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Abstract8

The interplay of population dynamics and evolution within ecological com-9

munities has been of long-standing interest for ecologists and can give rise10

to evolutionary cycles, e.g. taxon cycles. Evolutionary cycling was intensely11

studied in small communities with asymmetric competition; the latter drives12

the evolutionary processes. Here we demonstrate that evolutionary cycling13

arises naturally in larger communities if trophic interactions are present, since14

these are intrinsically asymmetric. To investigate the evolutionary dynam-15

ics of a trophic community, we use an allometric food web model. We find16

that evolutionary cycles emerge naturally for a large parameter ranges. The17

origin of the evolutionary dynamics is an intrinsic asymmetry in the feeding18

kernel which creates an evolutionary ratchet, driving species towards larger19

bodysize. We reveal different kinds of cycles: single morph cycles, and coevo-20

lutionary and mixed cycling of complete food webs. The latter refers to the21

case where each trophic level can have different evolutionary dynamics. We22

discuss the generality of our findings and conclude that ongoing evolution in23

food webs may be more frequent than commonly believed.24
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1. Introduction27

One of the main goals of evolutionary ecology is to gain insights into the28

interplay of population dynamics and evolution, shaping the structure and29

dynamics of communities [13, 7]. The outcome of eco-evolutionary processes30

is not easy to understand from first principles, but much progress has been31

achieved by theoretical approaches. Of particular interest are the condi-32

tions under which eco-evolutionary processes within communities give rise to33

dynamic patterns. Early theoretical studies of evolutionary driven commu-34

nity dynamics were restricted to simple community-modules of two or three35

species with fixed species roles and primarily focused on temporal changes36

in the abundance and mean trait values of different species or populations.37

These works studied the influence of co-evolution on the stability of predator-38

prey systems [27, 3, 2], the occurrence of character displacement in models39

of competition mediated by a quantitative trait [38, 35, 36, 42, 41], as well as40

the dynamics of co-evolutionary arms races [43]. Further theoretical analysis41

showed that evolution can also induce temporal changes in the composition42

and diversity of a community and may either increase species richness, for43

example via speciation events [31, 11], but may also reduce species richness,44

for example via self-extinction through evolutionary suicide [24, 15, 25].45

One major insight of these studies was that the interplay of ecological46

and evolutionary processes does not inevitably lead to an evolutionary equi-47

librium, but can lead to a situation of non-equilibrium states, characterized48

by sustained evolutionary change. One particularly intriguing case is that49

of evolutionary cycling, which is the emergence of ongoing periodic changes50

in species traits or community states [12, 19]. In one of the first studies51

of evolutionary cycling, Rummel and Roughgarden [35] suggested the ap-52

pearance of community cycles, i.e. the occurrence of evolutionary cycles in53

the community composition going together with sustained species turnover.54

Rummel and Roughgarden [35] simulated the buildup of island faunas based55

on a model of competitive interactions mediated by bodysize as the dominant56

phenotypic trait. Thereby, one key ingredient for the emergence of commu-57

nity cycles was attributed to the asymmetry of species interactions, The58

resulting community cycles, sometimes referred to as taxon cycles [45, 34],59

describe a scenario where an island (or local habitat), which is initially oc-60

cupied by a single resident, is colonised by a new invading species of larger61

bodysize. The invading species forces the smaller resident to evolve to smaller62

bodysize, while following this evolutionary movement. The resulting coevo-63
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lutionary arms-race towards smaller bodysizes weakens the viability of the64

resident which is eventually driven to extinction, leading again to a single65

species community. It was shown that this simple mechanism is able to de-66

scribe the empirical patterns in the build-up of island faunas in the case of67

Anolis lizards in the Lesser Antilles [34] and was subsequently investigated in68

a series of further studies (e.g. [36, 42, 41, 24]). In these studies, it was found69

that community cycles are a robust model outcome, but the details of the70

cycles depend on the specific model assumptions. In particular, it is possible71

that the bodysize change of the cycle operates in the reverse direction, so72

that species are driven towards larger bodysizes.73

Despite this progress in describing generic mechanisms of evolutionary74

cycling, the studies mentioned above are limited in several respects. First,75

most demonstrations of evolutionary community cycles are restricted to small76

communities, consisting of very few species. Recently, there has been much77

interest in the evolutionary build-up of community structure in multi-species78

communities [17, 6, 20, 37, 32]. However, these studies typically observed79

static community structures, whereas not much is known about the condi-80

tions that favour the emergence of ongoing evolutionary change and commu-81

nity cycling in multi-species assemblages [40, 39]. A second related question82

is whether larger communities can exhibit different coevolutionary processes83

that occur independently from each other in different community modules,84

possibly at different frequencies. Finally, even though community cycles have85

been studied extensively for competitive interactions, not much is known86

about their relevance in trophically structured communities. This is quite87

astonishing, given the striking structural similarity of allometric evolutionary88

food web models [7] to competition models on a niche axis [35, 41].89

One of the first allometric evolutionary food web models was introduced90

by Loeuille and Loreau [20] and several variants were studied in great detail91

[21, 20, 4, 8, 5]. In this model class, similar to (Rummel and Roughgarden92

[35, 36]), each species is characterized by its bodysize as a major phenotypic93

trait, the interactions between species are determined by their differences94

in bodysize, and allometric relations are considered explicitly. The essential95

new ingredient of allometric food web models is that they not only con-96

sider competition between species of similar bodysize, but also incorporate97

trophic interactions between species, so that a large species is able to prey98

upon smaller species. Given the strong similarity between these two model99

classes and the fact that predator-prey interactions are naturally asymmet-100

ric, one would expect that evolutionary community cycles, similar to taxon101

3



cycles in models of competition, are a typical outcome in evolutionary food102

web models. However, while several other studies have reported evolution-103

ary dynamics in such models, e.g. irregular extinction cascades [5], trophic104

outbursts [30] and Red Queen dynamics in two species communities [46], to105

date there has been no rigorous investigation of evolutionary cycling in this106

framework.107

In this study, we revisit the well-studied evolutionary allometric food web108

model by Loeuille and Loreau [20]. We show that this model can indeed pro-109

duce evolutionary cycles in a large parameter range and that the possibility110

of evolutionary cycles is related to the competition between species. When111

Loeuille and Loreau [20] introduced this model, they found food webs that112

are relatively invariant over time. While these results proved to be robust113

to a broad range of feeding ranges and competition strength, the rest of114

the parameter space was relatively unexplored. In particular, the parameter115

governing the bodysize distance over which morphs can compete, the com-116

petition range, was limited to rather small values. While some biological117

justification for this range was given, we argue here that this range may be118

too small. If competition between species arises from niche overlap (sensu119

MacArthur and Levins [22]), we should expect a competition range that is120

significantly broader and is of the same order as the feeding range of a species.121

