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Abstract

In material science studies, it is often desired to know in advance the fracture

toughness of a material which is related to the released energy during its compact

tension (CT ) test to prevent catastrophic failure. In this paper, two frameworks

are proposed for automatic model elicitation from experimental data to predict

the fracture energy released during the CT test of X100 pipeline steel. The

two models including an adaptive rule-based fuzzy modelling approach and a

double-loop based neural network model, relate the load, crack mouth opening

displacement (CMOD) and crack length to the released energies during this

test. The relationship between how fracture is propagated and the fracture

energy is further investigated in greater detail. To improve the performances

of the models, a Gaussian Mixture Model (GMM )-based error compensation

strategy which enables one monitor the error distributions of the predicted result

∗Corresponding author. Tel.: (+44)(0)114 222 5607
Email address: m.mahfouf@sheffield.ac.uk (Mahdi Mahfouf)

Preprint submitted to Applied Soft Computing June 20, 2016



is integrated in the model validation stage. This can help isolate the error

distribution pattern and to establish the correlations with the predictions from

the deterministic models. This is the first time a data-driven approach has been

used in this fashion on an application that has conventionally been handled

using finite element methods or physical models.

Keywords: Pipeline, steel, Gaussian Mixture Model, fuzzy, Neural Networks,

prediction.

1. Introduction

High strength steel is one of the most commonly used materials in engi-

neering works and the modelling, prediction and prevention of failure of steel

materials is a key issue in engineering because of safety concerns and to prevent

the huge costs incurred during failures. It is thus no surprise that there is a5

plethora of materials science studies aim at developing new methods of analysis

as well as improving existing techniques.

Fracture toughness relates to the ability of a material with intrinsic cracks

to resist failure.

Existing analysis on the fracture toughness of steel used in the design of10

pipeline steel is the calibrated empirical method based on finite element anal-

ysis. This method, although returning good modelling results on the test set,

have unfortunately been found to have poor generalisation results across steel

specimens. As illustrated in [1], using the charpy upper shelf energy which is

predicted by the old application ultimately leads to a large error in determining15

the pipeline fracture resistance.

Physical based-modelling combined with the Finite Element Methods (FEM )

are popular for ascertaining fracture characteristics in metals. For example,[2]

used the Gurson-Tvergaard-Needleman (GTN ) model for the prediction of the

ductile failure of 22NiMoCr37 and SA-333 Gr-6 Carbon steel. Also, Karabin et20

al. in [3], developed a constitutive model based on the Gurson-Tvergaard (GT )

and Leblond-Perrin-Devaux (LPD) model [4] for 7085-T7X akluminium alloy
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plate samples.

Unfortunately as found in [5], the very high dimensionality and complexi-

ties of the process variables may incur high computational cost when trying to25

analyse the models from first principles.

As illustrated in [6] and [7], mathematical models which are based on data-

driven approaches may prove a better solution to this problem. These modelling

approaches include fuzzy systems, artificial neural networks, Gaussian processes

and support vector machines among others. These approaches have proved to be30

popular in materials engineering because of their interpolating and generalising

capabilities.

For example, [8] predicted the impact energy of API X65 micro alloyed steel

using the Artificial Neural Networks (ANN ) The fuzzy modelling approach was

used for modelling the hysteretic behaviour of CuAlBe wire from experimen-35

tal data in [9]. The literature is replete with different types of computational

intelligence techniques applied to materials modelling. They have shown to pro-

vide good accuracy on the specific experimental data. However, these methods

tend to be ‘biased’ and are not able to provide a high degree of confidence in

predictions. In this work, we provide a data-driven approach of modelling and40

consequently predicting materials failure in high strength X1001 pipeline steel.

The research examines two types of modelling framework on the steel crack

propagation process during the compact tension test on the steel prototypes.

