxi(t). That is, we can take as our evidence samples the original
sensory samples themselves, xi(t), interpreting g as an overall ‘gain’ factor which depends on problem
difficulty (difference between means and noise). This algebraic reduction is a special case applicable only
to Gaussian random variables; other distributions yield more complex expression [24]. However, given
Gaussian noise, the MSPRT has the interpretation of effectively finding the input channel with the largest
mean of its stimulus samples xi(t); an interpretation we will use henceforth. The accumulated evidence,
yi(T), up to time T, is then just

yi(T) = g
T∑

t=1

xi(t). (2.4)

Using Bayes theorem, it may now be shown [18,19] that the log of the posterior Li(T) ≡ ln P(Hi | X(T)) is
given by

Li(T) = yi(T) − Zi(T)

with Zi(T) = ln

( N∑
k=1

exp(yk(T))

)
.

⎫⎪⎪⎬
⎪⎪⎭ (2.5)

A decision is reached when Li(T) crosses a threshold θ from below. However, the basal ganglia work by
release of inhibition from their target structures in the brain [25]; that is ‘winning’ channels are associated
with a decrease in signal values. Thus, if we wish to interpret the output of the MSPRT as the output of
the basal ganglia, we need to consider not Li(T) but L̄i(T) ≡ −Li(T), so that

L̄i(T) = −yi(T) + Z(T). (2.6)

Now, a decision is reached when L̄i(T) crosses the threshold from above [18], which is the scheme we
adopt here.

The term Zi(T) captures the interaction between channels; for a given amount of evidence yi(T) for
channel i, increasing evidence for other channels increases Zi(T), thereby tending to prevent a decision.
We therefore refer to Zi(T) as the conflict or competition term.

3. Results
3.1. MSPRT-based mechanism with windowed sampling performs robust decision-making

in non-stationary environments
In trial-based MSPRT with a single decision, when the threshold is reached, a decision is made,
integration stops, and evidence integrators are reset to zero. This is reflected in the decision boundary
being absorbing—no further processing takes place after a threshold crossing. By contrast, in a temporally
extended, non-stationary situation, we require multiple decisions to be made with options which were
once selected, being subsequently de-selected in favour of others. This demands that the decision
boundary is now transparent—the trajectory described by an option may recross the boundary in the
opposite direction from that which caused its selection. In addition, subsequent decisions are allowed
for any option by threshold crossing for selection. An example of this kind of decision-making is shown
in figure 1; between a selection and subsequent de-selection event (threshold crossing) of a channel, it
is deemed to be in a‘selected state’. Henceforth, therefore, we assume a transparent decision boundary,
unless otherwise stated.

Interestingly, not all decision mechanisms are capable of using a transparent boundary. To do so
requires that the expectation value of the dynamic variable which has to reach threshold (posterior
probability for MSPRT) can have its direction reversed. This may occur via competitive processes, as
are present in the drift diffusion model [7] , or a decay process, as in the leaky competing accumulator
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Figure 1. Decision-makingwith a transparent boundary. There are three competing channelswith their outputs, L̄i(T), i = 1, 2, 3, shown
in red, green and blue; see equation (2.6). These signals cross the threshold from above and below, with threshold crossing from above
resulting in a decision. Decision states are shown in the horizontal lines at the bottom, with the colour indicating the selected channel at
any time. Note that not all times are associated with a decision. The signals are representative of those in a trial of figure 4 for the fixed
rectangular window (700 ms) in epoch 2, where�μ = μ+ − μ− = 1 and σ = 0.3. For this example, the threshold was increased
from 0.05 to 0.3 to elicit more selection and better illustrate the switch of selection from one option to another.

(LCA) [26]. However, the relevant variables in the race model [27] are monotonically increasing and
so this model does not allow de-selection with a transparent boundary.

