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Abstract Many agent based models require agents to have an awareness
of their local peers. The handling of these fixed radius near neighbours
(FRNNs) is often a limiting factor of performance. However without a
standardised metric to assess the handling of FRNNs, contributions to
the field lack the rigorous appraisal necessary to expose their relative
benefits.
This paper presents a standardised specification of a multi agent based
benchmark model. The benchmark model provides a means for the ob-
jective assessment of FRNNs performance, through the comparison of
implementations. Results collected from implementations of the bench-
mark model under three agent based modelling frameworks show the
64-bit floating point performance of each framework to scale linearly
with agent population, in contrast the GPU accelerated framework’s 32-
bit floating point performance only became linear after maximal device
utilisation around 100,000 agents.

Keywords: Parallel Agent Based Simulation, OpenAB, Benchmarking,
Fixed Radius Near Neighbours, FLAMEGPU, MASON, Repast Sim-
phony

1 Introduction

Many complex systems have mobile entities located within a continuous space
such as: particles, people or vehicles. Typically these systems are represented
via Agent Based Simulations (ABS) where entities are agents. In order for these
mobile agents to decide actions, they must be aware of their neighbouring agents.
This awareness is typically provided by fixed radius near neighbours (FRNNs)
search, whereby each agent considers the properties of every other agent located
within a spatial radial area about their simulated position. This searched area can
be considered the agent’s neighbourhood and must be searched every timestep of
a simulation, ensuring the agent has access to the most recent information about
their neighbourhood. In many cases such as flocking, pedestrian interaction and
cellular systems, the majority of time is spent performing this neighbourhood
search, as opposed to agent logic. It is hence often the primary performance
limitation.

The most common technique utilised for accelerating FRNNs is one of uni-
form spatial partitioning. Within uniform spatial partitioning, the environment



is decomposed into a regular grid, partitioned according to the interaction ra-
dius. Agents are then stored or sorted according to the grid cell they are located
within. Agents consider their neighbourhood by performing a distance test on
all agents within their own grid partition and any directly adjacent neighbour-
ing grid cells. This has caused researchers to seek to improve the efficiency of
FRNNs handling, primarily by approaching more efficient memory access pat-
terns [3,5,11]. However without a rigorous standard to compare implementations,
exposing their relative benefits is greatly complicated.

With ABS reliance on FRNNs, there are many capable available frameworks,
providing initial FRNNs implementations for assessment. The Open Agent Bench-
mark Project (OpenAB)1 exists for the wider assessment of ABS and to pool
the research community’s ABS knowledge and resources. This paper uses the
OpenAB’s process of publishing a simulator independent benchmark model in
a format which allows the performance of implementations across multiple ABS
frameworks to be compared. By unifying the process of benchmarking ABS it
is hoped that the OpenAB project will foster the necessary transparency and
standards among the ABS community, ensuring that rigorous benchmarking
standards are adhered to.

This paper formalises and standardises a benchmark model named circles,
previously implemented by frameworks such as FLAMEGPU [10]. The model
is specifically standardised and designed to assess the performance of FRNNs
implementations. A formal specification of the benchmark and it’s applications
is provided alongside a preliminary comparison of results obtained from the
single node agent modelling frameworks: FLAMEGPU, MASON and REPAST
Simphony. Single machine frameworks have been targeted as they provide a
simpler and more accessible platform than distributed for initial development.
This work has been published to the OpenAB website2 and provides a foundation
for the future assessment of ABS frameworks.

The results within this paper assess each frameworks FRNNs implementa-
tion against the metrics of problem size and neighbourhood size, which can be
measured using the circles benchmark. Most apparent from these results is how
the runtime scales linearly with problem size after maximal hardware utilisa-
tion. However, a much larger problem size is required to fully utilise Graphics
Processing Unit (GPU) hardware when working with 32-bit floating point data.

The remainder of this paper is organised as follows: Section 2 provides an
overview of related research; Section 3 lays out a clear specification of the circles
benchmark model and how it can be utilised effectively; Section 4 details the
frameworks which have been assessed using the benchmark; Section 5 discusses
the results obtained from the application of the circles benchmark to each frame-
work; Finally Section 6 presents the concluding remarks and directions for fur-
ther research.