This would allow inter-species competition to have a much stronger effect on122

the evolutionary dynamics.123

Motivated by this observation, we numerically investigate the evolution-124

ary behaviour in the model [20], by systematically varying the strength and125

range of the competition between species. Our simulations show that evolu-126

tionary cycling, where species are driven towards larger bodysizes, is natu-127

rally present in the model considered – not only between single species but128

also in large trophic communities. Thereby, we observe a plethora of regimes129

with distinct dynamics. Besides static food webs, we observe evolutionary130

single morph cycles, complex community cycles where different trophic levels131

undergo separate coevolutionary cycles, as well as transient dynamics. Us-132

ing invasion analysis and Pairwise Invasibility Plots (PIPs) we are able to133

support the numerical observations, which allows us to explain the mecha-134

nism underlying the evolutionary cycles. Our findings imply that ongoing135

evolution in food webs may be more frequent than commonly believed.136
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2. Model137

We follow the evolutionary food web model by Loeuille and Loreau [20].138

The model considers one basal resource, such as an inorganic nutrient, (i =139

0) and a variable number of evolving morphs (i = 1, ..., N). We use the140

term morph, rather than species, since we are not considering the speciation141

process. Each morph is described by its population biomass density Bi and142

bodysize zi. The resource has a total density B0 and is associated with a non-143

evolving ‘bodysize’, which is fixed to the value z0 = 0. The model consists of144

two components: population dynamics and evolutionary dynamics, each of145

which operate on different time scales. The population dynamics describe the146

trophic interactions among morphs and determine their respective growth,147

survival or extinction. On a longer time-scale, usually after the population148

dynamics have reached an attractor, new morphs are added to the community149

by an evolutionary algorithm.150

2.1. Population dynamics151

The change of biomass Bi of morph i is given by the Lotka-Volterra
equations, accounting for reproduction, intrinsic mortality, and losses due to
predation and interference competition [20]

dBi

dt
= Bi

(

f(zi)
N∑

j=0

γ(zi − zj)Bj

︸ ︷︷ ︸

Reproduction

− m(zi)

︸ ︷︷ ︸

Mortality

−
N∑

j=0

γ(zj − zi)Bj

︸ ︷︷ ︸

Predation loss

−
N∑

j=1

α(|zi − zj|)Bj

︸ ︷︷ ︸

Competition

)

.

(1)

Here, the intrinsic mortality m(zi) = m0 z
−0.25
i and the production efficiency

f(zi) = f0 z−0.25
i scale according to allometric relations with bodysize [26].

The function γ(zi − zj) describes the consumption rate exerted by predator
i on prey j. The model assumes that the feeding efficiency decays with the
bodysize difference as a one tailed Gaussian function

γ(zi − zj) =

{
γ0

σ
√
2π

exp
(

− (zi−zj−d)2

σ2

)

, zi > zj,

0, zi ≤ zj,
(2)

where d is the optimal predator-prey bodysize distance, γ0 can be used to152

scale the maximal consumption strength, and σ describes the feeding range153
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of a morph (i.e., the Gaussian function has standard deviation of σ/
√
2). The154

cut-off for zi ≤ zj in the feeding kernel implies that a predator is only able155

to consume prey with a strictly smaller bodysize. This causes an asymmetry156

in trophic interactions, giving the larger of two similar sized morphs a small157

advantage since it can consume, but cannot be consumed by, the smaller158

one. Additionally, we also tested a smooth feeding kernel. Our numerical159

simulations revealed that our main conclusions are valid also for a smooth,160

but asymmetrical feeding kernel (see Fig A.7).161

The function α(|zi − zj|) describes interference competition between two
morphs i and j. It is modelled as a symmetric rectangular function (the
competition kernel) of bodysize differences

α(|zi − zj|) =
{

α0, |zi − zj| < β,

0, |zi − zj| ≥ β,
(3)

where α0 is the competition strength and β the competition range.162

The change in the density of the resource i = 0 follows a chemostat
equation

dB0

dt
=I − eB0 −

N∑

j=1

γ(zj)Bj B0 + ν

N∑

j=1

N∑

i=1

α(|zj − zi|)BjBi

+ν

N∑

j=1

m(zj)Bj + ν

N∑

j=1

N∑

i=1

(1− f(zj))γ(zj − zi)BjBi,

(4)

consisting of a constant resource inflow I, a relative outflow of rate e, losses163

due to consumption by morphs, and three terms describing the recycling of a164

fraction ν of dead biomass from interference competition, intrinsic mortality,165

and consumption.166

In this model, the interaction kernels for feeding and competition are both167

discontinuous. This discontinuity could influence the population dynamics168

and thus the evolutionary behaviour. However, we find that our results are169

qualitatively unchanged when these discontinuous functions are replaced with170

continuous functions (see Fig A.7).171

2.2. Evolutionary dynamics172

The system is initialized with the resource (trait value z0 = 0 and ini-173

tial biomass B0 = I/e) and a single evolving morph of bodysize z1 = d,174
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corresponding to a maximal consumption rate on the resource. Each morph175