The first is based on fuzzy modelling with hierarchical clustering for initial

structure determination and the gradient descent optimisation to improve on45

the accuracy of the model. This method follows directly from that developed

in [7]. The second framework is based on a double loop neural networks. The

accuracies in predictions of both methods are compared. To further improve on

the accuracy of the two elicited models, an error compensation scheme based

on Gaussian Mixture models was developed for the two techniques. The care-50

1X100 are high grade steel with yield strength greater than 690MPa and are usually used
for high distance engineering projects.
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Element C Si Mn P S Cu

Wt % 0.06 0.18 1.84 0.008 0.001 0.31

Element Ni Cr Mo Nb Ti Al

Wt % 0.5 0.03 0.25 0.05 0.018 0.036

Table 1: Composition of the steel specimens used in the CT experiment.

ful design of this error compensation scheme is not only shown to improve on

the performances of the two modelling paradigm but also provides a confidence

band in the predictions of each model systematically. Finally, the modelling

performance of the proposed modelling framework is compared with 55 that of

the adaptive neuro-fuzzy inference system modelling framework (AN-FIS ). The55

remainder of the paper is organised as follows: Section 2 analyses the X100 steel

data used in the paper explaining the input variables the composition of the steel

prototypes. Section 3 briefly describes the proposed fuzzy modelling approach.

Section 4 discusses the Neural Network approach used in 60 the paper before

the error compensation scheme is used on both models which is described in60

section 5. Section 6 concludes the paper and recommends direction for future

research.

2. Data and Analysis

The experimental data used in this research originated from the works

carried out in the Department of Mechanical Engineering, the University of65

Sheffield [10]. At room temperature, tests were carried-out on six compact ten-

sion specimens with longitudinal direction initial crack. This is the direction of

shear fracture in cases of real burst pipelines. The steel specimens were side-

grooved on each side by up to 20% of the original thickness of the specimen.

This ensures a straight crack front and that shear lip formation are reduced. A70

low displacement control rate of 0.01mm/s was used during the tests. Table 1

shows the composition of the X100 pipeline steel used in the experiments.

In the experiments the explanatory variables are the load, CMOD and crack-
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Figure 1: Distribution of data used in the study. The plots show that the relationship between
the input variables against the output variable is strongly non-linear.

length. The output variable is the released flat fracture energy during the tests,

which is indicative of the strength of the steel. Six test data sets contain a75

total of 432 data points which were used in developing the models. Of the 432

data points, 70% was used in the training the two models (fuzzy and neural

networks) and the remaining 30% for testing the generalization capabilities of

the elicited models. Fig. 1 shows the distributional characteristics of the data.

It is worth noting that the figure shows that the same load value corresponds80

to two different released energies. This is because the experiment was carried

out using a crack speed controlling procedure, meaning that when the elastic

property of the metal was broken in the middle of the crack propagation, the

load was lowered to maintain the crack speed. Additionally, the figure only

shows the released energy as a function of only the load variable. The released85

energy have been influenced by other input variables..
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Variables Load CMOD Crack Length Released Energy

Load % 1 -4.865E-1 -5.721E-1 -4.015E-1

CMOD -4.865E-1 1 9.785E-1 9.725E-1

Crack Length % -5.721E-1 9.785E-1 1 9.552E-1

Released Energy % -4.015E-1 9.725E-1 9.552E-1 1

Table 2: Correlation Coefficient between the variables (input and output).

2.1. Correlation Coefficient Analysis

Table 2 shows the correlation coefficient analysis for the variables (input and

output) to identify the effects the inputs have on the outputs.

The corresponding analysis shows that the correlation between the load and90

the energy is negative. This is due to decreasing load in the middle of fracture

which is caused by the crack controlling procedure. The correlation between the

crack length and CMOD is high which agrees with the intuition of crack length

and CMOD increasing simultaneously during fracture. Finally, it may also be

concluded that CMOD and crack length affect energy more than load.95

3. Fuzzy Model on Compact Tension Energy

The use of fuzzy logic modelling in material science is widespread because

of its ability to find very accurate linguistic representation of very complex non-

linear systems thus enhancing interpretability (transparency) and simplicity of

the process [11]. Fig. 3 shows a typical structure of a fuzzy logic system (FLS ).100

The fuzzifier component maps a real input in RD into a fuzzy set. A fuzzy set

(FS ) extends the capabilities of a crisp set by allowing elements have degree

of membership in the set. So the fuzzifier provides the degree of membership

that the real input belongs to a particular fuzzy set. The Fuzzy inference

engine (FIS ) is the heart of the FLS and it determines how the fuzzified input105

is combined with the rules contained in the Rule Base to produce a fuzzified

output. Finally the Defuzzifier produces a crisp output.
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Figure 2: Structure of Fuzzy Systems. µA(x) is the membership function value of input x and
µB is the fuzzy output to be defuzzified after rule aggregation.