To see that the MSPRT is a candidate for non-stationary decision-making, suppose that channel j,
having been selected at time Tj, has no further evidence accumulated after T0 > Tj. Then for T > T0,
using (2.6), L̄j(T) = −yj(T0) + Z(T). This is monotonic increasing in T because the first term is now fixed
and the ‘competition term’, Z(T) is monotonic. Thus, eventually, L̄j(T) recrosses the threshold from below
and, once a channel has no more evidence accumulated, this now-outdated evidence will effectively be
gradually discarded, resulting in the channel being de-selected.

Now consider channel i which is the next to be selected. The time to decision for i depends, not
only on the rate of increase of evidence yi(T), but also on the competition term Z(T). But Z(T) includes
the evidence accumulated from all the previous ‘experience’ of the decision mechanism, and therefore
represents an ever increasing impediment to threshold crossing by i, as this experience grows. It is as if
the inability to ‘forget’ old information is causing subsequent decisions to be progressively harder.

One way of alleviating this problem is to force the ‘forgetting’ of previous evidence using a temporal
sampling window and, conceptually, the simplest window form is rectangular. This is equivalent to
defining the accumulated evidence as a convolution of the evidence samples and a rectangular function
w(t) with non-zero duration Tw. Thus, dropping the channel suffix for simplicity,

y(T) = (x × w)[t] (3.1)

=
∞∑

t=1

x(t)w(T − t), (3.2)

where

w(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, if t < 0,

g, 0 ≤ t ≤ Tw

0, t > Tw

(3.3)

and g is the gain defined in (2.3). Using these limits on non-zero w(t), we have

y(T) =
T∑

t=T−Tw

g × x(t). (3.4)

The decision mechanism now incorporates evidence from a fixed number of samples only over this
window. Recall that convolution may be thought of as multiplying one function by another which ‘slides’
over the first. Here, we imagine the rectangular window sliding over the data. Note that, if Tw = T, and
x(t) is stationary, this new mechanism reduces to the normal MSPRT.
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Figure 2. Performance of windowed and non-windowed MSPRT as a function of decision difficulty (defined by�μ = μ+ − μ−;
see text) and threshold θ . The input protocol is that in equation (3.5). Panels (a–c) show the probability P, (fraction of 1000 experiments)
of performing a correct decision at the end of the trial for each of the cases: 300 ms window, 700 ms and no window. Panels (d–f ) show
the corresponding probabilities of performing an incorrect decision. Panels (g–i) show the probabilities for reaching no decision at the
end of the trial.

In order to test the effectiveness of the moving window method with non-stationary inputs, we
compared the results of the original MSPRT (with no windowing) to variations with two fixed windows
of short (300 ms) and long (700 ms) duration. We used three channels, with input means μ1(t), μ2(t), μ3(t)
and, as described in Material and methods, these were defined by two hypothesis testing means μ+, μ−,
with μ+ > μ−. There were two epochs defined according to

Epoch 1 0 ≤ t < 1000 : μ1(t) = μ+, μ2(t) = μ3(t) = μ−

and Epoch 2 1000 ≤ t < 2000 : μ1(t) = μ3(t) = μ−, μ2(t) = μ+.

}
(3.5)

The standard deviation of the inputs, σ , was fixed throughout this experiment for both channels at 0.33.
We explored performance under different difficulty of decision by varying �μ = μ+ − μ− over the closed
interval [0.15,1.5] sampling with an increment 0.15.

We also investigated the effect of the decision threshold θ , whose variation could show features not
apparent in the case of stationary inputs. To fix the threshold range, we note that, at the start of the
experiment, the evidence for each channel will be zero. Substituting yi = 0 into (2.6) for two channels,
we have L̄i(Tw) = ln(exp(0) + exp(0)) = ln(2) ≈ 0.693. There is clearly no point having a threshold greater
than that associated with no evidence, and so this places an upper bound on θ ; we refer to this as the
zero-evidence limit. We also used an order of magnitude range, so that θ was varied over the closed interval
[0.05 0.5] sampling at intervals of 0.05.