mutates at a constant rate of ω0 per unit biomass and unit time. At each mu-176

tation event of a morph k, a new morph is added to the system with bodysize177

zM that is randomly chosen from the mutation interval [0.8 zk, 1.2 zk]. This178

interval is centred around, and increases linearly with, the bodysize of the179

mutating morph zk. The new morph is introduced with an initial biomass of180

θ, which is also the extinction threshold. If due to the population dynamics181

the biomass Bk of any morph falls below this threshold θ, it is considered182

extinct and removed from the system.183

2.3. Parameter values, implementation, and cycle detection184

We varied the range β and the strength α0 of the competition kernel185

as our main control parameters. The other model parameters are fixed to:186

f0 = 0.3, m0 = 0.1, γ0 = 1/
√
2, d = 2, I = 10, e = 0.1, ν = 0.5, and187

σ =
√
2. In contrast to Loeuille and Loreau [20] we increased the extinction188

threshold from Θ = 10−20 to Θ = 10−10 (see also Allhoff and Drossel [4])189

and the mutation rate from ω0 = 10−6 to ω0 = 10−5. Our robustness tests190

showed that these deviations from the original model formulation have no191

effect on the model outcome, but they allowed us to substantially increase192

the evolutionary time considered over our simulation runs. If not stated193

elsewhere, the simulations were carried out over 109 time-units. Numerical194

simulations were performed using a Runge-Kutta-Fehlberg method 4/5 [28]195

which was implemented in C++.196

We say that we observe an evolutionary cycle if a simulated time series197

contains at least one whole period of a cycle after an initial build up phase of198

108 time-units. Therefore, the maximal observable period length is limited199

by the remaining 9 · 108 time-units. If the period length of a cycle is close200

to this limit, cycling is difficult to detect and can depend on the build-up201

phase. To aid detection, we consider 5 realisations per parameter set with202

different seeds for the random numbers in the evolutionary algorithm. If203

any of these runs displays cycling we classify the parameter set as producing204

cycling behaviour. Thus, the distinction between static and cycling food205

webs depends on the time interval and the threshold condition (one period)206

used, especially in the transition regions.207
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Figure 1: Map of the evolutionary behaviour in dependence of the competition parameters. The map
splits into four regions of distinct dynamic behaviour: Static food webs (region I), single morph cycles
(region II), complex community dynamics (region III), and a transition regime in which single morph
cycles occur but the system eventually becomes polymorphic (region IV). The black solid line separates
the regions of static (region I) and cyclic (region III) polymorphic food webs and is obtained from numerical
simulations. The grey scale indicates the probability P for a monomorphic system to become dimorphic
during one cycle period and is calculated by analysis of the invasion fitness in a monomorphic system (see
section 3.2). The black dotted line shows the isocline of P = 1. To the right of this line single morph
cycles can occur. The white dotted line indicates the isocline of logP = −30 and separates regions II and
IV. The red dots correspond to the examples shown in Fig. 2 and the blue dots to the transition states
shown in Fig. Appendix A.6.
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Figure 2: Evolutionary food web dynamics for different competition parameters β and α0. Each subplot
(a-d) corresponds to the parameter combination of a red point in Fig. 1 and shows the time evolution of
bodysizes of all morphs after the initial build-up phase (right) and the corresponding biomass-bodysize
histograms (left). a) Static food web, as in [20], for α0 = 0.3 and β = 0.2. b) Single morph cycles
(α0 = 0.1 and β = 1.2). The inset shows a close-up of the simulated cycle in bodysize for a shorter time
range. c) Complex community dynamics, showing different coevolutionary cycles in each trophic level
(α0 = 0.1 and β = 0.4). The vertical lines mark time-points at which the two largest morphs in the
lowest trophic level are within competition range. d) Mixed evolutionary cycle, showing the coexistence
of a single morph cycle in the lowest trophic level and coevolutionary cycles in the higher trophic levels
(α0 = 0.1 and β = 0.7).
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3. Results208

3.1. Numerical simulations, revealing four dynamics regions209

We used numerical simulations to study the dependence of the evolution-210

ary dynamics of the food web model on inter-species competition. Exploring211

the parameter space (β, α0) of the competition kernel, we identified four212

distinct behavioural regimes (regions I - IV). The regions in which each of213

these behaviours occur are presented in Fig. 1 and exemplary time series for214

all regimes are shown in Figs. 2 and A.6. Region I is characterized by the215

build-up of evolutionary and convergence stable food webs, as introduced by216

Loeuille and Loreau [20]. Region II exhibits single morph cycles. In this217

region the community is composed of the resource and a monomorphic con-218

sumer with a bodysize that is not constant but undergoes evolutionary cycles219

within a narrow range. Region III features complex community dynamics.220

This region is characterized by co-occurring single morph and polymorphic221

coevolutionary cycles that cover several trophic layers. Region IV is a tran-222

sition area in which an initial period of single morph cycles eventually gives223

way to a polymorphic community. The resulting food webs can be evolu-224

tionarily static or dynamic. Our numerical simulations showed that the map225

of evolutionary outcomes in Fig. 1 is generic towards parameter variation226

(e.g. σ, γ0). That is, while the size of the regions may change, as long as the227

parameters chosen allow trophic structure each of these types of behaviour228

can be found. We consider each state, and the transition between states, in229

more detail below.230

Static food webs: region I. For small competition ranges β and high com-231

petition strengths α0 (region I) we obtain food webs that are close to an232

evolutionarily and convergence stable state. This is exactly the behaviour233

observed by Loeuille and Loreau [20]. Fig. 2a shows an example time series234

for a static food web and its distribution of biomass relative to bodysize.235

After an initial build-up (not shown), the network structure and morph com-236

position of the food web is practically static. It consists of several distinct237

bodysize clusters, each centred at a bodysize which is a multiple of the op-238

timal feeding distance d. These clusters are analogous to trophic levels. In239

particular, a morph in a given cluster predominantly consumes morphs in the240

cluster immediately below it and, similarly, is mainly consumed by morphs241

in the cluster immediately above it. Trophic levels are further separated into242

sharp bodysize layers. That is, morphs in the same trophic level are sepa-243

rated by a bodysize distance of β, which allows them to avoid interference244
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competition (note that here β is much smaller than the optimal feeding dis-245

tance d). In the left panel of Fig. 2a, we plot the average biomass of morphs246

of a given bodysize throughout the simulation. This distribution is com-247

posed of single peaks indicating that the morph composition is static after248

the initial build up of the network. The envelope of all peaks within a trophic249

level is bell shaped. This arises due to differences in growth rate within the250

trophic level; morphs close to the centre of a trophic level are at the optimal251

feeding distance to the centre of the trophic level below and thus are able to252