The rules of a fuzzy system is usuallly of the form:

Rulem: IF x1 is Am
1 AND ... AND xn is Am

n THEN ym is Bm.110

Where m is the number of rules, n is the number of inputs. Am
1 , ...andAm

n

are fuzzy sets in the input space and Bm is a fuzzy set in the output space.

In a Takagi-Sugeno-Kang (TSK ) FLS, the Bms are replaced by gm(x1, ..., xn)

which represents a function of the inputs variables. Usually this function is just115

a linear function of inputs.

Expert knowledge is required to build a fuzzy model but mechanisms for

automatic rule generation from data may be used when only data is available.

Several types of adaptive fuzzy modelling may be found in the literature [12][13].

The approach used in this work in eliciting the first part of the fuzzy model120

is similar to that of [14] and [15], whereby hierarchical clustering is used to

determine the initial number of clusters (rules) and then the initial structure of

the fuzzy logic model. Data clustering has been shown to be an effective initial

fuzzy logic model generation. To improve prediction accuracy, this initial model

is optimised using the gradient descent algorithm. The next subsections explain125

this process of model elicitation in greater detail.

3.1. Model Structure

The initial structure of the FLS was found using an improved hierarchical

clustering scheme. The parameters of this initial model are then optimised using

the gradient descent algorithm. The procedure for initial and final structures130
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determination is subsequently explained in detail.

3.1.1. Clustering

Partitional and hierarchical clustering are the two most popular clustering

techniques. Partitional clustering involves associating each data point to some

pre-specified number of clusters [16]. While partitional clustering is compu-135

tationally fast, the usually suffer from the problem of reproducibility and the

need to specify the number of clusters. Hierarchical clustering on the other

hand can optimally select the number of clusters [17]. In this work we employ

the improved hierarchical clustering algorithm developed by [14]. This method-

ology exploits the accuracy and reproducibility of hierarchical clustering and140

the relatively computationally efficient partitional clustering. The clustering

methodology is described as follows:

1. The desired number of clusters Nc and the maximum allowed threshold

Nmax are chosen. Usually we choose Nmax ≥ N1/2.

2. if N ≤ Nmax, begin the agglomerative complex-link algorithm (ACL ) as145

described in [17] to classify the data into the pre-specified Nc clusters and

then end clustering. If N > Nmax, go to the next step.

3. Separate the data randomly but equally into i groups. Where i = ⌈(N/Nmax)⌉
2.

4. The data in every group is classified into j sub-clusters using the normal

ACL algorithm. j = ⌊(N/i)⌋3.150

5. A representative data from every sub-cluster is selected. This selected

data is the data point closest to the centre of every sub-cluster.

6. A representative data set is constructed to include all the i × j < Nmax

data points.

7. The representative data set is now clustered using the normal ACL clus-155

tering algorithm.

2⌈x⌉ is called a ceiling function and returns the smallest integer value greater than x.
3⌊x⌋ returns the largest integer less than x.
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8. Every representative data point is replaced with original data set in its

corresponding sub-cluster.

The clustered data points is used to construct the initial fuzzy model. The

elicited model is composed of Nc fuzzy rules. If Cn represents the nth cluster,

DNn the number of data points in Cn, then fuzzy rule (Rn) corresponding to

the Cn fuzzy rule is given as:

Rn: IF x1 is An
1 AND x2 is An

2 AND ... xD is An
D THEN y is Zn. (1)

Where for n = 1, 2, · · · , DNn; x = [x1, x2, · · · , xD] is the input variable

to be fuzzified, An
i is the ith antecedent fuzzy set (FS ) for the nth rule for160

i = 1, 2, · · · , D and Zn is the consequent FS of the nth rule.