We evaluated performance by examining the outcome at the end of epoch 2, because this represented
a typical decision in a non-stationary environment, where the evidence may contain irrelevant
contributions from a previous epoch. The results, averaged over 1000 experiments (each with a different
instance of the stochastic input), and at each combination of �μ and θ , are summarized in figure 2.
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A ‘correct decision’ was one in which the channel with the larger input was selected at the end of epoch
2; that is, its negative log-posterior, L̄i, was less than θ . The other possible outcomes were: ‘incorrect
decision’ (a channel with the smaller input was selected), ‘no decision’ (no channel had L̄i < θ ) and
‘multiple selection’ (more than one channel had L̄i < θ , this was omitted because no ‘multiple selection’
was observed for these sets of parameters).

Figure 2a–c shows the probability P, of obtaining the correct outcome (fraction of the 1000 runs). The
non-windowed (original) MSPRT performs at roughly chance levels for most of the parameter range.
This is because the decision mechanism is being called on to work on selecting channel 2 in epoch 2,
but is ‘contaminated’ with erroneous evidence which supported channel 1 in the first epoch. By contrast,
for both small and large window sizes, there is a threshold range which allows better performance than
the non-windowed MSPRT. In particular, the 700 ms window shows an almost perfect performance for
a significant range of problem difficulty and threshold. Thus, the ability to ‘forget’ prior evidence can be
advantageous.

Furthermore, the 300 ms window benefits from somewhat higher thresholds for low problem
difficulty (large �μ). As the increase in threshold is moderate, it does not result in a significant increase
in incorrect selection. The benefit of larger thresholds may seem counter-intuitive because, for the un-
windowed MSPRT, smaller thresholds require more evidence to reach, and are associated with lower
error-rates. However, with the windowed variants, if the threshold is too low, the time required to reach
it may exceed the window time, and somewhat higher thresholds can force selection (albeit not always
correct). In addition, reporting the correct decision at the end of epoch 2, is forgiving of errors earlier in
the epoch (threshold crossing with the wrong outcome) which might be present with larger thresholds.
The results therefore reflect a tension between these conflicting features.

Further insights into the decision process with non-stationary inputs are supplied in figure 2d–f,
g–i, which show (for each of the window options) the probabilities of making the wrong decision and
no decision, respectively. Except at very small �μ and threshold, the un-windowed MSPRT makes
an incorrect decision almost at chance for most of the parameter space. By contrast, the errors of
performance for the short (300 ms) and long (700 ms) windows MSPRT are mainly a failure to reach a
decision (figure 2g,h), which is not surprising given its limited time to do so.

There is some benefit for the 700 ms window from large thresholds with hard problems (small
�μ). However, in the main, for the larger window size, the performance is fairly independent of
threshold (up to values close to the zero-evidence bound). Thus, across both small and large windows,
moderately large thresholds are preferred. Further, increasing the threshold will increase both correct
and incorrect selection.

For all MSPRT variants, the tendency to no-selection (figure 2g–i) is most pronounced for hard
problems and small thresholds because both conditions demand longer accumulation times. This is true
even for the non-windowed case, which may require longer than 2000 ms (the experiment time).

In sum, windowing appears to confer an advantage for the MSPRT in non-stationary environments
by allowing prior, irrelevant information to be discarded. For windows of smaller duration, the
counter-intuitive benefits (with the current performance criterion) of somewhat larger thresholds (but
below the zero-evidence limit) are explained by the limited amount of evidence available with small
windows—such thresholds avoid the impasse of no selection. For larger windows (comparable with the
characteristic time-scale of the stimulus) performance is fairly insensitive to the threshold but, where
there is dependence, larger values (but removed from the zero-evidence limit) are preferred for the
same reasons.

3.2. Problem-dependent windowing improves performance
Consider the performance of the windowed MSPRTs in figure 2. Both the long (700 ms) and short (300 ms)
duration windows show significantly better performance than those obtained using the original MSPRT,
although the longer window performs better, overall, than its shorter counterpart. Thus, conceiving of
the original MSPRT as using an effectively ‘infinite’ window, these results suggest a modal progression
of behaviour with window size in which there is a preferred size for best performance. Further, the
preferred size is related to the epoch size (here 1000 ms). Thus longer/shorter epochs would give rise to
longer/shorter preferred window size. However, selecting a window size based on the epoch duration
is not a practical proposition for an autonomous agent who has no knowledge of the timing of the
input transitions.

