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ABSTRACT

We study the damping of longitudinal oscillations of a prominence thread caused by the mass accretion. We suggested a simple model
describing this phenomenon. In this model we considered a thin curved magnetic tube filled with the plasma. The prominence thread
is in the central part of the tube and it consists of dense cold plasma. The parts of the tube at the two sides of the thread are filled
with hot rarefied plasma. We assume that there are flows of rarefied plasma toward the thread caused by the plasma evaporation at the
magnetic tube footpoints. Our main assumption is that the hot plasma is instantaneously accommodated by the thread when it arrives
at the thread, and its temperature and density become equal to those of the thread. Then we derive the system of ordinary differential
equations describing the thread dynamics. We solve this system of ordinary differential equations in two particular cases. In the first
case we assume that the magnetic tube is composed of an arc of a circle with two straight lines attached to its ends such that the whole
curve is smooth. A very important property of this model is that the equations describing the thread oscillations are linear for any
oscillation amplitude. We obtain the analytical solution of the governing equations. Then we obtain the analytical expressions for the
oscillation damping time and periods. We find that the damping time is inversely proportional to the accretion rate. The oscillation
periods increase with time. We conclude that the oscillations can damp in a few periods if the inclination angle is sufficiently small, not
larger that 10◦, and the flow speed is sufficiently large, not less that 30 km s−1. In the second model we consider the tube with the shape
of an arc of a circle. The thread oscillates with the pendulum frequency dependent exclusively on the radius of curvature of the arc.
The damping depends on the mass accretion rate and the initial mass of the threads, that is the mass of the thread at the moment when
it is perturbed. First we consider small amplitude oscillations and use the linear description. Then we consider nonlinear oscillations
and assume that the damping is slow, meaning that the damping time is much larger that the characteristic oscillation time. The thread
oscillations are described by the solution of the nonlinear pendulum problem with slowly varying amplitude. The nonlinearity reduces
the damping time, however this reduction is small. Again the damping time is inversely proportional to the accretion rate. We also
obtain that the oscillation periods decrease with time. However even for the largest initial oscillation amplitude considered in our
article the period reduction does not exceed 20%. We conclude that the mass accretion can damp the motion of the threads rapidly.
Thus, this mechanism can explain the observed strong damping of large-amplitude longitudinal oscillations. In addition, the damping
time can be used to determine the mass accretion rate and indirectly the coronal heating.
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1. Introduction

The first observation of a large-amplitude longitudinal oscilla-
tion (LALO) was reported by Jing et al. (2003). In this oscil-
lation a large portion of the cool prominence-mass moved par-
allel to the filament axis with a total displacement of 140 Mm
and the velocity amplitude of 92 km s−1, which is clearly in
the range of large-amplitude motions according to the classifi-
cation by Oliver & Ballester (2002). It seems that in this mo-
tion the thread moved parallel to itself and to the local mag-
netic field. The oscillation period was about 80 min with the
damping time about 210 min, that is 2.6 times the period. These
numbers indicate that the oscillation damping was very strong.
More events have since been reported by Jing et al. (2006),
Vršnak et al. (2007), Zhang et al. (2012), Li & Zhang (2012),
Luna et al. (2014), Bi et al. (2014), and Shen et al. (2014). The
range of the velocity amplitude was between 20 and 100 km s−1,

the period between 40 and 160 min, and the damping time be-
tween 1 and 3.8 periods. Again these observations indicate a very
strong damping. We expect the damping mechanism to be very
efficient as it damps very energetic LALOs so rapidly.

The origin of the prominence mass is an open question, but
it has been long known that the mass must come from the chro-
mosphere (Pikelner 1971). It is unclear how the chromospheric
mass is deposited into the corona. At present, the evaporation-
condensation model (Antiochos & Klimchuk 1991) is the most
advanced in its ability to explain thermal properties, speed, and
mass of prominences (e.g., Antiochos et al. 2000; Karpen et al.
2001, 2005; Karpen & Antiochos 2008; Xia et al. 2011, 2014;
Luna et al. 2012b; Keppens & Xia 2014). In this model the coro-
nal heating localized at the footpoints of the prominence mag-
netic structure produces the chromospheric plasma evaporation.
This evaporated hot plasma flows along the field lines and con-
denses because of the optically thin radiation of the corona in
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dipped parts of the magnetic field lines, forming a cool promi-
nence. Once the prominence is formed the same mechanism pro-
duces a constant accretion of mass into the prominence thread.

The damping mechanism of LALOs is poorly understood.
Several damping mechanisms have been suggested but not rig-
orously tested, for example, energy leakage by the sound wave
emission (Kleczek & Kuperus 1969) or some form of dissipation
(Tripathi et al. 2009; Oliver 2009). A model of the LALOs based
on numerical simulation was constructed (Luna et al. 2012b,
2016; Luna & Karpen 2012), demonstrating that the restoring
force is the projected gravity on magnetic tubes where the
threads oscillate. In this model the motion is strongly damped by
the steady accretion of mass onto the threads by the evaporation-
condensation process. It was found that the temporal dependence
of the thread velocity is described by a Bessel function rather
than by a sinusoid. This indicates that the accretion of mass
by the threads not only damps the motion but also produces
observable changes in the temporal profile of the oscillation.

In the model suggested by Luna & Karpen (2012) the promi-
nence threads were considered as point-like particles (0 dimen-
sion) with the increasing mass moving along a rigid field line.
In this article we improve the model of Luna & Karpen (2012)
by considering a 1D thread model moving in a rigid magnetic
tube in the presence of an accretion flow. The paper is organized
as follows. In the next section the model is presented and the
equations governing the thread motion are derived. In Sect. 3 we
consider the prominence thread oscillations in a magnetic tube
consisting of a arc of a circle with two straight parts attached at
its ends. In Sect. 4 we study the thread oscillations in a magnetic
tube shaped like an arc of a circle. Section 5 contains a summary
of the results and our conclusions.