grow faster. The total biomass of a trophic level decreases with increasing253

bodysize, due to efficiency losses.254

In the example given, the trophic levels are distinct. Increasing the feed-255

ing range σ, or competition strength α0 causes the trophic levels to widen256

until the trophic levels merge. As the competition range β increases, the257

bodysize distance between morphs within a trophic level increases and fewer258

morphs can coexist in each level. For sufficiently large β only a single morph259

can exist in the system and we enter region II.260

Single morph cycles: region II. For large competition ranges β (region II) we261

observe a new dynamic regime for this model, which we term single morph262

cycles. This regime is characterized by a dynamic monomorphic community263

that consists of the basal resource (of bodysize z0 = 0) and a single consumer264

morph with a bodysize that is not constant but undergoes an evolutionary265

cycle, see Fig. 2b. The inset shows a close-up of the time series which displays266

the bodysize cycle more clearly. In addition, a close-up of the temporal267

evolution of the bodysize and biomass over four complete periods of the cycle268

is shown in the Appendix (Fig. A.5). At the beginning of a cycle, starting269

with a small initial bodysize, the resident is repeatedly replaced by a slightly270

larger morph. As the resident’s bodysize increases, its biomass decreases,271

as seen in the trapezoidal structure of the biomass-bodysize distribution in272

the left panel of Fig. 2b and in Fig. A.5b in the Appendix. At the end of a273

cycle, the now large resident is invaded and outcompeted by a small mutant274

and the single morph cycle resets. The mechanism underlying this behaviour275

is discussed in Section 3.2. In contrast to region I, the biomass-bodysize276

distribution is continuous and not composed of single peaks, because morphs277

occur across the whole bodysize range of a cycle.278

With increasing competition strength α0 the frequency and amplitude of279

the cycle decrease (not shown). The amplitude also decreases with decreasing280

feeding range σ, but cycles are still present for σ < 0.5. We note that the281
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competition range β always encompasses the entirety of the bodysize range of282

a single morph cycle. As β decreases we eventually reach a threshold where283

the system can support a polymorphic food web and enter either region I or284

region III.285

Complex community dynamics and coevolutionary cycles: regions III and286

IV. For low competition strength α0 and small to intermediate competition287

range β we obtain a regime of complex community dynamics (region III),288

characterized by polymorphic food webs which are evolutionarily dynamic.289

Example time series for this region are plotted in Figs. 2c and d. In this290

regime, each trophic level within the food web undergoes an evolutionary291

cycle. This can be a single morph cycle, as described in the previous section292

(e.g., the lowest trophic level in Fig. 2d), or a coevolutionary cycle, in which293

the trophic level consists of multiple coevolving morphs (e.g., the lowest294

trophic level in Fig. 2c).295

A close-up of the temporal dynamics of bodysizes and biomasses during296

a coevolutionary cycle is shown in Fig. 3. At the beginning of the cycle,297

the bodysizes of all morphs within the trophic level increase gradually in298

successive interdependent mutational steps, while maintaining a constant299

bodysize distance equal to the competition range. Initially this increase is300

gradual until, eventually, the largest morph goes extinct. The remaining301

morphs then rapidly increase their bodysize to fill this vacated niche. This302

effect cascades down to each of the smaller morphs allowing them to increase303

their bodysizes at a similar rate. This upwards movement also leaves a niche304

at small bodysize which a new morph can invade, which functionally resets305

the cycle to its initial state. The biomasses of the larger two morphs decrease306

as their bodysize increases (e.g. red curve in Fig. 3). This is because as their307

bodysize increases they move away from the optimal distance at which to308

feed on the next lowest trophic level. In contrast, the biomass of the smallest309

morph increases (e.g. blue or yellow curves), as it approaches the optimal310

feeding distance. The biomass of the intermediate morph (e.g. black or blue311

curves) stays relatively constant, as its bodysize moves from one side of the312

optimal feeding distance to the other.313

While this describes the coevolutionary cycle within a trophic layer, dif-314

ferent trophic levels within a food web undergo independent cycles. Fig. 2c,315

for example, shows a food web in which only coevolutionary cycles occur.316

The network has basically the same structure as in the static case, consisting317

of three trophic levels (Fig. 2a), but it is evolutionarily dynamic. Within a318
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Figure 3: Evolutionary dynamics during a coevolution cycle. a) Close-up of the time evolution of morph
bodysizes zi(t) within one trophic layer, here shown for the first trophic level of Fig. 2c. b) Corresponding
time evolution of morph biomasses Bi(t). Identical colours denote evolutionary akin morphs. The vertical
lines mark time instances at which the two largest morphs in this trophic layer have a bodysize distance
smaller than β. At these points the largest morph goes extinct and a new morph with smaller bodysize
can invade the system.

trophic level, morphs coevolve, increasing their bodysize together, but these319

coevolutionary dynamics seem to be independent of the cycling within other320

trophic levels. In particular, the frequency of these cycles decreases with321

trophic level; about two or three cycles of the lowest trophic level occur for322

every single cycle of intermediate trophic level, while the highest trophic level323

is nearly static. This decrease reflects the fact that the overall mutation rate324

decreases with trophic level since, as observed in the static case (region I),325

the biomass of each successive trophic level is less than that of the previous326

one. In contrast to the static case, the cycling causes the biomass-bodysize327

distribution to become continuous as for single morph cycles (region II). This328

biomass distribution does not vary through a cycle, and, as a consequence329

the cycling of lower trophic levels does not influence higher trophic levels.330

Coevolution cycles arise in food webs when the competition strength α0331

and the competition range β are low (see Fig.1). They also occur if α0332

is zero. As for single morph cycles, when α0 increases the frequency and333

amplitude of a coevolution cycle decreases, until at sufficient large values of334

α0 the different trophic layers of the food web become evolutionarily static335

in a series of successive infinite period bifurcations. Finally, when a critical336

threshold is passed the system enters region I. On the other hand, starting337

again in region III, with increasing β fewer morphs can exist in a trophic level338