1 http://www.openab.org
2 http://www.openab.org/benchmarks/models/submit/circles/



2 Related Research

FRNNs searches are most often found within agent-based models. They have also
been used alongside similar algorithms within the fields of Smoothed-Particle
Hydrodynamics (SPH) and collision detection. FRNNs is the process whereby
each agent considers the properties of every other agent located within a radial
area about their location. This searched area can be considered the agents neigh-
bourhood and must be searched every timestep of a simulation to ensure agents
have live information. Whilst various spatial data-structures such as kd-trees
and R-trees are capable of providing efficient access to spatial neighbourhoods,
in order to achieve high performance in a problem as general as FRNNs they
must sacrifice accuracy [6].
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Figure 1. A representation of a
data structure that can be used
for uniform spatial partitioning.
The Cells table denotes the index
within the Agents table that data
for the corresponding cell begins.

The naive approach for carrying out a
neighbourhood search is via a brute-force
technique, individually considering whether
each agent is located within the target neigh-
bourhood. This technique may be suitable for
small agent populations, however the over-
head quickly becomes significant as agent pop-
ulations increase, reducing the proportional
volume of the neighbourhoods with respect to
the volume of the environment.

The most common technique that is used
to reduce the overhead of FRNNs handling
is that of uniform spatial partitioning (Fig-
ure 1), whereby the environment is partitioned
into a uniform grid, whereby grid cells have
dimensions equal to the interaction radius.
Agents are then (sorted and) stored accord-
ing to the ID of their containing cell within the
grid. Serial implementations are likely to util-
ise linked list’s to store the agents within each
bin. Parallel implementations in contrast are
likely to store agents within a single compact
array which is sorted in a distinct step after
agent locations have been updated, following
which an index to provide direct access to the
storage of each cells agents is produced. This
allows the Moore neighbourhood3 of an agents
cell to be accessed, ignoring agents within cells
outside of the desired neighbourhood. This
method is particularly suitable for parallel im-
plementations [4] and several advances have

3 The collection of cells inclusively bounded by the ring of adjacent cells surrounding
the target cell.



been suggested to further improve their performance: Goswami et al proposed
the use of Z-order curves to improve memory locality [3]; Hoetzlein considered
the effect of changing the partition cell dimensions [5]; and Sun et al proposed
the use of a parallel ordered sort to improve sorting efficiency [11].

Recent FRNNs publications have either provided no comparative perform-
ance results, or simply compared with their prior implementation lacking the
published innovation [3,5,11]. With numerous potential innovations which may
interact and overlap it becomes necessary to standardise the methodology by
which these advances can be compared both independently and in combination.
When assessing the performance of High Performance Computation (HPC) al-
gorithms there are various approaches which must be taken and considered to
ensure fair results.

When comparing the performance of algorithms there are a plethora of re-
commendations to be followed to ensure that results are not misleading[1]. The
general trend among these guidelines is the requirement of explicit detailing of
experimental conditions and ensuring uniformity between test cases such that
results can be reproduced. Furthermore, if comparing algorithm performance
across different architectures it is important to ensure that appropriate optim-
isations for each architecture have been implemented. Historically there have
been numerous cases whereby comparisons between CPU and GPU have shown
speedups as high as 100x which have later been debunked due to flawed meth-
odology [7].

3 Benchmark Model

The circles benchmark model is designed to utilise neighbourhood search in a
manner analogous to a simplified particle simulation in two or three dimensions
(although it could easily be extended to higher levels of dimensionality if re-
quired). Within the model each agent represents a particle whose location is
clamped within between 0 and W − 1 in each axis.4. Each particle’s motion is
driven by forces applied from other particles within their local neighbourhood,
with forces applied between particles to encourage a separation of r.

The parameters (explained below) of the circles benchmark allow it to be used
to assess how the performance of FRNNs search implementations are affected by
changes to factors such as problem size and neighbourhood size. This assessment
can then be utilised in the research of FRNNs ensuring comparisons against
existing work and to advise design decisions when requiring FRNNs during the
implementation of ABS.

3.1 Model Specification

The benchmark model is configured using the parameters in Table 1. In addi-
tion to these parameters the dimensionality of the environment (Edim) must be

4 All frameworks tested utilised an environment of 0 <= x < W , as it is not possible
to cleanly clamp a floating point value within a less than bound, the nearest valid
whole number was instead used to ensure the correct operation of each framework.



decided, which in most cases will be 2 or 3. The value of Edim is not considered
a model parameter as changes to this value are likely to require implementation
changes. The results presented later in this paper are all from 3D implementa-
tions of the benchmark model.