2. Derivation of governing equations

In the equilibrium there is a magnetic tube of constant cross-
section. In Cartesian coordinates x, y, z with the z-axis vertical,
the tube’s axis is in the xz-plane. Its shape is determined by the
equations

x = x(s), z = z(s), (1)

where s is the arclength measured along the axis. Ruderman
(2015) showed that a magnetic tube with a constant cross-section
radius and an arbitrary axis shape can be embedded in a potential
magnetic field. Hence the functions x(s) and z(s) can be chosen
arbitrarily. The gravity acceleration is g = (0, 0,−g). The mag-
netic tube length is `, meaning that 0 ≤ s ≤ `. There is a dense
plasma with the density ρp per unit length between s = p and
s = q. The plasma density per unit length in s < p and s > q
is ρe < ρp. Below we assume that ρp and ρe are constant. The
unit tangent vector to the tube axis is l = (x′(s), 0, z′(s)), where
the prime indicates the derivative. The projection of the gravity
acceleration on the tube axis is l · g = −gz′(s). The projection
on the tube axis of the gravity force acting on the element of the
dense prominence thread from s to s + ∆s is −gρpz′(s) ∆s. Then
the total projection of the gravity force acting on the thread is

fg = −

∫ q

p
gρpz′(s) ds = gρp[z(p) − z(q)]. (2)

We assume that there is continuous plasma evaporation at the
tube footpoints that creates the plasma flows at the two sides
of the thread. The flow speed is v = const and the flows are
directed toward the thread at both sides. The plasma flux at both
sides is the same and equal to ρev. The thread velocity is u, and

we assume that the plasma flow speed is larger than the thread
speed, v > |u|.

Our main assumption is that the accreting material is instan-
taneously absorbed by the thread, and its density, temperature
and velocity become the same as those of the thread material.
Due to accretion the velocity of the left end of the thread is
smaller than u, while the velocity of the right end of the thread
is larger than u. The relative velocity of the rarefied plasma flow
and the thread is v − ṗ at the left thread end, and −(v + q̇) at
the right thread end, where the dot indicates the time deriva-
tive. Hence, the rate of thread length increase at the left end is
ρe(v − ṗ)/ρp, while at the right end it is ρe(v + q̇)/ρp. It then
follows that

ṗ = u −
ρe

ρp
(v − ṗ), q̇ = u +

ρe

ρp
(v + q̇). (3)

As a result, we obtain

ṗ =
ρpu − ρev

ρp − ρe
, q̇ =

ρpu + ρev

ρp − ρe
· (4)

The mass of the thread is M(t) = ρp(q − p). Differentiating this
relation and using Eq. (4) we obtain

Ṁ = ρp(q̇ − ṗ) =
2ρpρev

ρp − ρe
· (5)

Integrating this equation yields

M = ρp(q0 − p0) +
2ρpρevt
ρp − ρe

, (6)

where p = p0 and q = q0 at t = 0.
Consider a system consisting of the thread and two volumes

of rarefied plasma attached to the thread at the left and the right.
The length of the left volume is (v− ṗ)∆t, while the length of the
right volume is (v+ q̇)∆t. The linear momentum of this system is

M(t)u(t) + ρev(v − ṗ)∆t − ρev(v + q̇)∆t =

M(t)u(t) −
2ρpρeuv∆t
ρp − ρe

· (7)

After time ∆t the plasma in both volumes is absorbed by the
thread. The thread mass and velocity become M(t + ∆t) and
u(t + ∆t). The change in the linear momentum is equal to the
impulse of force fg ∆t,

M(t + ∆t)u(t + ∆t) − M(t)u(t) +
2ρpρeuv∆t
ρp − ρe

=

gρp[z(p) − z(q)]∆t. (8)

Dividing this relation by ∆t and taking ∆t → 0 we obtain

d(Mu)
dt

= gρp[z(p) − z(q)] −
2ρpρeu v
ρp − ρe

· (9)

Using Eq. (6) we transform this equation to(
q0 − p0 +

2ρevt
ρp − ρe

)
u̇ = g[z(p) − z(q)] −

4ρeuv
ρp − ρe

· (10)

Equations (4) and (10) constitute the system of equations for u,
p and q.

We consider the model presented in this section to be one
of the first steps in understanding the damping mechanisms of
LALOs, and we are well aware of its limitations. In this model
we neglect many physical effects that, probably, exist in reality.
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Fig. 1. Sketch of the equilibrium. The magnetic tube axis consists of an
arc of a circle of radius r with the two straight lines attached. The dense
prominence thread occupies the shaded area. Recall that we consider
a one-dimensional problem and neglect the variation of all quantities
across the magnetic tube.

We consider the plasma motion in LALOs as one-dimensional
while in reality it is three-dimensional. The account of varia-
tion of the plasma parameters across the magnetic tube can re-
sult, for example, in the distortion of the boundary between the
hot and cold plasmas which can complicate the process of hot
plasma accretion. Probably, the most vulnerable assumption of
our model is that the hot accreting plasma is instantaneously ac-
commodated by the cold dense thread. Obviously the real pro-
cess of hot plasma accretion is much more complex. The colli-
sion of flows of the hot and cold plasmas can cause formation
of a very complex interaction region involving shocks. The re-
laxation of this region would, probably, involve heat conduction,
ionisation and recombination. How much all these complicated
processes will affect the damping of LALOs remains an open
question. It should be addressed in the future by considering
more sophisticated models.

3. Prominence oscillations in a magnetic tube
with two straight parts

To obtain the solution to the system of Eqs. (4) and (10) we need
to specify the magnetic tube shape. To make the problem as sim-
ple as possible we assume that the tube axis is composed of an
arc of a circle with two straight lines attached to its ends such
that the whole curve is smooth (see Fig. 1). Hence, we take

x(s) =



(s + rθ − `/2) cos θ − r sin θ,
0 ≤ s < `/2 − rθ,

r sin
2s − `

2r
, |s − `/2| ≤ rθ,

(s − rθ − `/2) cos θ + r sin θ,
`/2 + rθ < s ≤ `,

(11)

z(s) =



(`/2 − s − rθ) sin θ + r(1 − cos θ),
0 ≤ s < `/2 − rθ,

r
(
1 − cos

2s − `
2r

)
, |s − `/2| ≤ rθ,

(s − rθ − `/2) sin θ + r (1 − cos θ) ,
`/2 + rθ < s ≤ `,

(12)

where θ is the angle that forms half of the arc with respect to
the centre of curvature as plotted in Fig. 1. We introduce the
dimensionless variables