An alternative approach to selecting window size is indicated by examining the performance
‘landscape’ over the problem space. Thus, for ‘easy’ problems (with large �μ), the shorter (300 ms)
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Figure 3. Figure depicts decision time versus decision difficulty. Blue dots representmean decision time against�μ (log axis) in a three
choice task with stationary inputs over 1000 runs. Curve shows power law fitted to decision time.

window performs almost as well as the longer (700 ms). For harder problems (with small �μ), there
is significant benefit in using windows longer than 300 ms. We might therefore ask the question: what is
the adequate window duration, for each degree of problem difficulty (here, determined by �μ) that does
not result in a large drop in performance? It is more realistic to suppose that an agent could estimate
problem difficulty by, perhaps, separately sampling the inputs over a short, fixed window to estimate
their means (we have, indeed, investigated this possibility and it does appear viable).

Based on the observations above, we assume that the adequate window size scales with the decision
time for a stationary problem with three inputs. To investigate this, we therefore used a model with
an un-windowed MSPRT with three, constant-mean input channels. The two ‘losing’ channels had
mean μ− and the winning channel μ+, as defined in Material and methods. The standard deviation
of both channels was 0.33, and �μ was varied in the interval [0.6, 2.6]. Although we did not conduct
an exhaustive search, good results in the non-stationary experiments were subsequently obtained for a
15% error rate with the un-windowed MSPRT. For consistency, we also used the threshold for this error
rate (0.05) in the subsequent, non-stationary input experiments. Furthermore, using a 5% error rate in
the power law determination resulted in only a 1% decrease in mean reward (compared with that for
15% rate).

The results, averaged over 1000 runs at each value of �μ, are shown in figure 3. The data were well
fitted by a power law relating the mean decision time and �μ

DT(�μ) = 445.7�μ−1.98. (3.6)

We then used this to determine the problem-dependent window size Tw(�μ) by simply putting
Tw(�μ) = DT(�μ). This method of determining Tw(�μ) is robust. In other experiments with N > 3 (not
reported here), we used the N = 3 relation in (3.6) with good selection performance. Moreover, we have
shown that the relations like (3.6), specifically derived with N > 3, are approximated quite well by simply
scaling that for N = 3 in (3.6).

Thus far, our evaluation of performance has rested solely on the outcome at the end of an epoch.
However, in order to better gauge performance in terms of the decision throughout an epoch, we introduce
a metric whose value is governed by the duration of a correct decision. Thus, at each timestep i within an
epoch, we set a Boolean variable ri to 1 if the correct channel (and only this channel) had been selected,
and −1 if an incorrect channel was selected. The metric Rj was then defined as the sum of all such values
over the epoch j.

Rj =
∑
i∈J

ri, (3.7)

where J is the set of timesteps in epoch j. This captures the notion that early (and sustained) correct
decisions are better than late, or incorrect ones (with reference to equation (3.5), the correct outcome in
epochs 1 and 2 are selection of channels 1 and 2, respectively).

Experiments with the problem-dependent window were conducted over a range of differences in
mean �μ = μ+ − μ−, and standard deviation σ , common to both the inputs. We therefore refer to
Rj(σ , �μ) with respect to a particular parameter pair. It is also useful to refer to the mean of Rj over
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Figure 4. Cumulative reward in the experiment of equation (3.5); average of 1000 runs. Panels (a–c), (d–f ) for R1, R2 (epochs 1, 2),
respectively. Panels (a and d), (b and e), (c and f ) show the case for: nowindow, fixed (700 ms)window and problem-dependentwindow
(determined by (3.6)), respectively.

a set of experiments. Thus, if L, M are the experimental sets of σ and �μ respectively, we define the mean
reward in epoch j

R̄j = 〈RJ(σ , �μ)〉L,M. (3.8)

As suggested by the notation, the metric in (3.7) might be interpreted as some kind of cumulative
‘reward’ for correct decision-making—early, correct decisions lead to larger values of accumulated
reward—and we will therefore refer to it in this way. Note that the symmetry of R about zero penalizes
performance at chance which will yield expected reward values of zero.