3.1.2. Fuzzy Modelling

The membership function (MF ) selected for each FS is the Gaussian MF

because a Gaussian MF allows for easy exploration of the whole data-space

and produces a smooth model surface which can improve model generalisation.165

Additionally, clustering results can easily be mapped into the Gaussian MF.

The centre of the MF, cin, is the centre of the corresponding dimension which

is gotten from the cluster centres. The width of each FS, σn
i , is calculated by

solving the following equation:

min
j

(µAn

i
(xnj

i )) = min
j

(exp(−
(xnj

i − cni )
2

(σn
i )

2
)) = Th (2)

Where j = 1, 2, · · · , DNn. The generality of the MF is guaranteed by setting a170

suitable threshold. A threshold value (Th = 0.5) is selected because it produces

a not too wide nor not-too narrow MFs which may ensure the generaility of the

initial MF. The initial MF (defined by its width and centre) is then optimised

to produce a more accurate model.
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Figure 3: Fuzzy modelling prediction results on the training data without error compensation.

3.1.3. Gradient Descent175

To improve on the accuracy of this initial model, the gradient descent op-

timisation algorithm is used to fine tune the parameters (cni and σn
i ) and the

Root Mean Square Error (RMSE ) is chosen as the performance index. The

parameter learning algorithm for the kth iteration is given by the following set

of equations:

∆cni = λc · (yk − ydk) · (Zn − ydk) ·
xnj
i − cni
(σn

i )
2

·
µn
∑

µn
(3)

∆cni = λσ · (yk − ydk) · (Zn − ydk) ·
xnj
i − cni
(σn

i )
3

·
µn
∑

µn
(4)

µn = exp

(

−
(xn − cn)2

(σn)2

)

(5)

λc and λσ are the learning rates of centre and width parameters respectively.

3.2. Results

Fig. 3 shows the modelling results of the fuzzy model with 15 rules on the

training data. The RMSE is 3.0864. We observe that at the beginning of the

fracture propagation process (lower energy region), the fuzzy model predicts the180

released energy very well but the performance of the model deteriorates at the

end of fracture (high energy region).
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Figure 4: The distribution of data (inputs v.s. predicted and measured released energy) of
fuzzy modelling on training data.

Fig. 4a shows the data distribution of CMOD against real and predicted

energy. This corroborated our claim that when the fracture is completed at the

high energy regions, performance of the elicited fuzzy model deteriorates. The185

increased prediction error in these high energy regions may be due to the fast

change in process variables observed during the fracture propagation process.

Fig. 4b shows the crack length against real and predicted released energy.

Similar deductions may be found as in the CMOD plot of 4a.

The curve in Fig. 4c is the released energy as a function of the load applied.190

The failure starts from the left corner and ends at the top left corner (high

energy).

The response surfaces for the elicited fuzzy model are shown in Fig. 5.

The surfaces provide one with an idea of the interactions between the inputs

and output variables. We observe that the energy released is low when crack195

length and CMOD are both small. The released energy increases non-linearly
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Figure 5: Surface of the elicited fuzzy model with 15 rules but without error compensation.
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Figure 6: Neural Networks Structure.

as the crack length and CMOD increase. The increase in load does not seem

to significantly increase the released energy keeping other variables constant

because of the fixed crack propagation speed. The crack length does not also

have significant effect on the released energy because there cannot be too much200

released energy without large shape change in the specimens.

4. Artificial Neural Network Modelling of Compact Tension Energy

The second modelling framework used in this paper is the Double-Loop

Neural Network Training procedure. The structure of the neural networks used

in this research is shown in Fig. 6.205
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4.1. Model Structure

The training procedure of the neural networks model is done in 3 steps

namely:

1. With xo and zo set to 1, all the weights (ωij and ωjk) are initialised

randomly.210

2. In the forward process, the network outputs are calculated according to

the input values as defined by the set of equations below:

zj = fj

(

∑

i

ωijxi + bj

)

(6)

yk = fk





∑

j

ωjkzj + bk



 (7)

Where ωij is the weights of the connection from the ith input neuron to

the jth hidden neuron. ωjk is the weights of the connection from the jth

hidden neuron to the kth output neuron. zj is the jth neuron output.

fj and fk are the activation functions of the hidden and output neurons

respectively and yk is the output from the kth neuron.215

3. The Backward Process changes the weights according to a pre-specified

error performance. The training procedure used in this research is based

on the Levenberg-Marquardt optimisation which has proven to have very

fast convergence to an optimum solution for the weights.