ζ =
ρp

ρe
, P =

gp
v2 , Q =

gq
v2 ,

U =
u
v
, T =

gt
v
, Z =

gz
v2 ·

(13)

Then we rewrite the system of Eqs. (4) and (10) in the dimen-
sionless form as(
Q0 − P0 +

2T
ζ − 1

)
dU
dT

= Z(P) − Z(Q) −
4U
ζ − 1

, (14)

dP
dT

=
ζU − 1
ζ − 1

,
dQ
dT

=
ζU + 1
ζ − 1

· (15)

Now we assume that p < `/2 − rθ and q > `/2 + r θ at any time,
that is the ends of the dense thread are always on the straight
parts of the magnetic tube. As a result, we obtain

Z(P) =

(L
2
− P − R θ

)
sin θ + R (1 − cos θ) ,

Z(Q) =

(
Q − R θ −

L
2

)
sin θ + R (1 − cos θ) ,

(16)

where L = g`/v2 and R = gr/v2. It follows from this equation
that

Z(P) − Z(Q) = (L − P − Q) sin θ. (17)

Substituting this result in Eq. (14), differentiating the obtained
equation, and using Eq. (15), we obtain the equation for U,

d
dT

(
[(Q0 − P0)(ζ − 1) + 2T ]

dU
dT

+ 4U
)

= −2ζU sin θ. (18)

Introducing the new variableσ = (Q0−P0)(ζ−1)+2T we rewrite
this equation as

σ
d2U
dσ2 + 3

dU
dσ

+ κU = 0, (19)

where κ = 1
2ζ sin θ. Below we assume that Z(P0) = Z(Q0), which

implies that P0 + Q0 = L. It then follows from Eqs. (14) and (17)
that

(Q0 − P0)
dU
dσ

= −
4U0

ζ − 1
at T = 0, (20)

where U0 = U(0). As a result, we have the following initial
conditions for U:

U = U0,
dU
dσ

= −
2U0

σ0
at σ = σ0, (21)

where σ0 = (ζ − 1)(Q0 − P0). The variable substitution

ξ = 2
√
κσ, U = σ−1W, (22)

reduces Eq. (21) to the Bessel equation

d2W
dξ2 +

1
ξ

dW
dξ

+

(
1 −

4
ξ2

)
W = 0. (23)

The general solution to this equation is

W(ξ) = C1J2(ξ) + C2Y2(ξ), (24)

where J2 and Y2 are the Bessel functions of the first and second
kind, and C1 and C2 are arbitrary constants. Returning to the
original variables we obtain

U(σ) =
1
σ

[
C1J2

(
2
√
κσ

)
+ C2Y2

(
2
√
κσ

)]
, (25)

A131, page 3 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201628713&pdf_id=1


A&A 591, A131 (2016)

Substituting Eq. (25) in Eq. (21) yields

C1J2
(
2
√
κσ0

)
+ C2Y2

(
2
√
κσ0

)
= σ0U0, (26)

C1J′2
(
2
√
κσ0

)
+ C2Y ′2

(
2
√
κσ0

)
= −

√
σ0

κ
U0, (27)

where the prime indicates the derivative of the Bessel
function with respect to its argument. Using the identity
(Abramowitz & Stegun 1972)

J2(x)Y ′2(x) − J′2(x)Y2(x) =
2
πx
, (28)

we obtain from Eq. (27)

C1 = πσ0U0
[√
κσ0 Y ′2

(
2
√
κσ0

)
+ Y2

(
2
√
κσ0

)]
,

C2 = −πσ0U0
[√
κσ0 J′2

(
2
√
κσ0

)
+ J2

(
2
√
κσ0

)]
.

(29)

Typically ζ ∼ 100, while the initial length of the dense thread
is a few Mm, lp = q0 − p0 & 2 Mm. If we take v . 50 km s−1

and g = 274 m/s2, then Q0 − P0 & 0.2 and σ0 & 20. In ad-
dition, the radius of curvature could be estimated as of the or-
der of r = 60 Mm (see, Luna et al. 2014). We consider threads
that are larger than the arched part of the tube, so lp ≥ 2rθ. For
lp & 2 Mm this inequality can be satisfied if we take θ = 1◦.
Hence, we assume below that θ & 1◦. With these consider-
ations κ & 0.8. Taking into account that σ ≥ σ0 we arrive
at the estimate 2

√
κσ & 8. For such values of the argument

we can use the asymptotic expressions for the Bessel functions
(Abramowitz & Stegun 1972) namely

Jm(x) ≈

√
2
πx

cos
(
x −

π(2m + 1)
4

)
, (30)

Ym(x) ≈

√
2
πx

sin
(
x −

π(2m + 1)
4

)
· (31)

Then it follows from Eq. (29) that

C1 ≈
σ0U0

κ

4
√
π2κσ0 cos

(
2
√
κσ0 −

5π
4

)
, (32)

C2 ≈
σ0U0

κ

4
√
π2κσ0 sin

(
2
√
κσ0 −

5π
4

)
· (33)

Substituting Eqs. (32) and (33) into Eq. (25) and using Eqs. (30)
and (31) we transform it to the approximate form

U(σ) = U0

(
σ0

σ

)5/4
cos

(
2
√
κσ − 2

√
κσ0

)
. (34)

This equation can be rewritten as

U(T ) = U0

(
1 +

T
X

)−5/4

× cos
(
2
√

2κ(X + T ) − 2
√

2κX
)
, (35)

where X = 1
2 (ζ − 1)(Q0 − P0). In Fig. 2 we have plotted four ex-

amples of the temporal evolution of the oscillating threads given
by the previous equation.

The maximum displacement of the thread occurs when the
argument of cosine is approximately equal to 2πm, m = 0, 1, . . .
at times

T = Tm ≡
πm
2κ

(
πm + 2

√
2κX

)
. (36)

Fig. 2. Temporal evolution of the velocity of the thread given by Eq. (35)
normalized to the initial velocity U0 as function of time, t. We have
assumed a typical situation of ζ = 100, r = 60 Mm, with g = 274 m s−2.
For clarity, we have split the different cases studied into two panels.
In a) a thread with lp = 2.1 Mm and θ = 1◦ is considered with v =
10 km s−1 (black curve) and v = 30 km s−1 (orange curve). In b) a thread
with lp = 5 Mm and θ = 3◦ is considered with v = 10 km s−1 (red curve)
and v = 30 km s−1 (blue curve).