In the following experiments the threshold was fixed at 0.05, the value used to obtain equation (3.6).
The parameter sets L, M (defining variations in σ , �μ) comprised the 10, equi-spaced values in the
closed intervals [0.1,0.55], [0.15,1.5], respectively, and each pair of parameters was used in 1000 trials.
Experiments were done with a fixed window of 700 ms, no window and the variable window defined
by (3.6); the results are shown in figure 4.

For epoch 1 (figure 4a–c), there is little difference in performance (reward) across window variation.
However, the results in the first epoch are not typical of the non-stationary decision process because,
during this time, there is no prior evidence to contaminate the decision (and because both the fixed
and un-windowed mechanisms accumulate more evidence in epoch 1, they are able to outperform the
variable window mechanism).

By contrast, for epoch 2, the reward with fixed or problem-dependent (adjustable) window is
significantly higher than that with no window. Unlike epoch 1, in epoch 2, a prior decision has to be
reversed and prior evidence is an impediment to making the new, correct choice, thereby favouring
the shorter problem-dependent windows. The problem-dependent and fixed (700 ms) windows produce
similar mean rewards of 146 and 156, respectively. However, the performance of the problem-dependent
window is better over large parts of the ‘easier’ problem space.

In order to further understand the behaviour with the problem-dependent window, figure 5 shows
a dissection of the behaviour in epoch 2 for the case shown in figure 4f into each decision possibility
at the end of the epoch. Thus, in the ‘correct decision’, channel 2 is selected at the end of epoch 1, in
an ‘incorrect decision’ it is channel 1 or 3, and ‘no selection’ implies no channel has crossed threshold.
Multiple selection was omitted because it did not occur in significant numbers. It is clear that the failure
to reach a reward maximum is largely due to failure to make a selection of any kind.

3.2.1. Robustness under moderate change in gain

Thus far the accumulated evidence has made use of a windowed sum of data samples x(t), multiplied by
a gain g, where g = (μ+ − μ−)/σ 2; see equation (2.3). The evaluation of this gain would seem to require
the mechanism has knowledge of its own inputs (means and standard deviation). However, in [18] it
was shown that the performance of the basic (window-free) MSPRT mechanism was independent of the
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Figure 5. (a–d) Behaviour of adjustable rectangular window in epoch 2, from figure 4f. Panel (b) depicts the normalized amount of
correct selection, panel (c) depicts incorrect selection, and panel (d) depicts no selection. Range of values shown on the right pertains
to decision figures (not to reward figure).

gain, as long as it was larger than the nominal value given here. We therefore sought to find the effect of
changing the gain on performance in the windowed mechanism described here. This was done by taking
g defined above and multiplying by a factor k, with k = 0.5, 1, 5, 10, 20.

The results for epoch 2 are shown in figure 6. In addition, the mean rewards for each k (in order
of increasing k) were 102, 146, 199, 176, 129, respectively. Thus, when the gain is below nominal, the
performance is compromised. For moderate increases in gain, k = 5, 10, there is an improvement in
average reward, and inspection of figure 6 shows this to occur mainly for large �μ and σ .