(in an analogous way to that described in Section 3.1). As a consequence, the339
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frequency of these cycles slightly increases with β because with decreasing340

number of morphs but constant nutrient input, each morph can acquire a341

higher biomass, which increases the mutation rates and the evolutionary342

speed. Finally, for sufficiently large β we observe the collapse of the whole343

polymorphic system into a single morph cycle (region II).344

For intermediate values of β, it is also possible for the lowest trophic level345

to transition to single morph cycles, while the other trophic levels are un-346

affected, see Fig. 2d. We call such cases mixed evolutionary cycles. Food347

webs undergoing mixed evolutionary cycling have clear similarities to those348

displaying purely coevolutionary cycling. In Fig. 2d we still see three distinct349

trophic levels with continuous biomass-bodysize distributions. However, the350

upper two trophic levels are much closer together than in the purely coevolu-351

tionary case. In addition, while the biomass-bodysize distributions of these352

levels remain bell shaped the distribution for the lower trophic level is ap-353

proximately rectangular, a clear precursor to the trapezoidal form obtained354

for single morph cycles, see Fig. 2b. Note that the lower trophic level can355

occasionally support a second resident, see Fig. 2d at time t = 5 · 108. The356

single morph cycle stops and both residents increase in bodysize. Eventu-357

ally the bigger morph goes extinct, as in a coevolution cycle, and the single358

morph cycle starts again. The origin of mixed evolutionary cycles can be ex-359

plained by the observation that the lowest trophic level is subject to especially360

strong predation pressure because its residents can be consumed by morphs361

in all higher trophic levels. Predation and competition strength, α0, have362

the same structure, so the effect of higher predation is similar to imposing a363

higher value of α0 on the lowest trophic level. As a consequence, by compar-364

ison with Fig. 1, this trophic level can collapse into a single morph cycle for365

a value of β at which the higher trophic levels still perform coevolutionary366

cycles.367

The transition into region II, by further increase of β, is characterized368

by a region of transient single morph cycles (region IV). In this regime,369

we can observe single morph cycles that persist only for a finite time and370

eventually become polymorphic. The resulting polymorphism can be either371

evolutionarily static or dynamic, depending on the competition strength α0.372

If decreasing β returns the system to region III, as above, we obtain a mixed373

evolutionary cycle (see example time series in Fig. A.6a). Alternatively, if374

decreasing β returns the system to region I then we will obtain a static food375

web (see Fig. A.6b). As β increases, the probability that a polymorphic state376

emerges from these single morph cycles declines, eventually reaching zero as377
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the system enters region II.378

3.2. Invasion analysis379

Anatomy of a Single Morph Cycle. The existence of evolutionarily dynamic
food webs has not previously been observed in this model. In this section
we seek to develop an understanding of these dynamic states. We start
by considering single morph cycles, which are characterized by a monomor-
phic system that undergoes a sequence of replacements of a resident, zR, by
a slightly larger mutant, zM . Eventually this gradual increase in resident
bodysize ends when a small morph is able to invade and the cycle resets
(Fig. 2b). To gain insight into this process, we consider the invasion fitness
s(zM , zR) of a mutant zM in a monomorphic system of bodysize zR [14]. The
invasion fitness s(zM , zR) can be derived from Eq. (1) and is given by:

s(zM , zR) =f(zM) γ(zM)B0 + f(zM) γ(zM − zR)BR −m(zM)

− γ(zR − zM)BR − α(|zM − zR|)BR.
(5)

380

Here, B0 and BR denote the equilibrium biomasses of the resource and the381

resident in the monomorphic system and are given by Eqs. (1) and (4). To382

gain analytically tractable expressions for the invasion fitness, we neglect the383

nutrient recycling terms in Eq. (4), that is we take ν equal to zero.384

A positive invasion fitness s(zM , zR) > 0 indicates that the mutant is able385

to invade and establish itself. Assuming that the population stays monomor-386

phic, we can use Eq. (5) to construct the bodysize ranges which characterize387

a viable mutant for a given resident bodysize. These ranges can be summa-388

rized graphically using Pairwise Invasibility Plots (PIP) [14]. In Fig. 4a we389

plot a PIP for the parameter set used to obtain Fig. 2b. Using this PIP390

we find that the evolutionary cycle can be split into two phases as follows.391

Phase 1: For small resident bodysizes (zR < 3.54) only mutants with larger392

bodysizes have positive fitness. Thus, the resident’s bodysize increases over393

evolutionary time via a series of replacements by a larger mutant (blue arrow394

in Fig. 4a). Phase 2: When the resident’s bodysize reaches a critical value395

(zR ≥ zJ = 3.54), a second positive fitness region emerges corresponding396

to mutants which are smaller than the resident. At this point a jump to a397

smaller bodysize becomes possible (green arrows in Fig. 4a). Such a jump398

can produce a resident morph small enough to return the cycle to its initial399
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Figure 4: Invasion analysis of a single morph cycle. a) Pairwise Invasibility Plot (PIP) in dependence of
the bodysize of the resident zR and of the mutant zM . Regions with negative invasion fitness, s(zM , zR) <
0, are marked in white and regions with s(zM , zR) > 0 in grey. The bold line designates the points at
which mutant and resident have identical bodysizes (zM = zR), dashed lines enclose the mutation interval
(0.8zR and 1.2zR), and dashed-dotted lines the competition range (zR±β). The arrows outline trajectories
during a single morph cycle. The shaded areas delineate the variance of bodysizes during a cycle, where
a resident may exceed the jump point (blue shaded area) or have varying initial bodysize (green shaded
area). b, c) Fitness landscape as a function of the mutant’s bodysize zM , at the beginning of a cycle
for zR = 2.9 (b) and close to the end for zR = 3.7 (c). The plot shows the invasion fitness (red) and
its composition by growth due to resource consumption (green) and predation (blue) and by losses due
to predation (orange), and interference competition (yellow), according to Eq. (5). For visualization all
growth terms are rescaled by a factor of 0.2. The vertical solid line marks the bodysize zR of the resident
and the two dashed lines border the mutation interval. d) Equilibrium biomass of the resident, BR, and
of the resource, B0, as a function of zR. The vertical lines mark the values of zR corresponding to panels
b) and c). Parameter values are β = 1.2, α = 0.1, corresponding to Point 2b in Fig. 1.
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state. Having outlined the cycle we now consider its two phases in more400