Parameter Description Fig. 2 Fig. 3

krep The repulsion dampening argument.
Increasing this value encourages agents to
repel.

1× 10−3 1× 10−3

katt The attraction dampening argument.
Increasing this value encourages agents to
attract.

1× 10−3 1× 10−3

r The radial distance from the particle to which
other particles are attracted. Twice this value
is the interaction radius

5 1-15

ρ The density of agents within the environment. 1× 10−2 1× 10−2

W The diameter of the environment. This value
is shared by each dimension therefore in a
two dimensional environment it represents
the width and height. Increasing this value is
equivalent to increasing the scale of the
problem (e.g. the number of agents) assuming
ρ remains unchanged.

50-300 100

Table 1. The parameters for configuring the circles benchmark model.

Initialisation Each agent is solely represented by their location. The total
number of agents Apop is calculated using Equation 1.5 Initially the particle
agents are randomly positioned within the environment of diameter W and Edim

dimensions.

Apop =
⌊

WEdimρ
⌋

(1)

Single Iteration For each timestep of the benchmark model, every agent’s
location must be updated. The position x of an agent i at the discrete timestep
t+ 1 is given by Equation 2, whereby Fi denotes the force exerted on the agent
i as calculated by Equation 3.6 Within Equation 3 F

rep
ij and F att

ij represent the
respective attraction and repulsion forces applied to agent i from agent j. The
values of F att

ij and F
rep
ij are calculated using Equations 4 and 5 respectively, the

relevant force parameter is multiplied by the distance from the force’s boundary
and the unit vector from xi to xj in the direction of the respective force. After
calculation, the agent’s location is then clamped between 0 and W − 1 in each
axis.
5 ⌊ ⌋ represents the mathematical operation floor.
6 The square Iversion bracket notation [ ] denotes a conditional statement; when the
statement evaluates to true a value of 1 is returned otherwise 0



−−−−→xi(t+1) =
−−→xi(t) +

−→
Fi (2)

−→
Fi =

∑

i 6=j

−−→
F

rep
ij [‖−−→xixj‖ < r] +

−−→
F att
ij [r <= ‖−−→xixj‖ < 2r] (3)

−−→
F att
ij = katt(2r − ‖−−→xjxi‖)

−−→xjxi

‖−−→xjxi‖
(4)

−−→
F

rep
ij = krep(‖

−−→xixj‖)
−−→xixj

‖−−→xixj‖
(5)

Algorithm 1 provides a pseudo-code implementation of the calculation of
a single particles new location, whereby each agent only iterates their agent
neighbours rather than the global agent population.

Algorithm 1 Pseudo-code for the calculation of a single particle’s new location.

vec myOldLoc;
vec myNewLoc = myOldLoc;
float r2 = 2* RADIUS;
foreach neighbourLoc
{

vec toVec = neighbourLoc -myOldLoc;
float separation = length(toVec);
if(separation < r2)
{

float k = (separation <RADIUS)?REP_FORCE:ATT_FORCE;
toVec = (separation <RADIUS)?-toVec:toVec;
separation = (separation <RADIUS)?separation :(r2 -separation);
myNewLoc += k * separation * normalize(toVec);

}
}
myNewLoc = clamp(myNewLoc , envMin , envMax);

Validation There are several checks that can be carried out to ensure that
the benchmark has been implemented correctly, the initial validation techniques
rely on visual assessment. During execution if the forces Fatt & Frep are both
positive particles can be expected to form spherical clusters. Due to the force
drop-off (switching from the maximal positive force, to the maximal negative
force) when a particle crosses the force boundary, these clusters oscillate, this
effect is amplified by agent density and force magnitude. If these forces are
however both negative, particles will spread out, with some particles overlapping
each other.

More precise validation can be carried out by seeding two independent im-
plementations7 with the same initial particle locations. With appropriate model
parameters (such as those in Table 1), it is possible to then export agent positions
after a single iteration from each implementation8. Comparing these exported

7 The implementations used within this paper are available within this projects re-
pository. https://github.com/Robadob/circles-benchmark

8 It is recommended to export agents in the same order that they were loaded, as
sorting diverged agents may provide inaccurate pairings.



positions should show a parity to several decimal places, whilst significant dif-
ferences between the initial state and the exported states. Due to the previously
mentioned force fall-off and floating point arithmetic limitations, it was found
that a single particle crossing a boundary between two models, snowballs after
only a few iterations, causing many other particles to differ between simulation
results.