Then the nth oscillation period is given by

Πn = Tn − Tn−1 =
π

2κ

[
π(2n − 1) + 2

√
2κX

]
, (37)

where n = 1, 2, . . . This indicates that the period of the oscilla-
tion depends of the cycle of the oscillation. In general this period,
Πn increases with time. In Fig. 2 the increase of the period for
each oscillation is clear. The dimensional period Pn is

Pn =
v

g
Πn = Pshift + Pg

=
vπ2(2n − 1)
gζ sin θ

+ π

√
2lp(ζ − 1)
gζ sin θ

· (38)

The second term in the expression for Pn is associated with the
gravity as a restoring force,

Pg = π

√
2lp(ζ − 1)
gζ sin θ

· (39)

This term gives the oscillation period when v = 0. We can re-
cover the oscillation period found by Luna & Karpen (2012) and
Luna et al. (2012a) if we assume that θ is small. Then sin θ ≈ θ
and

Pg ≈ π

√
2lp(ζ − 1)

θζg
· (40)

In addition, Luna & Karpen (2012) and Luna et al. (2012a) as-
sumed that the thread filled the dipped part of the flux tube
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meaning that rθ = lp/2. Then taking into account that, for typi-
cal prominences, the density contrast is very large meaning that
1 − 1/ζ ∼ 1, we finally arrive at

Pg ≈ 2π
√

r
g
· (41)

Note that Eq. (38) gives a more general expression. The first term
in Eq. (38), Pshift, introduces the period shift. During each cycle
of the oscillation the period increases by

∆P =
2vπ2

gζ sin θ
· (42)

The period shift is related to the accretion rate onto the thread
associated with the rarefied plasma. When the accretion rate in-
creases so does the period shift. Pshift = 0 when there is no ac-
cretion.

We define the damping time Td by the condition that the os-
cillation amplitude decreases e times at T = Td with respect to
the value at T = 0 . Then, using Eq. (35), we obtain

Td = (e4/5 − 1)X = 2.12X, (43)

and, in the dimensional variables,

td =
v

g
Td = 1.06(ζ − 1)

lp

v
· (44)

This relation indicates that the oscillation damping time is in-
versely proportional to the accretion speed. The larger v is,
the smaller the value of td is, and consequently, the stronger
the damping is. Similarly, the larger the thread length lp
is, the weaker the damping is. The reason for this is that the term
(ζ − 1)lp is essentially the mass of the thread at t = 0. The damp-
ing occurs because of the increase of the thread mass and the
decrease of its momentum. Hence, the larger the initial thread
mass the more time is needed to damp its movement.

In this section we have assumed that the cold thread is larger
than the arched part of the tube, lp ≥ 2rθ. Typical prominence
threads are equal or smaller than 10 Mm but larger than a blob
of 1 Mm. In our previous studies we found that r should be of
the order of tens of Mm. In particular, in Luna et al. (2014) we
determined the radius of curvature of the dipped field lines of
an observed filament as approximately equal to 60 Mm. Using
these numbers we obtain that the angle θ ≤ 5◦. The speed of
the accretion flow, v, depends on the coronal heating at the flux-
tube footpoints (see, e.g. Karpen et al. 2003). Based on the sim-
ulations by Luna et al. (2012b) and the results by Karpen et al.
(2005) we can estimate that the speed of the hot flows is of the
order of 30 km s−1. We also take a typical value of ζ = 100 (see
Labrosse et al. 2010). To plot Fig. 2 we have considered four
sets of parameters. Figure 2a corresponds to a thread of initial
length lp = 2.1 Mm and θ = 1◦. The black line corresponds to
the accretion velocity v = 10 km s−1 and the orange line corre-
sponds to v = 30 km s−1. The difference in the accretion flow
produces important changes in the damping time, td (Eq. (44)),
and in the period shift, ∆P (Eq. (42)), but not in the gravity pe-
riod, Pg (Eq. (39)). The damping and the period shift is stronger
for the high accretion velocity (orange curve). For the case with
v = 10 km s−1 (black line) Pg is 48.8 min, the shift is 3.4 min and
the damping time is 367 min, and for the case with v = 30 km s−1

(orange line) Pg is also 48.8 min, the shift is 10.3 min and the
damping time is 122 min. Due to the shift the period defined as
the time interval between two consecutive maxima changes for
each oscillation. With Eq. (38) we can compute the period of the

x

r

θ θ

z

qp

Fig. 3. Sketch of the equilibrium. The magnetic tube axis is an arc of a
circle of radius r. The prominence occupies the shaded area. We again
recall that we consider a one-dimensional problem and neglect the vari-
ation of all quantities across the magnetic tube.

nth cycle, as Pn = 3.4(2n−1)+48.8 min = 52.2, 55.7, 59.1, ... min
for the first set of parameters (black line). For the second set of
parameters corresponding to the orange line the nth period is
Pn = 10.3(2n − 1) + 48.8 min = 59.1, 69.5, 79.8, . . . min. From
this panel we clearly see the dependence of the damping time
and the period shift on the accretion velocity. Larger values of
the accretion velocity produce stronger damping, that is shorter
damping times, and larger period shifts. A similar result can be
seen in Fig. 2b for a larger thread of initial length lp = 5 Mm.
In this case the damping and the period shift is weaker than in
the case with shorter threads (Fig. 2a). In fact, stronger damping,
that is smaller damping time, involves larger period shifts. It is
possible to combine Eqs. (39), (42), and (44) to obtain

td ∆P = 1.06 P2
g, (45)

where we have assumed that the density contrast is large enough
and taken ζ−1 ≈ ζ. This relation reflects the fact that, for a given
gravity period Pg, a strong damping (small td) corresponds to a
large period shift (large ∆P) and vice versa. This behaviour is
clear in both panels in Fig. 2. In Fig. 2a both cases have the
same gravity period Pg. The oscillation plotted in the orange
curve has stronger damping and also larger period shift than in
the case showed by the black curve. A similar effect can be seen
in Fig. 2b.

