This is a repository copy of High Ionic Conductivity with Low Degradation in A Site Strontium-Doped Nonstoichiometric Sodium Bismuth Titanate Perovskite.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/103905/

Version: Accepted Version

Article:
Yang, F. orcid.org/0000-0002-6428-7755, Zhang, H., Li, L. et al. (2 more authors) (2016) High Ionic Conductivity with Low Degradation in A Site Strontium-Doped Nonstoichiometric Sodium Bismuth Titanate Perovskite. Chemistry of Materials, 28 (15). pp. 5269-5273. ISSN 1520-5002

https://doi.org/10.1021/acs.chemmater.6b02555

This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
High Ionic Conductivity with Low Degradation in A-Site Strontium-Doped Nonstoichiometric Sodium Bismuth Titanate Perovskite

Fan Yang, Huairuo Zhang, Linhao Li, Ian M. Reaney, and Derek C. Sinclair*

Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom

Supporting Information

Oxide-ion conductors are an exciting class of materials. There has been a continued drive for the development of oxide-ion conductors because of their potential applications in various important technological devices such as solid oxide fuel cells (SOFCs), oxygen separation membranes, oxygen sensors, and oxygen pumps. In the past decade, the pace of research on oxide-ion conductors has been rapid. A wide range of materials, e.g., LaGaO$_3$-based perovskites, La$_{1-x}$Sr$_x$MgO$_{3-δ}$, stabilized δ-Bi$_2$O$_3$, and the Bi$_4$V$_2$O$_9$-based BIMEVOX family have been reported, among which Bi-based materials exhibit the highest known oxygen-ion conductivity.

Despite their attractive levels of oxide-ion conductivity at intermediate temperatures, i.e., 400–600 °C, it is challenging to implement stabilized δ-Bi$_2$O$_3$ materials as an electrolyte for intermediate temperature solid oxide fuel cells (ITSOFCs) for two reasons. First, they are prone to chemical reduction/decomposition under the required operating conditions (partial oxygen pressure–temperature, pO$_2$–T) at the fuel electrode. Second, many stabilized δ-Bi$_2$O$_3$ materials are known to suffer from degradation (or aging) of the oxide-ion conductivity in this temperature range due to a combination of phase transformations and anion ordering. The former generally occur at >600 °C, whereas the latter is often dominant at ~500 °C but becomes less pronounced at lower temperatures due to slower kinetics associated with anion ordering. Wachsman and co-workers have demonstrated the first obstacle can be overcome by the creation of bilayer electrolytes, based on Gd-stabilized CeO$_2$ (GDC) and stabilized δ-Bi$_2$O$_3$. In this arrangement, the highly conducting δ-Bi$_2$O$_3$ layer is protected from the low pO$_2$ at the fuel electrode by the more robust GDC (also an oxide ion conductor) thus raising the pO$_2$ experienced by the δ-Bi$_2$O$_3$ sufficiently to avoid chemical reduction/decomposition and therefore taking advantage of its higher oxide-ion conductivity. The same group has studied degradation effects in δ-Bi$_2$O$_3$ over many years and has shown that appropriately sized rare earth dopants and codoping with other elements, e.g., Dy and W at various levels can be effective in suppressing the degradation of ionic conductivity at ~500 °C.

In 2014, we reported a new family of oxide-ion conductors based on the ferroelectric perovskite sodium bismuth titanate (Na$_{0.3}$Bi$_{0.5}$Ti$_2$O$_6$, NBT). In particular, high levels of oxide-ion conduction were found in bismuth-deficient NBT, i.e., Na$_{0.5}$Bi$_{0.49}$Ti$_2$O$_{2.985}$ NBT. The high ionic conductivity originates from oxygen vacancies generated because of Bi deficiency, as well as high anion mobility as a result of highly polarizable Bi$^{3+}$ with its 6s2 lone pair electrons and weak Bi=O bonds, which provide pathways with low diffusion barriers.

The predominant oxide-ion conduction in Nb$_{0.49}$T has been confirmed by 18O diffusion profiles and electromotive force (EMF) measurements, which show an ionic transport number t_σ > 0.9 at 600–700 °C. Enhancement of the bulk conductivity (σ_b) by more than half an order of magnitude was achieved by acceptor-doping Mg$^{2+}$ onto the Ti-site (B-site) of Nb$_{0.49}$T to create a higher level of oxygen vacancies. Unfortunately, further enhancement of σ_b by increasing the doping level of Mg$^{2+}$ has not been achieved. Experimentally, the solubility of Mg$^{2+}$ on the Ti-site is rather low, i.e., a Ti-rich secondary phase has been observed in 2 at% Mg-doped Nb$_{0.49}$T. Theoretically, first principles calculations have recently predicted acceptor dopants on the A-site to significantly increase the oxygen migration barriers by binding with oxygen vacancies, which suppresses the mobility of oxygen ions and is detrimental to optimizing the ionic conduction.