A neural networks with 8 hidden neurons is trained in this paper. The220

training procedure is implemented via a double loop training process as given

in Fig. 7 [18]. Where iMax = 10 and jMax = 50 are the inner loop and outer

loop number of iterations respectively.

The advantage of the double loop training procedure is that it is able to

monitor the training process while recording the optimal network structure in225

the process. The inner loop represents the BP training progress of a NN, where

i is the training step, Each inner loop will lead to a new trained network, whose
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Best Performance

Yes

No
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Figure 7: Neural Network Double Loop Training procedure

Trials 1 2 3 4 5 Average

RMSE 5.619 5.073 5.804 6.979 6.305 5.956

Table 3: Performance of the neural networks model across five (5) runs. We note the variability
in performance across each of the runs.

performance will be recorded and compared in the outer loop according to the

pre-defined performance criteria.

4.2. Results230

In the course of training the network, the data set was divided into 3 por-

tions: training data (60%), Validation data (25%) and testing data (15%). The

training data is used in the weight updating process, the validation data is used

to prevent the model from overfitting so that optimisation process is stopped

when the error increases, and the testing data is used to assess the performance235

of the elicited model. Due to the variability in the performance of a neural

networks model, several training runs were performed and the result of some of

5 of the runs is given in table 3.

Figs. 8 and 9 show the results of using one of the trained neural networks

models. The explanation of the figures follows directly from those obtained in240

14
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Figure 8: Neural networks prediction results on the testing data set.

the fuzzy modelling results. Fig. 10 shows the surface plot of the inputs against

the output. It is perhaps worth noting that the surface is not as smooth as

that obtained from the fuzzy model in Fig. 5 which may be due to the fact

that the Neural network model is fitting the model according to the training

data while the fuzzy model with 15 rules can only provide limited inference.245

It is worth noting at this stage that to improve the robustness of the elicited

models, the training algorithms used for the neural networks and fuzzy models

were performed several times using randomly selected subsamples of the training

data at each training run in a manner similar to k-fold cross validation. The

models with the best performances were selected.250

5. Error Compensation Using A Gaussian Mixture Model

The previous sections have shown and compared the results between pro-

posed the modelling frameworks. We observe that in both models, there seems

to be certain regions of the data space where the performances of the model

seem to deteriorate. It is the intention of this section of the paper to show how255

we may improve on the performances especially in the low-accuracy regions us-

ing an error compensation technique. The error compensation strategy tries

to compensate for the errors in prediction when new factors/new environment

are introduced into the prediction process (which may not be observable during

data collation), or when eliciting a new model is prohibitively computationally260

15
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Figure 9: Distribution of the input variables v.s. the measured and predicted released energy
using the double loop neural networks procedure.
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Figure 10: Surface of the input variables against predicted released energy using the double
loop neural networks model.
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Figure 11: Error Compensation Block Diagram Using the GMM framework.

expensive. The error compensation strategy will save on computational costs

since a new model needs not be developed if improvement in performance is de-

sired after intial model design. Consequently, the error compensation strategy

provides the field engineers and model designers an emergency tool to compen-

sate the error in a speedy manner.. The error compensation strategy employs265

the Gaussian mixture modelling (GMM ) paradigm. The GMM is a mature

method of clustering and density estimation [19]. We use this GMM to monitor

the distribution of the errors by applying the GMM process on the errors in-

duced in the predictions. From the observed distribution error a compensation

error is introduced into the model validation stage of the model elicitation. Fig.270

11 shows the error compensation block diagram.