detail.401

In Fig. 4b we plot the invasion fitness (i.e., a cross-section of the PIP)402

for a typical point (zR = 2.9) in Phase 1 of the cycle. The dependence of403

the invasion fitness s(zM , zR) on the bodysize of the mutant zM (red curve)404

shows a non-monotonic behaviour, which can be explained by the way in405

which s(zM , zR) is composed by different gain and loss terms in Eq. (5). We406

see that the effects of intrinsic mortality (purple) and competition (grey)407

are relatively constant with respect to mutant bodysize, at least within the408

mutation interval. Note though, that the competition loss disappears for409

zM > zR + β, giving rise to the upward jump of the invasion fitness at410

zM = 4.1. Here, this region of increased invasion fitness is outside of the411

mutation interval and does not interfere with the single morph cycle. Growth412

due to resource consumption (green) declines gradually with mutant size,413

as larger morphs have lower resource feeding efficiency (the size difference414

becomes larger than the optimal feeding distance zM − z0 > d). The most415

significant factor is the effect of asymmetry in the predation interactions. In416

particular, mutants that are larger than the resident are able to increase their417

growth by feeding on it (blue), while mutants smaller than the resident suffer418

from predation by the resident (orange). This results in an upward jump of419

the invasion fitness at zM = zR, which is sufficient to off-set the moderated420

decay in feeding efficiency creating a region of positive invasion fitness for421

increased bodysizes zM > zR. Consequently, the only viable evolutionary422

path in Phase 1 is increasing bodysize (blue arrow).423

With increasing bodysize of the resident zR, the decline in the feeding424

efficiency on the resource becomes more severe because the deviation from425

the optimal feeding distance to the resource increases. As a consequence,426

the invasion fitness is increasingly dominated by the relative contribution of427

the feeding efficiency (green). In contrast, the jump in the invasion fitness428

at zM = zR due to the asymmetry of predation remains largely independent429

of zR. As a consequence, the region of positive fitness for larger mutants430

(zM > zR) shrinks with increasing zR (see Figs. 4a and c). Using analyti-431

cal and numerical calculations (not shown) we found that this region finally432

disappears for a resident bodysize of zmax = 5.09 (independent of the com-433

petition parameters α0 and β). As such zmax is the maximal achievable434

bodysize of a morph in a monomorphic system for the given parameter val-435

ues. Furthermore note that the probability of an evolutionary change, and436

hence the speed of the evolutionary dynamics, is proportional to the ratio437
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of the positive fitness interval to the mutation interval. Thus, as the fitness438

interval for larger morphs shrinks, the rate of increase in resident bodysize439

decreases, going to zero as zR approaches zmax.440

These effects stem from the apparently paradoxical observation that,441

while increasing bodysize is evolutionarily favoured, it results in a less fit442

resident. The larger resident’s lower feeding efficiency results in it being less443

able to exploit the remaining resource at z0. Consequently, as resident body-444

size, zR, increases, resident biomass and utilization of the resource decline.445

This effect can be seen clearly by plotting resident and resource biomass446

against resident bodysize, see Fig. 4d.447

The increased availability of the resource is responsible for the emergence448

of a second positive fitness interval found in Phase 2 of the cycle. A typical449

invasion fitness profile is plotted in Fig. 4c. The contributions of most growth450

factors are similar to those obtained in Phase 1 (Fig. 4b). However, now the451

growth due to resource consumption depends more strongly on mutant size452

and its maximum contribution is much higher. For sufficiently small mutants453

the extra growth gained from greater feeding efficiency is able to off-set the454

increased losses from predation, allowing a smaller mutant to displace the455

resident (green arrows). We refer to the smallest resident bodysize for which456

this is possible as the jump point zJ (for the chosen parameter values zJ =457

3.54). When a mutant with bodysize less than this threshold successfully458

invades the system, the system resets to Phase 1.459

Note that, since mutational steps are random, the range of bodysizes dur-460

ing an evolutionary cycle varies. The resident’s bodysize can exceed the jump461

point before the smaller mutant invades (blue shaded area in Fig. 4a). Fur-462

thermore, the smaller mutant can occur anywhere within the positive region463

of the fitness cross-section obtained for a given resident. The combination464

of these two effects allows the smaller mutant to emerge in a relatively wide465

range (green shaded area in Fig. 4a).466

We observed previously that the frequency of single morph cycles was467

related to the competition strength α0. This can now be explained as fol-468

lows. Note first that once the jump point is reached the cycle can be reset469

in a single step. Furthermore, such a reset has a high probability, since the470

positive fitness region for the smaller mutant is bigger than that for a larger471

mutant. Thus, the system is unlikely to spend a significant amount of evo-472

lutionary time in Phase 2. Consequently, the length of a cycle is primarily473

determined by the number of evolutionary steps required to produce a resi-474

dent with bodysize greater than zJ . The region of positive fitness larger than475
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the resident, which is responsible for the upwards movement (see Figs. 4a476

and c), narrows with increasing competition strength α0 (because the fitness477

landscape is shifted downwards within the competition range). Therefore478

increasing the competition strength reduces the evolutionary speed and thus479

the frequency of the cycle.480

In summary, the intrinsic asymmetry in the feeding kernel γ(·) in Eq. (3)481

creates an evolutionary ratchet, which results in an increase in the resident’s482

bodysize. However, the concomitant decrease in resident feeding efficiency483

generates a nutrient environment which ultimately allows the invasion of a484

small mutant. The interplay between these two processes results in a single485

morph evolutionary cycle.486

Transition region to dimorphic states. While in single morph cycles the mu-487

tant always replaces the resident, we observed that in region IV single morph488

cycles can become polymorphic. While the dynamics of such a polymor-489

phic state are analytically intractable (at least using the techniques outlined490