Here, we report a Sr-doped Nb$_{0.49}$T, Na$_{0.5}$Bi$_{0.49}$Sr$_{0.01}$Ti$_2$O$_{2.975}$ in which Sr$^{2+}$ replaces Bi$^{3+}$ on the A-site of NBT with the creation of oxygen vacancies. This A-site acceptor doping mechanism enhances σ_b compared with Nb$_{0.49}$T perovskite but more importantly, Sr-doped Nb$_{0.49}$T exhibits low degradation of σ_b with time at intermediate temperatures, as well as reasonable stability under reducing atmosphere, which makes it a promising electrolyte material for ITSOFCs.

Sr-doped Nb$_{0.49}$T ceramics were prepared by the solid-state reaction method. Appropriate amounts of each powder was ball milled and then calcined twice at 800 °C. Pellets were sintered at 1150 °C for 2 h. Sintered pellets were phase-pure by XRD, with a high density (>95% of the theoretical X-ray density) and with an average grain size of ~5 μm as shown by SEM on thermally etched surfaces. EDX analysis on the polished surface (without thermal etch) shows the composition is close to its nominal value and thus confirms the suggested doping mechanism.

Electrical conductivity was obtained from ac impedance spectroscopy. A typical complex impedance plane (Z*) plot of Sr-doped Nb$_{0.49}$T showed three arcs, from high to low frequency representing the response from the grains (bulk), grain boundaries and electrode effects, respectively.

Received: June 23, 2016
Revised: July 26, 2016
Figure 1. Bulk conductivity of Sr-doped, Mg-doped, and undoped NB0.49T in comparison with other oxide-ion conductors: (BiO1.5)x(DyO1.5)0.5, 20ESB; (BiO1.5)x(DyO1.5)0.5(VO)0.04, 8D4WSB; Ce0.5Gd0.5O2, 10GDC; Zr0.65Y0.35O1.92, 8YSZ.

Comparison of σb for Sr-doped NB0.49T with some of the best known oxide-ion conductors is shown in Figure 1. Similar to B-site Mg-doping, A-site Sr-doping enhances σb by more than half an order of magnitude compared to undoped NB0.49T. The enhancement of σb originates from oxygen vacancies generated according to the following Kroger–Vink equation

\[2\text{SrO} + 2\text{Bi}_{\text{Sr}}^2 + \text{O}_\text{Sr}^4 → 2\text{Sr}_{\text{Bi}}^4 + \text{Bi}_2\text{O}_3 + \text{V}_\text{O}^5 \]

The log10 σb = 1/T relationship of Sr-doped NB0.49T shows a change in activation energy at ~300 °C, which is also observed in undoped and Mg-doped NB0.49T. This temperature is associated with a maximum in permittivity as observed from dielectric spectroscopy measurements; however, the reason(s) for a change of activation energy around this temperature and the maximum in permittivity remain(s) unclear.

The crystallography, polymorphism, and polymorphic phase transition temperatures of NBT remain challenging topics. It is generally accepted that NBT undergoes a rhombohedral to tetragonal phase transformation at ~250 °C; however, there is coexistence of the rhombohedral (R) and tetragonal (T) phases before it fully transforms into a single tetragonal phase at ~400 °C, and finally undergoes a tetragonal to cubic (C) transition at ~520 °C. In the mixed phase region, generally considered to be ~250 to 400 °C, the volume fraction of the T phase increases with increasing temperature, as revealed by neutron diffraction studies.

R and T phase coexistence in this temperature range is confirmed by high-temperature electron diffraction studies on NB0.49T by TEM, Figure S5 through the observation of both strong 1/2[010] (tetragonal, P4bm) and 1/2[001] (rhombohedral, R3c) octahedral tilt superstructure reflections in which a = odd and e = even. Competition between T and R phases in disorder of the octahedral tilting, resulting in additional streaking along the [100] direction.

Considering a two-phase composite with \(\sigma_{(\text{K})} \) and \(\sigma_{(\text{T})} \) representing the bulk conductivity of the two phases and using the volume fraction of each phase from a powder diffraction study in ref 3S, an estimation of the total σb for NB0.49T and Sr-doped NB0.49T from the Maxwell model gives reasonable agreement with the experimental data, Figure S6. Coexistence of R and T phases is a plausible explanation for the change in activation energy of \(\sigma_b \) at ~300 °C and for the maximum in the permittivity data at ~325 °C; however, further evidence, i.e., volume fractions of R and T phases in NB0.49T and Sr-doped NB0.49T from neutron diffraction and/or TEM, are required and are in progress.