This is significant because one limitation of our adaptive window approach is that, while it tries to
accommodate the type of decision at hand (by taking into account the variation of �μ), it does not take
into consideration how long we have to make a decision before a new, more salient option is presented
(length of window can become larger than epoch size for very difficult decisions). This can therefore
result in sub-optimal window sizes which reduce the overall level of reward. Moderate increases in gain
appear to overcome this to some extent since they force more rapid accumulation, thereby preventing
non-selection or reducing the delay in selecting, which can be preferred in cases where the overall reward
is time dependent. This also accounts for the decrease in reward for lower �μ and higher σ , when the
gain is increased above 1. In that case, while our mechanism takes into account the variation in problem
difficulty, it does so only with reference to �μ. As such, when �μ and σ are of similar magnitude,
the window size becomes sub-optimal. This is enhanced by the higher gain, which promotes quicker
selection and therefore more erroneous decisions.

3.2.2. Exponential window geometry

Thus far, we have considered the moving accumulation window to have a rectangular shape.
Conceptually, this is straightforward to understand and it would appear to make best use of the evidence
available since all such is equally weighted. However, from an implementation perspective it has the
drawback that it is necessary to keep a record of all evidence samples over a period Tw, in order to
know what contribution is to be removed from the tail of the window at each timestep. While this is
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Figure 6. Effect of gain on performance with the adaptive window. Cumulative reward R in epoch 2 using the protocol in equation (3.5)
shows the original result with gain g= (μ+ − μ−)/σ 2. Panels (a and c) are for the case when this gain is multiplied by 0.5 and 5,
respectively. Panels (d and e) and (f and g) are for the case when the gain is multiplied by 10 and 20, respectively, both in three-
dimensional formand as a two-dimensional contour plot, to highlight features otherwisemasked by the view in three dimensions (which
is consistent with the other panels).

not significant in a machine learning context it may have implications in future attempts to couch the
mechanism in biologically plausible form.

To address this issue, consider a non-rectangular window defined by the exponential function

w(t) =
⎧⎨
⎩

g exp(−λt), if t ≥ 0

0, if t < 0
, (3.9)

where λ = 1/τw and τw is a characteristic time constant measured in timesteps, and g is given in (2.3).
Then convolving this with the data x(t) (channel suffix suppressed), and using the limit on non-zero w(t),
we obtain the equivalent of (3.4)

y(T) = g
T∑

t=1

x(t) exp[−λ(T − t)]. (3.10)

At the next timestep,

y(T + 1) = g
T+1∑
t=1

x(t) exp[−λ(T + 1 − t)]

= exp(−λ)

{
g

T∑
t=1

x(t) exp[−λ(T − t)] + gx(T + 1) exp(λ)

}

= exp(−λ)y(T) + gx(T + 1). (3.11)

Assuming many timesteps for the exponential to decay significantly, τw 
 1 or λ � 1, so that exp(−λ) ≈
1 − λ. Using this in (3.11),

y(T + 1) = (1 − λ)y(T) + gx(T + 1). (3.12)

Thus, there is a very simple, memory-efficient update rule for accumulating evidence with the
exponential window: reduce or ‘decay’ the current accumulated evidence y(T) by a factor 1 − λ and
add in the new (gain-weighted) evidence sample.

To fix τw (and hence λ) in a way which enabled meaningful comparison with previous results, we
chose to use a problem-specific adaptive window and obtain λ using the power law in (3.6). Thus, we set

λ(�μ) = 1
DT(�μ)

. (3.13)
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Figure 7. Comparison of cumulative reward R in epoch 2 from problem specific windows with rectangular and exponential form using
the protocol in equation (3.5) (each averaged over 1000 runs). Panel (a) shows results for the rectangular window; panel (b) shows results
for the exponential window (repeated here from figure 5 for ease of comparison).

Figure 7 shows the resulting reward in epoch 2 (typical of decisions in general non-stationary situations)
using the protocol in equation (3.5). For ease of comparison, corresponding results for the adaptive
rectangular window are show alongside. The mean reward R̄2 for the rectangular and exponential
windows was 146 and 110, respectively.

In order to test whether choices for λ(�μ) other than that (3.13) could yield better results, we
investigated the effect of introduced a scaling term n so that λ = n/DT, with 0.5 ≤ n ≤ 5. The values of R̄2
for n in a sequence {0.25, 0.5, 1, 2, 5} were {−102, 27, 110, 128, 89}. These results show a modal behaviour
of performance against scaling, and that there is no substantive loss in performance by adopting the
nominal value of λ in (3.13) with n = 1.