above), we are able to determine conditions under which a dimorphic state491

can form. In particular, in this model two species are able to coexist only492

if they do not compete directly; that is if the distance between their body-493

sizes is greater than the competitive range, β. Thus a dimorphism becomes494

possible when the mutation interval, [0.8zR, 1.2zR], contains the competition495

interval, [zR − β, zR + β]. We call the smallest resident bodysize where this496

condition holds the dimorphic point, zD, and note that it is related to the497

competition range as follows, zD = 5β. With this in mind the transitory sin-498

gle morph cycles found in region IV can be explained by the random nature499

of the mutational steps. In particular, when zD > zJ the resident bodysize500

must increase past zJ in order to reach the dimorphic point. Consequently501

the system must enter Phase 2 and thus the possibility of the cycle reset-502

ting before the system becomes polymorphic exists. The further above zD is503

from zJ the more likely it becomes that the cycle resets before it becomes504

dimorphic. This intuition is justified formally below.505

In Fig. 1, we plotted the probability of a single morph cycle becoming di-506

morphic during a single cycle. This probability was estimated as follows: for507

a fixed resident bodysize, the probability for a given mutational step attain-508

ing a particular evolutionary outcome (dimorphism, upwards or downwards509

movement in bodysize) is given by the range in the invasion fitness that leads510

to the evolutionary event divided by the whole positive fitness area. The neg-511

ative fitness area is not considered since an unsuccessful invasion does not512
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alter the system. We start with a resident of a bodysize of zJ and calculate513

the probability of each evolutionary outcome (transition probability) for that514

resident bodysize. In the next step, we increase the resident bodysize by the515

expected mutational step-size of the upwards movement. (This is given by516

the centre of the positive fitness responsible for upwards movement.) Thus517

we calculate the transition probabilities at each of the expected bodysizes518

between zJ and zmax and by doing this consecutively we consider all possible519

evolutionary trajectories. These trajectories terminate when a dimorphism520

emerges or the cycle resets (which is assumed to happen via a downwards521

movement). The probability to become dimorphic along a given trajectory522

is equal to the product of the transition probabilities of the steps in that tra-523

jectory. The overall probability of reaching a dimorphic state is then given524

by summing over all trajectories which reach this state.525

Complex Community Dynamics. In region III we observe food webs that526

contain coevolutionary, and occasionally single morph, cycles. We have pre-527

viously observed that the cycles in distinct trophic levels are independent. As528

such the behaviour of single morph cycles, even in a polymorphic system, can529

be adequately understood in a monomorphic context, see above. Moreover,530

the dynamic patterns of coevolutionary cycles can be understood in terms of531

the evolutionary behaviour of morphs in a single trophic level. The increase532

of a morph’s bodysize in a coevolution cycle is due to the same mechanism as533

in single morph cycles. The asymmetry in the feeding kernel γ(·) (Eq. (3)),534

creates an evolutionary ratchet, which drives the morphs to higher bodysizes535

(see Fig. 3). However, the evolution of the morphs is limited by interference536

competition. Each morph, except the largest and the smallest morph, have537

two neighbours at a bodysize distance slightly bigger than the competition538

range β. Therefore mutants of the intermediate morphs inevitably compete539

with these neighbours and can not invade. While the smallest morph has only540

a larger neighbour, smaller mutants are not viable due to the decreasing abil-541

ity to feed on the lower trophic level and high intra trophic level predation.542

The largest morph in an coevolution cycle has only a smaller neighbour,543

thus it can increase its bodysize through the evolutionary ratchet. All other544

morphs follow one after another, since they are not bounded upwards any545

more. Therefore coevolution is a top-down process in this model. However,546

just as in the single morph case, increasing bodysize results in the largest547

morph reaching an unstable state where it can be invaded and outcompeted548

by smaller mutants. This is analogous to the jump point of a single morph549
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cycle.550

In contrast to single morph cycles, the largest resident is not outcompeted551

by a new offspring of its own, but by a mutant of the second largest resident.552

The second largest resident is replaced by a slightly larger mutant, which is553

within competition range β of the largest resident. (Time-points, at which554

the two largest residents compete are marked by grey vertical lines in Figs. 2c555

and 3.) This mutant is close enough to the optimal feeding distance that it556

can outcompete, and thus replace, the largest resident. Thus the interference557

competition from above is removed, allowing each of the resident morphs to558

increase its bodysize. A new mutant, descended either from the smallest559

resident, or from a resident in a lower trophic level, can invade either close560

to the end, or at the beginning, of a cycle; when the interference competition561

from the smallest resident is lowest.562

4. Discussion563

The model introduced by Loeuille and Loreau [20] is well known for evo-564

lutionarily static food webs. We investigated a larger range of competition565

parameters, and found novel evolutionary states: cycling of single morphs566

(region II), cycling of complete food webs (region III), and transitory states567

from single morph cycles to polymorphic food webs (region IV). We want to568

discuss six main implications of our study:569

First, the observed evolutionary cycles are based on coevolution, which is570

driven by competition and trophic interactions between resident morphs and571

also the invader. These coevolutionary processes are observed in empirical572

studies, where they can also be driven by competition [9, 23] or trophic in-573

teractions [1]. However, it is hard to study coevolution empirically in larger574

communities, due to the high number of complex interactions which make575

identification of the evolutionary dynamics and the coevolving traits very576

difficult [33]. Our findings show that it is not necessary to consider all inter-577

actions between species within the community to explain cycling. Instead,578

it is sufficient to consider interactions between smaller, independently coe-579

volving, subgroups. In our system, each trophic level represents a subgroup,580

since each level evolves independently with a different frequency.581

Second, we found that food web characteristics are remarkably robust582

towards evolution. The network structure, number of morphs and links are583

relatively constant during evolution. In addition, the network structures584

of solely coevolving food webs and static food webs are similar. Therefore585
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they are not distinguishable on the time scale of the population dynamics.586