As we have already pointed out, it follows from Eq. (44)
that the damping time is proportional to the initial length of the
thread and inversely proportional to the speed of the accretion
flow. This means that the damping is stronger for smaller initial
threads and for stronger accretion flows. Using Eq. (6) it is pos-
sible to relate the damping time with the mass of the thread at
the initial time and the rate of mass accretion as

td = 2.12
M(t = 0)

Ṁ
· (46)

This indicates that the damping is stronger in longitudinal oscil-
lations produced in prominences with small thread mass.

4. Prominence oscillations in a circular arched dip

In this section we consider prominence oscillations in a magnetic
tube that has the shape of an arc of a circle of radius r. The
equilibrium state is shown in Fig. 3. We introduce the angles θp
and θq between the lines connecting the centre of the circular arc
and the ends of the dense prominence thread. These angles are
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given by

θp =
2p − `

2r
, θq =

2q − `
2r
· (47)

For this geometry we have

z(p) = r(1 − cos θp), z(q) = r(1 − cos θq). (48)

Introducing the dimensionless variables

τ = t
√
g

r
, ũ =

u
√

rg
, ṽ =

v
√

rg
, δ =

lp

r
, (49)

we can rewrite the system of Eqs. (4) and (10) as

dθp

dτ
=
ζũ − ṽ
ζ − 1

,
dθq

dτ
=
ζũ + ṽ

ζ − 1
, (50)(

δ +
2τṽ
ζ − 1

)
dũ
dτ

= cos θq − cos θp −
4ũṽ
ζ − 1

· (51)

Prominence threads have typical lengths of a few Mm and the
radius of curvature of several tens of Mm. Then we can assume
that the length of the thread is much smaller than the radius of the
dip curvature, l/r � 1. This condition is equivalent to θq − θp �

1 meaning that we can use the approximate relation

cos θq − cos θp = −2 sin
θq + θp

2
sin

θq − θp

2
≈ −(θq − θp) sin φ, (52)

where φ = (θq + θp)/2. Since the typical value of ζ is 100, below
we neglect 1 in comparison to ζ. Then, using Eq. (52), we obtain
from Eq. (50)

ũ =
dφ
dτ
, θq − θp = δ +

2τṽ
ζ
· (53)

With the aid of these results we reduce the Eq. (51) to

d2φ

dτ2 + sin φ +
4ṽ

ζδ + 2τṽ
dφ
dτ

= 0. (54)

Below we assume that initially the dense thread is in equilibrium
and then it is pushed and starts to oscillate. In accordance with
this we impose the initial conditions

φ = 0,
dφ
dτ

= 2χ0 at τ = 0, (55)

where χ0 is a constant related to the initial impulse given to the
thread by some external trigger.

4.1. Linear theory with strong damping

We first consider small-amplitude oscillations and assume that
φ � 1. Thus, we can use the approximate relation sin φ ≈ φ and
reduce Eq. (54) to

d2φ

dτ2 +
4ṽ

ζδ + 2τṽ
dφ
dτ

+ φ = 0. (56)

The variable substitution

ξ = τ +
ζδ

2ṽ
, φ = ξ−1y, (57)

reduces Eq. (56) to

d2y

dξ2 + y = 0. (58)

The general solution to this equation is a linear combination
of sin ξ and cos ξ. Then, returning to the original variables and
using the initial conditions Eq. (55), we write the solution to
Eq. (56) as

φ(τ) =
2χ0

1 + 2ṽτ/ζδ
sin τ. (59)

This solution describes oscillations with constant period Π = 2π
in the dimensionless variables. Thus, in this model, the period is
constant and in the dimensional variables it is given by

P = 2 π
√

r
g
, (60)

which recovers the result by Luna & Karpen (2012). Luna et al.
(2012a, 2016) numerically simulated the motion of perturbed
localized cold plasma supported by a two-dimensional dipped
magnetic field. They found that the back-reaction of the field on
the plasma oscillation is very weak, validating the simpler as-
sumption of rigid flux tubes in the present study. In particular,
they found that the oscillation period was practically the same as
that found by Luna & Karpen (2012).

The amplitude of the oscillations is given by the initial di-
mensionless velocity 2χ0 = u0/

√
rg, and the damping time de-

pends of the factor 2ṽ/(ζδ). This solution implies that the damp-
ing rate changes with time similarly to what was found in the
previous section. The damping is stronger at the initial stage of
the oscillation close to τ = 0, then later it decreases for larger τ.
It is now convenient to introduce another dimensionless time
Θ = vt/r = vτ/

√
gr. As in the previous section we define the

dimensionless damping time Θd by the condition that the oscil-
lation amplitude decreases e times at Θ = Θd. Thus,

e−1 =
ζδ

ζδ + 2ṽΘd
, (61)

and we obtain

Θd = (e − 1)
ζδ

2ṽ
≈ 0.86

ζδ

ṽ
· (62)

In terms of dimensional variables we have

td = 0.86
ζlp

v
, (63)

which implies that the damping is sufficiently strong for small
threads and for the large accretion speed. Using Eq. (6) it is pos-
sible to rewrite Eq. (63) as

td = 1.72
M(t = 0)

Ṁ
, (64)

which implies that the damping time not only depends on the
mass accretion rate, but also on the initial mass of the thread.
Equation (64) is almost identical to Eq. (46). They differ only
in the constant at the front of the ratio of the initial mass and
the mass accretion rate, and then only by a small amount. Equa-
tion (63) shows that strong damping is associated with large ac-
cretion rates and small initial thread masses. In Fig. 4 we plot
the temporal evolution of φ for several values of parameters lp
and v. In all the cases the period is P = 49 min. We clearly see
from this figure that the larger lp the weaker the damping is, that
is the larger the damping time is. Similarly, the larger the accre-
tion velocity the stronger the damping is, that is the smaller the
damping time is.