The 3 agent framework implementations tested within this paper were all
tested with shared initial particle locations states to ensure that their models
were performing the same operations.

3.2 Effective Usage

The metrics which may affect the performance of neighbourhood search imple-
mentations are agent quantity, neighbourhood size, agent speed and location
uniformity. Whilst it is not possible to directly parametrise all of these metrics
within the circles benchmark, a significant number can be controlled to provide
understanding of how the performance of different implementations is affected.

To modify the scale of the problem, the environment widthW can be changed.
This directly adjusts the agent population size, according to the formula in
Equation 1, whilst leaving the density unaffected. Modulating the scale of the
population is used to benchmark how well implementations scale with increased
problem sizes. In multi-core and GPU implementations this may also allow the
point of maximal hardware utilisation to be identified, whereby lesser population
sizes do not fully utilise the available hardware.

Modifying either the density ρ or the radius r can be used to affect the number
of agents found within each neighbourhood. The number of agents within a
neighbourhood of radius r can be estimated using Equation 6, this value assumes
that agents are uniformly distributed and will vary slightly between agents.

Nsize = ρπ(2r)Edim (6)

Modifying the speed of the agent’s motion affects the rate at which the data
structure holding the neighbourhood data must change (referred to as changing
the entropy, the energy within the system). Many implementations are unaffected
by changes to this value. However optimisations such as those by Sun et al [11]
should see performance improvements at lower speeds, due to a reduced number
of agents transitioning between cells within the environment per timestep. The
speed of an agent within the circles model is calculated using Equation 3. There
are many parameters which impact this speed within the circles model. As a
particles motion is calculated as a result of the sum of vectors to neighbours it
clear that the parameters affecting neighbourhood size (ρ & r) impact particle
speed in addition to the forces Fatt & Frep.

The final metric location uniformity, refers to how uniformly distributed the
agents are within the environment. When agents are distributed non-uniformly,
as may be found within many natural scenarios, the size of agent neighbourhoods
are likely to vary more significantly. This can be detrimental to the performance



of implementations which parallelise the neighbourhood search such that each
agents search is carried out in a separate thread via single instruction mul-
tiple thread (SIMT) execution. This is caused by sparse neighbourhood threads
spending large amounts of time idling whilst waiting for larger neighbourhood
threads searching simultaneously within the shared thread-group to complete.
It is not currently possible to suitably affect the location uniformity within the
circles model.

Independent of model parameters, the circles benchmark is also capable of
assessing the performance of FRNNs when scaled across distributed systems,
however that is outside the scope of the results presented within this paper.

4 Assessed Frameworks

The benchmark implementations assessed within this paper all target execution
on a single machine. Care has been taken to follow best practices as expressed
in the relevant documentation and examples provided with each framework to
ensure that the optimisation of model implementations is appropriate. The asso-
ciated model implementations are publicly available on this projects repository9

and further details regarding the frameworks can be found on the OpenAB web-
site10. The frameworks targeted within this research are:

– Inspired by the FLAME agent-based modelling framework, FLAMEGPU
was developed to utilise GPU computation via a combination of XML and
CUDA [10].

– MASON is a Java multiagent simulation toolkit capable of executing models
with a large numbers of agents on a single machine, providing an additional
suite of visualisation tools [8].

– The Repast collective of modelling tools has now been under development
for over 15 years. Repast Simphony targets computation on individual com-
puters and small clusters, facilitating the development of agent-based models
using Java and Relogo [9].

Notably FLAMEGPU supports the usage of both 32-bit and 64-bit floating
point values, whereas both MASON and Repast Simphony use 64-bit floating
point values exclusively within their frameworks. This is likely influenced by the
negative impact 64-bit floating point values have on GPU performance being
significantly greater to that of CPUs.

5 Results

Results presented within this section were collected on a single machine running
Windows 7 x64 with a Quad core Intel Xeon E3-1230 v3 running at 3.3GHz11.

9 https://github.com/Robadob/circles-benchmark
10 http://www.openab.org/benchmarks/simulators/
11 The processor supports hyper-threading, enabling 4 additional concurrent logical

threads.