However for mixed evolutionary food webs the network structure changes: the587

number of species contained in each trophic level and the distance between588

each level loses its regularity.589

Third, our results are in agreement with Cope’s rule [10]: During an590

evolutionary cycle, morphs increase their bodysize, since a slightly larger591

morph has a higher fitness than a smaller morph. In addition, our study592

suggests a more natural explanation of the “Endless trends to gigantism”593

paradigm [16] than mass extinction [18]. Large bodysizes are advantageous594

over a wide range, especially towards similar sized morphs, but result in a595

lower ability to consume the original resource, which finally increases the596

vulnerability towards invasion of better adapted morphs.597

Fourth, single morph cycles have similar characteristics to taxon cycles598

[34, 45], suggesting that the down-regulation of the environmental quality599

for the resident (decreasing resource consumption) is also responsible for600

the arising evolutionary cycling: the increase in bodysize of the resident,601

due to coevolution with invaders, results in morphs that are progressively602

less suited to their environment. Thus, morphs that are better adapted to603

the environment can invade. Furthermore, theoretical studies of competing604

species on a niche axis have shown that this class of evolutionary community605

cycles is related to the asymmetry in the competitive interaction (Rummel606

and Roughgarden [35], Taper and Case [41], Matsuda and Abrams [24]). In607

our study an asymmetry is introduced naturally via trophic interactions and608

therefore we suggest that evolutionary cycling is an intrinsic phenomenon in609

the model of Loeuille and Loreau [20], which can also occur in the absence610

of competition. Evolutionary cycling might be a general phenomenon in611

evolutionary size-structured food web models.612

Fifth, our study provides a new avenue for the debate of whether ongo-613

ing evolutionary changes and Red Queen dynamics are ecologically realistic.614

Dieckmann et al. [12] proposed evolutionary limit cycles, e.g between preda-615

tor and prey species, as a theoretical framework for Red Queen dynamics,616

but our study suggests an alternative mechanism. Thereby, in the simplest617

case of single morph cycles, the resident species is evolutionarily driven to-618

wards unfavourable positions in niche space, which reduces its viability and619

ultimately leads to self-extinction - so that the community can be colonized620

again by a mutant or invader at a different, more favorable, phenotypic trait.621

In contrast, in even the simplest predator-prey limit cycle, both species are622

present at all times.623
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Sixth, we propose that taxon cycles might be a transitory phase of island624

colonisation: we observe that single morph cycles can be transitory states,625

after which the community becomes polymorphic and large food webs emerge.626

These webs can be either static or dynamic. The latter can be a possible627

representation of cycling of larger communities – continental taxon cycles –628

which are hypothesised, but hard to study empirically, due the intertwining of629

the invasion processes [29]. Note that within the model used, the estimation630

of the time scale considered is not possible without relating it to empirical631

data, since all variables are treated as dimensionless.632

As with all modelling studies, our results depend on the choice of pro-633

cess formulations and simplifications used in the model. Here, we have634

chosen to closely follow the formulation as defined by Loeuille and Loreau635

[20]. While many compelling refinements of this model have been proposed636

[21, 20, 4, 8, 5], our study shows that evolutionary community cycles are637

already a natural outcome in the original model. Using extensive numerical638

simulations we have confirmed that our main model results also hold in more639

refined model variants. We briefly mention the two most influential changes:640

to the competition and feeding kernels. First, following Loeuille and Loreau641

[20] we have used a box-shaped kernel α(·) with a finite competition range β642

to describe the interference competition (Eq. (3)). Therefore, morphs either643

compete with a fixed, well-defined strength, or competition is absent. More644

realistically, competition strength should change continuously with bodysize645

distance which could be described by link overlap (e.g. a Gaussian kernel)646

sensu [22], as applied by [5, 8, 30]. Using numerical simulations we verified647

that evolutionary cycling still occurs if the box-shaped interference competi-648

tion is replaced by link overlap competition. Furthermore, the range of link649

overlap competition is closely related to the feeding range σ of the compet-650

ing morphs (∝
√
2σ). Comparing link overlap competition with box-shaped651

competition shows that link overlap competition occurs over a wider bodysize652

distance. This justifies the investigated competition range β in our studies.653

Second, following Loeuille and Loreau [20], our chosen feeding kernel γ(·)654

consists of a truncated Gaussian. This discontinuity could be responsible for655

the cycling behaviour observed. However, when the discontinuous feeding656

and competition kernels were replaced with continuous functions, we still657

observed cycling see Fig. A.7. In particular, we note that it was necessary658

to use an asymmetric feeding kernel (the ability to consume morphs with a659

larger bodysize decreases faster than the ability to consume smaller morphs)660

e.g. the Ricker function [44], in order to obtain this behaviour. Thus, we661
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conclude that cycling behaviour arises from strong asymmetries in the feeding662

kernel.663

We have shown that evolutionary cycles occur in the evolutionary food664

web model used, it is robust towards variation in the shape and range of the665

feeding and competition kernels, and can manifest in various ways. However,666

the underlying mechanism, leading to evolutionary cycling, is not restricted667

to the model used. We suggest that evolutionary cycles might be a general668

phenomenon in evolutionary food web models and also empirical food webs669

and therefore conclude that evolutionary cycling in food webs may be more670

frequent than commonly believed.671
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Figure A.5: Evolutionary temporal behaviour of a single morph cycle (Fig. 2b)). a, b: Close-up of the
biomass B and bodysize z during a single morph cycle shown in Fig. 2b.
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Figure A.6: Transient dynamic. After a transient of single morph cycles the system becomes polymor-
phic. a: Mixed evolutionary behaviour of a food web is visible after the transition. The competition
parameters are set to α0 = 0.1 and β = 0.75. b: A static food web emerges after the transition. The
competition parameters are set to α0 = 0.3 and β = 0.58.
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Figure A.7: Evolutionary food web behaviour for continuous feeding ker-

nels. The interaction kernels are replaced by continuous functions. The

original feeding kernel γ(·) (Eq. 2) is replaced by a more ecologically ac-

curate Ricker function [44], γ(zi − zj) = γ0

σ
√
2π

exp
(

− (log(zi−zj)−log(d))2

σ2

)

,

which is asymmetric in respect to bodysize: the ability to consume larger

morphs decreases faster than the ability to consume smaller morphs. The

box shaped competition kernel α(·) (Eq. 3) is replaced by a Gaussian func-

tion, α(|zi − zj|) = α0

β
√
2π

exp
(

− (zi−zj)
2

β2

)

, similar to [8, 5, 30]. The Gaussian

shape is motivated by competition due to link overlap as introduced by [22].

It is highest for identical bodysizes and decreases with the bodysize distance

of the competing morphs. a: Single morph cycle for continuous interaction

kernels, which is similar to the one observed in the original model, Fig. 2b

(σ = 2.3, α0 = 0.2, β = 2). b: Complex community cycles, that commemo-

rate complex community cycles, see Fig. 2c,d (σ = 2.5, α0 = 0.2, β = 1.5).

All other parameters are set according to section 2.3.
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