5.1. Construction of a GMM

The GMM data set consists of Xe = (xe
1, x

e
1, · · · , x

n
1 ) which is a combination

of the the inputs X = (x1, x2, · · · , xn) and the errors on prediction on each data

inputs E = (e1, e2, · · · , en) . We note that the dataset used in the development275

of the GMM need not necessarily be that of the training data set. The testing

data may also be used in the construction of the GMM model. However, for

the dataset used in fitting the GMM, it is believed that the best choice should

17



be the actual field data which are totally new and different from the training

and testing data used in model design stage. Since, we did not have any field280

data, it was assumed that the data we have fully reflect the 280 environment

under investigation because there is a risk of overfitting from using just the

training data, both the testing and training data have been used in fitting the

GMM model. The construction of the GMM compensation scheme includes the

following steps:285

1. For randomly chosen parameters, initialize a GMM. The number of the

Gaussian mixture components is calculated according to the Bayesian In-

formation Criterion explained further in step 6. The initial parameters

(ωk, µk, σk) are initialised using K-means clustering algorithm. Here ωk

represents the mixing coefficient (weight) of the kth cluster/component,

µk and σk (covariance matrix) are the centre and width of the kth com-

ponent respectively. The GMM is thus defined as follows:

P (xe
n|ω, µ, σ) =

K
∑

k

ωkg(x
e
n|µk, σk) (8)

Where P (xe
n|ω, µ, σ) is the probability that xe

n, g(x
e
n|µk, σk) is the prob-

ability of the data point xe
n given that it belongs to the kth Gaussian

component for total number of K components.

2. Let Zk(x
e
n) be the probability that the data point xe

n is generated by the

kth Gaussian component, then according to Bayes’ Rule, Zk(x
e
n) may be290

calculated as follows:

Zk(x
e
n) =

ωkg(x
e
n|µk, σk)

∑K
k=1 ωkg(xe

n|µk, σk)
(9)

3. Let ωk, µk and σk be the estimated weight, mean and radius respectively.
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These are computed as follows:

ωk =
1

N

N
∑

n=1

Zk(x
e
n)

µk =

∑N
n=1 Zk(x

e
n)x

e
n

∑N
n=1 Zk(xe

n)
(10)

σk =

∑N
n=1 Zk(x

e
n)(x

e
n − µk)(x

e
n − µk)

T

∑N
n=1 Zk(xe

n)

N is the total number of data points

4. The next step is to compute the likelihood as follows:

P (Xe|ω, µ, σ) =
∏

n

∑

k

Zk(x
e
n) (11)

5. Set the estimated parameters (ωk, µk and σk) as the parameters of the

next iteration and iterate steps 3 and 4 until the following condition is

satisfied or the predefined maximum number of iterations is reached

lnP (Xe|ω, µ, σ)− lnP (Xe|ω, µ, σ) < ǫ (12)

ǫ is a small number which was set to 10−4 in our case.

6. The number of Gaussian components used in the mixture modelling pro-

cess was chosen according to the Bayesian Information Criterion (BIC )

after fitting the GMM for different number of Gaussian components. The

BIC is given as follows:

BIC = −2 logP (Xe|ω, µ, σ) +K logN (13)

Equation 13 shows that the BIC favours a relatively large number of295

Gaussian components and this equates to low values of the BIC. In this

work, we have chosen the number of components that has a relatively low

value of BIC but permits feasible computational expense.
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The priori probability P (e|xi) gives the probability of the error for input

data point xi. This may be calculated according to the Bayes’ rule as follows:300

P (e|xi) =
P (xi, e)

P (xi)

=
P (xi, e)

∫

P (xi, ξ)dξ

=
P (xi, e)

∫
∑K

k=1 ωkg(xi, ξ|µk, σk)dξ
(14)

=
P (xi, e)

∑K
k=1 ωk

∫

g(xi, ξ|µk, σk)dξ

The expected error can consequently be calculated as follows:

e(xi) =

∫

e · P (e|xi)de (15)

It is this estimated error that is used in the compensating inference. This

estimated error may also be used to give the confidence band in predictions of

the of the model as calculated by the equation below:

Std(e(xi)) =

√

∫

(e− e)2 · P (e|xi)de (16)

It is easily seen that the error compensated output is given the following:305

yci = yi − e(xi) (17)