Luna & Karpen (2012) found that the temporal evolution of
the oscillation velocity was given by a Bessel function of order
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Fig. 4. Angular position φ(τ) normalized to its amplitude 2χ0 as a func-
tion of t for various values of the parameters v and lp. We have taken
g = 274 m s−2 and typical values of ζ = 100 and r = 60 Mm. In all cases
the period is 49 min. The black curve corresponds to v = 30 km s−1

and lp = 2 Mm, the green curve to v = 10 km s−1 and lp = 2 Mm,
the red curve to v = 40 km s−1 and lp = 5 Mm, and the blue curve
to v = 10 km s−1 and lp = 5 Mm. The damping times for these com-
binations of parameters are td = 55.6, 166.7, 138.9, and 416.7 min,
respectively.

one and the damping is produced by the phase in the argument
of this function. However, here we have found that the temporal
evolution of the velocity is given by the sine divided by a linear
function of its argument. The phase of the argument is half that
found in the case studied by Luna & Karpen (2012). The differ-
ence between the two models is in how the hot evaporated mass
is deposited in the cool thread. Luna & Karpen (2012) assumed
that the hot flows adapt to the motion of the thread and accretion
at both sides of the thread is symmetric. Then, the momentum
transferred to the thread by the hot evaporated flows is cancelled
and the net momentum transfer is zero. In this case the damping
is exclusively produced by the change of mass of the thread. In
contrast, in the current work we assume that the hot evaporated
flows are not affected by the motion of the thread. In this case
there is a net transfer of the hot plasma flow momentum to the
thread. This is given by the last term on the right hand side of
Eq. (7). If we drop this term and solve the differential Eq. (10),
then we recover the temporal evolution found by Luna & Karpen
(2012). In a more realistic scenario that also includes the thermo-
dynamic processes, the process of the momentum deposition is,
probably, something in between these two extreme scenarios.

4.2. Nonlinear weakly damped oscillations

When there is no accretion (ṽ = 0) Eq. (54) reduces to the equa-
tion of nonlinear pendulum. Its small-amplitude oscillation is de-
scribed by φ(τ) = φ0 sin τ, where φ0 is the constant oscillation
amplitude. In that case the characteristic time of the variation of
function φ(τ) is 1. The characteristic time remains the same for
nonlinear oscillations when the oscillation amplitude is smaller
than or of the order of π/2. Damping of oscillations due to ac-
cretion can be considered as slow if the dimensionless damping
time is much larger than one. Since one is approximately equal
to one sixth of the oscillation period, which is 2π, this implies
that the damping can be considered as slow if it is larger than or
of the order of the oscillation period. This observation inspires us
to search for a solution to the Eq. (54) describing slowly damped
nonlinear oscillations. To do this we introduce the “slow” time
τ1 = ετ, where ε � 1 is of the order of the ratio of the charac-
teristic oscillation time to the damping time. Then we consider

φ as a function of two variables, τ and τ1. The damping is slow
when the last term on the right-hand side of Eq. (54) is small.
In accordance with this we put ṽ = εṽ1. After that Eq. (54) is
transformed to(
∂2φ

∂τ2 + 2ε
∂2φ

∂τ∂τ1
+ ε2 ∂

2φ

∂τ2
1

 + sin φ

+
4εṽ1

ζδ + 2τ1ṽ1

(
∂φ

∂τ
+ ε

∂φ

∂τ

)
= 0. (65)

Below we assume that φ is a periodic function of τ with the pe-
riod Π that will be determined later. Note that, in general, Π can
depend on τ1. We search for a solution to Eq. (65) in the form of
expansion

φ = φ1 + εφ2 + . . . (66)

Substituting this expansion in Eq. (65) and collecting terms of
the order of unity we obtain the equation of nonlinear pendulum

∂2φ1

∂τ2 + sin φ1 = 0. (67)

Using Eq. (55) we obtain the initial conditions for φ1,

φ1 = 0,
∂φ1

∂τ
= 2χ0 at τ = 0. (68)

It is straightforward to obtain the first integral of Eq. (67) satis-
fying the initial conditions Eq. (68),(
∂φ1

∂τ

)2

− 2 cos φ1 = 4χ2 − 2. (69)

The quantity χ2 is proportional to the energy of the oscillation.
When there is no damping the energy is conserved and χ = χ0.
However the energy decreases because of the damping, mean-
ing that χ is a function of τ1. This function satisfies the initial
condition χ = χ0 at τ1 = 0.

The angle φ1 takes its maximum when ∂φ1/∂τ = 0. Then it
follows from Eq. (69) that the oscillation amplitude is

A = max φ1 = 2 arcsinχ. (70)

Below we assume that the oscillation amplitude does not exceed
π/2. This condition implies that χ ≤

√
2/2. We introduce the

new dependent variable ψ related to φ1 by

sinψ =
1
χ

sin
φ1

2
, −

π

2
≤ ψ ≤

π

2
· (71)

It follows from Eq. (69) that the absolute value of the right-hand
side of this equation does not exceed one, so it always can be
solved with respect to ψ. Now Eq. (69) reduces to(
∂ψ

∂τ

)2

= 1 − χ2 sin2 ψ. (72)

It follows from this equation that

τ =

∫ ψ

0

dψ′√
1 − χ2 sin2 ψ′

, (73)

where we have imposed the condition that ψ is an increasing
function of τ, which corresponds to the first quarter of the first
oscillation period. Then using the relation (Korn & Korn 1961)
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sn(τ; χ) = sinψ, where sn(τ; χ) is the elliptic sine, and Eq. (71),
we eventually obtain

φ1 = 2 arcsin(χ sn(τ; χ)). (74)

This equation is valid for any τ ≥ 0. The oscillation period is
four times the time needed for φ1 to vary from 0 to A. Since
ψ = 0 when φ1 = 0 and ψ = π/2 when φ1 = A, it follows that
the oscillation period is Π = 4K(χ), where K(χ) is the complete
elliptic integral of the first kind given by (Korn & Korn 1961)

K(χ) =

∫ π/2

0

dψ√
1 − χ2 sin2 ψ

· (75)

To account for the effect of accretion we go to the next order
approximation. We remind the reader that now χ is a function
of τ1. Collecting the terms of the order of ε in Eq. (65) yields

∂2φ2

∂τ2 + φ2 cos φ1 = −2
∂2φ1

∂τ∂τ1
−

4ṽ1

ζδ + 2τ1ṽ1

∂φ1

∂τ
· (76)