Mechanisms with fixed λ, for a variety of values, were also tested but systematically under-
performed compared with those with variable window size. This is in line with similar results for the
rectangular window.

4. Discussion
To work effectively in a continuous-time manner with non-stationary inputs, a decision mechanism
must have some way to reset or ‘forget’ accumulated evidence which is no longer relevant. We sought
to address this issue in the context of MSPRT-based algorithms which, hitherto, to the best of our
knowledge, have not been equipped in this way. Tsetsos et al. [23] conducted a comparative study of
several decision mechanisms in non-stationary input environments. The target mechanisms were the race
model [28], the drift diffusion model [29] and the leaky competing accumulator model (LCA) [26]. The
authors found that, with correlated evidence, the LCA was best able to explain results from comparable
experiments with human subjects. The authors did not, however, test the MSPRT model in such settings.

Through the introduction of a rectangular integration window with a transparent decision boundary,
we were able to make an MSPRT-based algorithm select and de-select options appropriately based on
their relative magnitude. We also showed that the use of such a window yields better performance than
the original un-windowed algorithm, across the range of parameters tested.

Performance depends on the size of the window which is related to epoch duration—a parameter
which is unknowable by an autonomous agent. Thus, with the aim of establishing principles for use
in such a context, we investigated the use of a window whose duration varied according to problem
difficulty, and which could, in principle, be estimated dynamically. Performance held up well with such
a mechanism over a large range of the problem space. Further, results were robust with respect to changes
in the parameters of the mechanism for determining window size (power laws fitted to the outcome of
un-windowed experiments).

Rectangular windows are, conceptually, the simplest possibility to evaluate, as they imply the use
of a uniformly weighted set of recent evidence. Thus, they present a natural benchmark against which
other windowing methods may be compared. However, we did go on to explore an alternative to the
rectangular window, which used less memory resources. This mechanism added new evidence at each
timestep while exponentially decaying older evidence. Even though its performance was inferior to that
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of the rectangular window, it still presents a viable alternative to it, in cases where memory is limited,
and may form a basis for biologically plausible implementations of our method.

In regards to this approach, our attention was drawn during review to work of which we
were not previously aware [30]. The authors implemented a nonlinear stochastic model of evidence
accumulation which uses exponential discounting as a means of discarding outdated evidence. In their
implementation, however, the evidence discount rate is dependent on the frequency of environmental
changes and assumes that those are always known to the decision maker. We believe this to be
fundamentally different from our own implementation of the exponential window, with the only
commonality being the geometry of the discounting window. In our implementation, λ is calculated
through the use of a power law which depicts decision time for a given number of competing channels
and for a particular �μ, which we discovered empirically.

As already noted, one candidate for use in non-stationary input situations is the LCA [23]. However,
this has more free parameters than our algorithm and so would appear to be harder to implement in
an autonomous agent. Further, in terms of optimality, Bogacz et al. [31] showed that, even though the
LCA is straightforward to implement for N > 2 alternatives by setting the inhibition and decay to the
same high value, for N = 2 it requires further manipulations and parameter search in order to achieve
the same statistical optimality of the SPRT mechanism. The LCA does achieve optimal performance in
the so-called ‘interrogation paradigm’, in which a decision is forced if none is reached within a certain
amount of time. However, because we are interested in using a transparent boundary for decision, these
results do not directly compare with those presented here.

This paper has sought to address a gap in the MSPRT literature by presenting a principled way
to accumulate evidence in a continuous, non-stationary setting, allowing evidence to be discarded
dynamically without the need for a reset to the mechanism. Our problem-dependent windowing
methods (both rectangular and exponential) require knowledge of the smallest difference between means
of input signals and, while preliminary work suggests this may also be estimated in an ‘online’ manner,
future work is required to fully evaluate this approach.
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