The e(xi) can either be positive or negative. A negative e(xi) means there is

an under-estimation of the predicted output while a postive error means there

is an over-estimation of the predicted output. By virtue of equation 17, in the

case of under-estimation, the absolute value of the error must be added to the

predicted output.310

For a GMM compensator, the time complex is O(3k + kn + tn + 2ktn) =

O(ktn) for random clustering, O(ktn+ kn+ tn+ 2ktn) = O(3ktn+ kn+ tn) =

20



O(ktn) for k-means clustering. Where k is the number of Gaussian components

and t the number of iterations. Hence, after cancelling the coefficients, the time

complex for the GMM compensator should be O(n).315

5.2. Compensated Fuzzy Model

The same data used in developing the fuzzy model were used in developing

the GMM. Fig. 12 shows the error distribution for the output (released energy

in Joules (J)). Two sample data points are taken so as to be able to visualise

the distribution of the errors P (e|xs1) and P (e|xs2) for given inputs xs1 and xs2320

respectively.

In deciding on the number of Gaussian components, the BIC criterion was

used. Fig. 5.2 shows the BIC plot which favours higher number of Gaussian

components which unfortunately increases the computational costs. The value

of k = 5 was chosen which represents a trade-off between a good model fit and325

a reasonable computational burden. It is worth noting at this stage that only

the crack length and CMOD input variables were used to train the GMM as

the load variable was not used as it was found not to affect the distribution of

the errors (independence). The two sample points (xs1 and xs2 ) were chosen

because xs1 leads to medium error (1.8622, ys1 = 162.4522) while xs2 leads330

to the error at the largest output value. The distribution of the data points

are shown in Fig. 14. It is seen that error distribution reaches a maximum

around point (1.36, 0.1721) and the mode is 1.36 joules compared to the actual

value of 1.8622. Thus, using the error compensation formula of equation 17,

the expected error is calculated as e(xs1) = 1.3159. The error variance at this335

point is also calculated to be STD(e(xs1)) = 2.3180. The compensated output

is then calculated as ycs1 = 161.1463 with a variance of 2.3180.

The second selected sample data point s2 is seen to have a greater error of

4.3064. The output without error compensation is found to be y = 186.4264.

As shown in Fig. 14 , the mode is at point (2.64,0.1723) which gives the most340

probable error as 2.64 compared to the error obtained as 4.3064. The compen-

sated output was found to be ycs2 with a variance of 2.3194 following exactly the
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Figure 12: Distribution of error on GMMf1.
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Figure 13: Bayesian Information Criterion Plot for GMMf1. It is seen that the BIC criteria
favour a more complex model (large number of Gaussian components). The number of Gaus-
sian components (k) was set to 5 in this research. The value chosen satisfies the trade-off
between feasible computational speed and good fitting.

same procedure as sample data point s1.

The procedure described above was followed for all the data points and the

compensated output found (called GMMf1).345

Two new data sets X2 and X4 are plotted for with and without error com-

pensation as shown in Figs. 15 and 16. The RMSE for Y2 and Y4 without error

compensation are 2.7832 and 4.1747 respectively.

It is observed that there are larger errors in the high energy regions than

in the lower energy regions. There was an improve in modelling performance350

as shown in the figures with RMSE for Y c
2 and Y c

4 being 2.7348 and 3.4944

respectively.
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Figure 14: Distribution of two errors of the fuzzy model.
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Figure 15: Error distribution for Y2 and Y c
2

for GMMf1
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Figure 16: Error distribution for Y4 and Y C
4

for GMMf1
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Figure 17: NN GMMn1 error distribution before and after applying GMMn1 on Training Set

5.3. Compensated Neural Networks Model

The neural network model trained was used in developing the GMM and

the training data was used in generation of the error distribution. It was dis-355

covered that after fitting the error distribution and the outputs compensated

for these errors the RMSE after compensation (0.9914) was larger than before

compensation was applied (0.9904). We have called this the GMMn1. Fig. 17

shows the distribution of these errors before and after compensation.

It is evident that GMMn1 cannot accurately compensate for the errors in360

modelling process. The bad fitting of the GMMn1 is due to the fact that the

RMSE was initially very low without compensation especially for the training

data set which means the fitted GMM cannot significantly generate meaningful

error compensations.