Since φ is a periodic function of τ with the period Π, the same is
true for φ2. We multiply Eq. (76) by ∂φ1/∂τ and integrate with
respect to τ from 0 to Π. Then, using Eq. (67) and the integration
by parts, we obtain on the left-hand side∫ Π

0

(
∂2φ2

∂τ2 + φ2 cos φ1

)
∂φ1

∂τ
dτ =∫ Π

0
φ2

∂

∂τ

(
∂2φ1

∂τ2 + sin φ1

)
dτ = 0. (77)

This implies that the right-hand side is also zero, which gives the
equation

d
dτ1

∫ Π

0

(
∂ψ1

∂τ

)2

dτ +
4ζṽ1

ζδ + 2τ1ṽ1

∫ Π

0

(
∂ψ1

∂τ

)2

dτ = 0. (78)

In this equation we use the ordinary derivative because the inte-
gral in this equation only depends on τ1. Using Eq. (69) yields∫ Π

0

(
∂ψ1

∂τ

)2

dτ = 4
∫ Π

0

(
χ2 − sin2 φ1

2

)
dτ. (79)

Then, with the aid of Eqs. (71) and (73) we obtain∫ Π

0

(
∂ψ1

∂τ

)2

dτ = 4χ2
∫ Π

0
cos2 ψ dτ = 16Υ(χ), (80)

where

Υ(χ) = χ2
∫ π/2

0

cos2 ψ dψ√
1 − χ2 sin2 ψ

= E(χ) − (1 − χ2)K(χ), (81)

and the complete elliptic integral of the second kind E(χ) is given
by (Korn & Korn 1961)

E(χ) =

∫ π/2

0

dψ√
1 − χ2 sin2 ψ

· (82)

Using Eq. (80) we transform Eq. (78) to

dΥ(χ)
dτ1

+
4ṽ1Υ(χ)
ζδ + 2τ1ṽ1

= 0. (83)

It follows from this equation that

Υ(χ) =
ζ2δ2Υ(χ0)
(ζδ + 2Θ)2 · (84)

Recall that Θ = vt/r = τ1ṽ1 = τṽ, and χ0 is the value of χ at
the initial time (τ1 = 0). It follows from Eq. (81) that Υ(χ) is a
monotonically increasing function. Then it follows from Eq. (84)
that χ decreases with time. Using the expression for the oscilla-
tion amplitude A in terms of χ we conclude that A also decreases
with time, which is an expected result. Again we define the di-
mensionless damping time Θd as the time when the oscillation
amplitude becomes e times smaller than the initial amplitude A0.
Using Eqs. (70) and (84) we obtain

Θd =
ζδ

2


√

Υ(sin(A0/2))
Υ(sin(A0/2e))

− 1

 . (85)

Rewriting this expression in the dimensional variables gives the
expression for the dimensional damping time td,

td =
ζlp

2v


√

Υ(sin(A0/2))
Υ(sin(A0/2e))

− 1

 . (86)

The theory becomes especially simple in the linear approxi-
mation that we obtain assuming that χ � 1. Then A = 2χ,
sn(τ; χ) = sin τ, and K(χ) = E(χ) = π/2. Using these relations
and Eq. (81) we obtain that Π = 2π and Υ = πχ2/2. Now we
obtain from Eqs. (84) and (86) that

χ =
ζδχ0

ζδ + 2vt/r
, td =

ζlp(e − 1)
2v

= 0.86
ζlp

v
· (87)

Finally, it follows from Eq. (84)

φ1 = 2χ sin τ =
ζlpA0

ζlp + 2vt
sin

(
t
√
g/r

)
, (88)

where A0 = 2χ0. We see that the expression for td coincides
with that given by Eq. (62). It is also straightforward to verify
that Eq. (88) coincides with Eq. (59). Hence, we recovered the
results obtained in Sect. 4.2.

In Fig. 5 the dependence of A on Θ for ζ = 100, δ = 1/12,
and two values of the initial amplitude A0 = 2 arcsinχ0, A0 =
π/8 and A0 = π/2, are shown. We did not show the curve ob-
tained using the linear theory because it almost completely coin-
cides with that corresponding to A0 = π/8. We see that the non-
linearity only slightly reduces the damping time. For ζ = 100
and δ = 1/12 the linear theory gives Θd = 7.16, while the non-
linear theory gives Θd = 7.11 when A0 = π/8 and Θd = 6.52
when A0 = π/2. Hence, even when A0 = π/2 the nonlinearity
reduces the damping time by less than 10%.

When there is no damping the oscillation period is equal to
4K(χ0). However, due to damping χ decreases with time.

Consider the sequence {τn}, n = 0, 1, . . . , where φ = 0 at
τ = τ2n, φ takes its local maximum when τ = τ2n+1, and it takes
its local minimum when τ = τ2n+3. The nth oscillation cycle
corresponds to the variation of τ from τ2n−2 to τ2n+2. The angle
φ increases from 0 to its local maximum when τ varies from τ2n
to τ2n+1, then it decreases back to 0 when τ varies from τ2n+1 to
τ2n+2, continues to decrease to reach its local minimum when τ
varies from τ2n+2 to τ2n+3, and finally returns to 0 when τ varies
from τ2n+3 to τ2n+4. Hence, we split each oscillation period into
four quarters. Since χ is a slowly varying function of τ we can
neglect its variation in any quarter of the period. Each quarter
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Fig. 5. Dependence of the oscillation amplitude A on the dimensionless
time Θ = vt/r. The solid and dashed curves correspond to the initial am-
plitude A0 = π/2 and A0 = π/8, respectively. The vertical lines indicate
the damping time Θd.

of period corresponds to the variation of ψ by π/2. Then, using
Eqs. (73) and (75), we obtain the recurrence relation

τn+1 − τn =

∫ π/2

0

dψ√
1 − χ2(τn) sin2 ψ

= K(χ(τn)). (89)

The nth oscillation period is given by

Πn = τ4n+4 − τ4n =

3∑
j=0

K(χ(τ4n+ j)). (90)

The function χ(τ) is defined by Eq. (84).
Since χ is a monotonically decreasing function of τ and K(χ)

is a monotonically decreasing function of χ, it follows that {Πn}

is a monotonically decreasing sequence. When τ → ∞, χ → 0,
K(χ)→ π/2, and Πn → 2π. The stronger the damping the faster
χ(τ) decreases and, consequently, the faster the sequence {Πn}

decreases. The larger the initial amplitude A0 the larger χ0 is and,
consequently, the larger the difference between the initial period,
Π1, and the limiting period value 2π is. However this difference
is not very big even for quite large initial oscillation amplitudes.
When A0 = π/2 we obtain Π1 < 4K(χ0) ≈ 7.42, meaning that,
even for this large value of the oscillation amplitude, the differ-
ence between Π1 and 2π is less than 20%.