0 50000 100000 150000 200000 250000 300000
Agent Population

0

500

1000

1500

2000

2500

3000

3500

4000

A
v
e
ra

g
e
 I
te

ra
ti

o
n
 T

im
e
 (

m
s)

FLAMEGPU fp32
FLAMEGPU fp64
MASON
Repast Simphony

Figure 2. The average iteration time of each framework against the agent population.

Additionally the FLAME-GPU framework utilised an Nvidia GeForce GTX 750
Ti GPU which has 640 CUDA cores running at 1GHz.

Each of the parameter sets utilised targeted a different performance metric
identified in Section 3.2. Results were collected by monitoring the total runtime
of 1000 iterations of 3D implementations of the benchmark (executed without
visualisation) and are presented as the per iteration mean. Initialisation tim-
ings are excluded as the benchmarks focal point is the performance of the near
neighbours search carried out within each iteration.

The results in Figure 2 present the variation in performance as the scale of the
problem increases. This is achieved by increasing the parameter W , which in-
creases the volume of the environment and hence the agent population. Most
apparent from these results is that both the FLAMEGPU implementations,
which utilise GPU computation as opposed to the other frameworks which util-
ise a multi-threaded CPU approach, consistently outperform the best multi-core
framework by a margin which at the largest test-case increases to greater than 6x
with 64-bit floating point computation and 10x with the lower precision 32-bit
floating point. This is slightly better than the expectations of GPU accelerated
computation[7], suggesting their may be further room for optimisation. Although
MASON and Repast Simphony are both Java based frameworks, Repast’s per-
formance trailed that of MASON by around 3x, investigating this showed Re-
past’s separate operations for updating a particle’s spatial and grid locations
to be slower than that of MASON which handles both in a single operation.
Notably the operation of updating a particles location could not be handled in
parallel by MASON or Repast.

The MASON, Repast and 64-bit floating point FLAMEGPU results both
have a Pearson correlation coefficient (PCC) [2] of 0.99. This is indicative of
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Figure 3. The average iteration time of each framework against the estimated neigh-
bourhood population. The estimated neighbourhood population is the calculation of
agents within a neighbourhood where agents are uniformly distributed, providing a
clearer interpretation of changes to the interaction radius (r).

a linear relationship. Similarly 32-bit floating point FLAMEGPU has a PCC
of 0.99 when only agent populations of 100,000 and higher are considered, this
suggests that smaller agent populations did not fully utilise the GPU during
32-bit floating point computation.

The next parameter set, shown in Figure 3, assessed the performance of each
framework in response to increases in the agent populations within each neigh-
bourhood. The purpose of this benchmark set was to assess how each framework
performed when agents were presented with a greater number of neighbours to
survey. This was achieved by increasing the parameter r, hence increasing the
volume of each agent’s radial neighbourhood. All results have a PCC [2] of 0.96.
This is indicative of a linear relationship, albeit much weaker correlation than
that seen within the prior experiment. It is likely that this weaker relationship
can be explained by how the agent density becomes more non-uniform as the
model progresses, causing the number of agents within each neighbourhood to
grow.

The final parameter set assessed variation in performance in response to
increased entropy. This is was achieved by adjusting the parameters katt and
krep, causing the force exerted on the agents to increase, subsequently causing
them to move faster.

The purpose of this benchmark was to assess whether any of the frameworks
benefited from reduced numbers of agents transitioning between spatial parti-
tions. The results however showed no substantial relationship between increased
particle speed and performance.



6 Conclusion

The work within this paper has provided a formal and standardised specification
for the circles benchmark. This benchmark is beneficial for assessing the perform-
ance of FRNNs search implementations in response to changes to problem size,
neighbourhood size and agent entropy. The results within this paper have shown
the linear performance relationships of the tested ABS frameworks in response
to changing agent populations and neighbourhood sizes. This provides a guide
for those looking to implement ABS reliant on FRNNs and a metric to improve
FRNNs search implementations.

The next stages of this research are: further evaluation of standalone FRNNs
implementations utilising the most recent research advances, improving the bench-
mark model to further isolate assessment criteria of FRNNs and reduce the ef-
fects of force fall-off, developing a statistical method of validating model outputs,
assessing how distributed systems affect the scalability of FRNNs and consider-
ing the implications of wrapped (torodial) environments.
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