To remedy this problem, dataset X2 was combined with dataset X1 (part of365

the training data) to construct a new GMM which we refer to here as GMMn2.

The error distributions before and after error compensation are shown in Fig. 18.

The RMSE of 1.8473 and 1.4003 were obtained without and with compensation

respectively which shows that GMMn2 provides a better modelling accuracy

and better error compensation than GMMn1. It can also be seen that at low370
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Figure 18: NN GMMn2 error distribution before and after applying GMMn2 on Training Set
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Figure 19: Error distribution for Y4 and YC4 for GMMn2.

energy regions, better error compensations were observed when the errors are

negative.

Data set X4 was also used to ascertain the performance of GMMn2 as done

for GMMf1. The results are shown in Fig. 19. This figure shows that theRMSE

before compensation was 5.0736 and after compensation was 4.2013, indicating375

a 17% increase in modelling accuracy on the holdout data set (X4). The fitted

parameters for GMMn1 is shown in Table 4. The BIC analysis as shown in Fig.

20 An optimal value of 4 was chosen for k because repeated simulation runs

indicated no significant increase in modelling performance for BIC < 1200.

5.4. Comparison with Benchmark Models (ANFIS)380
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k 4

ω 2.123E-1 3.277E-1 1.587E-1 1.300E-2

µ

CMOD(mm) 2.252E-1 7.067 1.615 3.646

Crack Length (mm) 3.213E-9 7.768 7.939E-1 3.874

e (mm) 9.840E-2 1.712E-1 -3.725 -3.725E-1

σ

CMOD (mm) 4.060E-2 1.862 7.565E-1 3.3291

Crack Length (mm) 1.000E-3 8.143E-1 7.738E-1 7.1025

e (mm) 1.214E-1 2.353 1.119 6.054E-1

Table 4: Fitted Parameters for GMMn2
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Figure 20: BIC analsysis for GMMn2.
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Before After

Training Testing Training Testing

Fuzzy 1.7291 4.1747 1.5926 3.7455

ANN 1.8473 5.0736 1.4003 4.2013

ANFIS 2.4742 5.4848 1.9420 5.0134

Table 5: Comparison of Results (RMSE) of elicited models with ANFIS before and after error
compensation.

The proposed modelling schemes were compared with results from using the

adaptive neuro-fuzzy inference system (ANFIS) for with and without GMM

compensation. The ANFIS model was elicited for different number of MFs in

each input space. 10 fold cross-validation on the training data was used select

the best parameters of the ANFIS model. The optimisation process was also385

performed 10 times for different numbers of MFs in the input space. The best

performance was consistently found to be an ANFIS model with 3 MFs. The

average performance of the ANFIS model with 3 MFs (27 rules) is as shown in

Table 5. Data set X4 was used as the testing data which represents the 15%

part of the whole data used in testing the elicited fuzzy and neural network390

models.

It can be seen that the proposed modelling frameworks were found to have

better generalisation performance than ANFIS. However, in all models, the

GMM -based error compensation strategy was able to improve the modelling

performances for both training and testing data sets.395

6. Analysis and Conclusion

The fitted GMM models clearly reflect the distribution of the errors of the

elicited models which can be fed-back into the modelling process for error com-

pensation and confidence bands without the need to train the model all over

again. This can significantly save computational costs. However, one must be400

careful in implementation as it was observed that unlike the GMM model fitted

using the error from the fuzzy model, a more accurate model such as the one
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driven by neural networks may depreciate the performance of the final elicited

model. This is because the models are already very accurate and further at-

tempts at error compensation may lead to performance degradation. As already405

shown, a better approach is to train the GMM model on an entirely new data

set as was done on the neural networks model using the training data combined

with data set X4. It is worth noting that the highly non-linear surface of the

neural networks models may cause degradation in interpretability of the pro-

cess. The fuzzy model, however provides a smooth surface plot of input/output410

mapping which may enhance interpretability.

Finally, it was further observed that the error bars are significantly lower

in the lower energy regions than in the higher energy regions which corrobo-

rated our findings of increased uncertainty in the final stages of the fracture

propagation process.415
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