As an example, using Eqs. (84), (89), and (90) we calculated
oscillation periods Pn = Πn

√
r/g for A0 = π/2, ζ = 100, g =

274 m s−2, r = 60 Mm, lp = 2 Mm, and v = 30 km s−1. We
obtained P1 = 53.9 min, P2 = 50.4 min, P3 = 49.7 min, and
P4 = 49.4 min, Pn → 2π

√
r/g = 49 min as n → ∞. Hence, in

this particular example the period only decreases by 10%.
In Fig. 6 we have plotted the full numerical solutions for

typical values of parameters. We clearly see the nonlinear ef-
fects but also we see that these effects are not significant. The
orange curve corresponds to A0 = π/2 that, in dimensional vari-
ables, corresponds to the initial velocity equal to 180 km s−1.
We see that it is only slightly different from the black curve
corresponding to the initial velocity equal to 36 km s−1.

5. Summary and conclusion

In this article we have studied the damping of longitudinal os-
cillations of a prominence thread caused by the mass accretion

Fig. 6. Temporal evolution of the angle φ described by Eq. (54) normal-
ized to the initial dimensionless velocity 2χ0 as function of time, t. We
have taken g = 274 m s−2 and typical values of ζ = 100, r = 60 Mm,
and lp = 2 Mm. Black, green, red, blue, and orange lines correspond to
the initial velocities of u0 = 2χ0

√
rg = 36, 72, 108, 144, and 180 km s−1,

respectively.

of the evaporated chromospheric plasma. We considered a thin
curved magnetic tube of an arbitrary shape. The prominence
thread is in the central part of the tube and it consists of a dense
cold plasma. The parts of the tube at the two sides of the thread
are filled with a hot rarefied plasma. The restoring force in the
prominence oscillation is the gravity projected onto the flux tube.
We assumed that there are flows of coronal rarefied plasma to-
wards the thread. These flows are caused by the plasma evap-
oration at the magnetic tube footpoints. The coronal heating is
localized at the chromosphere and at the bottom of the corona
produces the evaporation. The hot evaporated plasma condenses
in the already-formed prominence thread by the thermal non-
equilibrium instability. Our main assumption is that the hot evap-
orated plasma is instantaneously accommodated by the thread
when it arrives at the thread, and its temperature and density
become equal to those of the thread. Then we derived the sys-
tem of three ordinary differential equations describing the thread
dynamics.

The equations describing the thread oscillation are valid for
an arbitrary shape of the magnetic tube axis. The only restriction
is that it is a planar curve in a vertical plane. Of course the os-
cillation properties depend on a particular shape of the magnetic
tube. We considered two particular models. In the first one the
magnetic tube axis is composed of an arc of a circle with two
straight lines attached to its ends in such a way that the whole
curve is smooth. A very important property of this model is that
the equations describing the thread oscillations are linear for any
oscillation amplitude under the restriction that the thread ends
remain on the straight parts of the tube. We obtained the solu-
tion to the governing equations in terms of Bessel functions. We
showed that, for typical parameters of solar prominences, the
Bessel functions can be approximated by trigonometric func-
tions. Then we obtained the analytical expressions for the os-
cillation damping time and periods. We found that the damping
time is inversely proportional to the accretion rate and propor-
tional to the initial mass of the thread. The oscillation period
depends strongly on the angle between the straight parts of the
tube axis and the horizontal direction. The larger this angle, the
smaller the period is. We also found that the period increases
with time and, in each cycle, the time of the maximum thread
displacement is shifted. We found that the larger the damping
the larger the period shift for a given oscillation period.
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In the second model we studied, the shape of the tube axis
is an arc of a circle. We considered the linear as well as the
nonlinear regime. In the linear regime we assumed that the dis-
placement of the thread is small in comparison with the radius
of curvature of the dipped flux tube. We found that the period is
equal to the period of the pendulum oscillation and it does not
change with time. The damping time is inversely proportional
to the mass accretion rate and proportional to the initial mass of
the thread. In the nonlinear regime, we assumed that the damp-
ing is slow meaning than the damping time is much larger than
the characteristic oscillation time. It is important to note that the
characteristic oscillation time is the oscillation period divided
by 2π. This implies that the damping can be considered as slow
even when the damping time is of the order of the oscillation
period. To study the thread oscillations we used the two-scale
approach where the oscillations are described by the solution of
the nonlinear pendulum problem with slowly varying amplitude.
We showed that the nonlinearity only slightly reduces the damp-
ing time. Again the damping time is inversely proportional to
the accretion speed and proportional to the initial mass. In this
model the oscillation periods decrease with time. This behaviour
is in contrast with that found in the first model. The larger the
initial oscillation amplitude the larger the reduction in the os-
cillation periods is. However, even for the largest initial oscilla-
tion amplitude considered in our article this reduction does not
exceed 20%.

We conclude that the mass accretion can damp the motion
of the threads rapidly. Thus, this mechanism can explain the ob-
served strong damping of large-amplitude longitudinal oscilla-
tions. In addition, the damping time can be used to determine
the mass accretion rate and indirectly the coronal heating. More
work is needed to increase the complexity of the model by in-
cluding stratification of the plasma, the physical processes in
condensation of the thermal instability, and consider 2D and
3D models of the magnetic geometry in order to understand
the interaction of the plasma with the magnetic field. In addi-
tion, the damping by radiative losses should be considered in a
full model. Zhang et al. (2013) found that effect of the radiative
losses can be significant in these oscillations. Recently, Ballester
(2016) found that a temporal variation of the background tem-
perature in combination with radiative losses can produce period
shifts and damping of the slow modes in a prominence. These
improvements to the model will be a topic for future research.
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