Comparing with other oxide-ion conductors below 300 °C, \(\sigma_b \) of Sr-doped NB0.49T is ~2 orders of magnitude higher than (BiO1.5)x(ErO1.5)0.5, 20ESB and ~1 order of magnitude higher than (BiO1.5)x(DyO1.5)0.5(VO)0.04, 8D4WSB, Figure 1. At higher temperature, i.e., 500 °C, \(\sigma_b \) of Sr-doped NB0.49T is initially lower than 20ESB and 8D4WSB, however, it shows no appreciable degradation of \(\sigma_b \) with time contrary to the rapid conductivity degradation of 20ESB and 8D4WSB, Figure 2a. It is noteworthy that undoped NB0.49T also shows negligible degradation of \(\sigma_b \) at 500 °C, albeit with a lower magnitude of conductivity due to its lower level of oxygen vacancies, Figure 2a. The conductivity degradation of stabilized \(\beta\)-Bi2O3 at ~500 °C is primarily attributed to the ordering of the oxygen sublattice that can be alleviated by increasing dopant concentration, for example, 25D5WSB shows the best stability and the highest long-term conductivity. Considering the price and availability of rare-earth oxides such as Dy2O3, Sr-doped NB0.49T is competitive as a more sustainable material with only slightly lower conductivity than 25D5WSB, Figure 2a.

The degradation of \(\sigma_b \) for Sr-doped NB0.49T at various temperatures is shown in Figure 2b. In the temperature range studied (200–500 °C), \(\sigma_b \) shows no appreciable degradation with time apart from a slight depression of conductivity at 300 °C. The degradation can be described by an empirical equation

\[\sigma(t) = \sigma(\infty) + [\sigma(0) - \sigma(\infty)] \exp[-(t/t)^\beta] \]

where t is time, \(\sigma(0) \) is the initial conductivity, \(\sigma(\infty) \) is the conductivity at infinite time, \(\beta \) is a dimensionless parameter, and \(t \) is the pertinent time constant. Fitting of \(\sigma_b-t \) data at 300 °C using Equation 2 gives a \(\sigma(\infty)/\sigma(0) \) of 0.79, Figure 2c, indicating ~80% of \(\sigma_b \) is retained after long-term exposure at 300 °C. The conductivity decay at this temperature may be a consequence of the two-phase coexistence as discussed earlier and further work is ongoing to establish the origin of this low-degradation at ~300 °C. Nevertheless, NB0.49T-based perovskite oxide-ion conductors can achieve high oxide-ion conductivity at low levels of oxygen vacancy concentration.

Figure 2a. Conductivity decay of stabilized \(\beta\)-Bi2O3 at ~500 °C is primarily attributed to the ordering of the oxygen sublattice that can be alleviated by increasing dopant concentration, for example, 25D5WSB shows the best stability and the highest long-term conductivity.

Figure 2b. The conductivity degradation of stabilized \(\beta\)-Bi2O3 at ~500 °C is primarily attributed to the ordering of the oxygen sublattice that can be alleviated by increasing dopant concentration, for example, 25D5WSB shows the best stability and the highest long-term conductivity.
e.g., 0.5% in NB$_{0.49}$T and 0.83% in Sr-doped NB$_{0.49}$T compared to ~25% in δ-Bi$_2$O$_3$ fluorites. This dramatically suppresses the possibility of forming defect clusters or ordering of the anion sublattice, and therefore significantly improves the stability of the bulk conductivity in the important intermediate temperature range of ~400–600 °C for the development of ITSOFCs based on novel electrolytes.

Finally, the chemical stability of Sr-doped NB$_{0.49}$T in reducing atmosphere, which is one of the major problems for Bicontaining materials in developing ITSOFCs, has been investigated. XRD patterns of Sr-doped NB$_{0.49}$T annealed in 5%H$_2$/95%N$_2$ at various temperatures for 12 h are shown in Figure 3a. After annealing at ≥600 °C, an additional peak associated with Bi metal is detected, indicating that decomposition of the material has started to occur. In contrast, no additional reflections were observed in XRD patterns for samples annealed at ≤550 °C. Furthermore, impedance measurements carried out on a pellet annealed at 550 °C in 5%H$_2$ for 12 h showed the bulk response in the μ''–log f plots to be unchanged from those before annealing, Figure 3b. This supports the evidence from XRD that Sr-doped NB$_{0.49}$T is chemically stable and can withstand 550 °C in 5% H$_2$.

Figure 3. (a) XRD patterns of Sr-doped NB$_{0.49}$T pellets after annealing in 5%H$_2$/95%N$_2$ at various temperatures for 12 h; (b) μ''–log f plots for Sr-doped NB$_{0.49}$T before (cross) and after annealing (open circle) in 5%H$_2$/95%N$_2$ at 550 °C for 12 h.

Figure 2. (a) Comparison of bulk conductivity stability at 500 °C for Sr-doped NB$_{0.49}$T and selected Bi-based oxide-ion conductors: red square, Na$_{0.50}$Bi$_{0.47}$Sr$_{0.02}$TiO$_{2.975}$ (NB$_{0.49}$T), this work; grey diamond, Na$_{0.50}$Bi$_{0.49}$TiO$_{2.985}$ (Sr-doped NB$_{0.49}$T), this work; open circle, 8D4WSB; open diamond, 25D5WSB; magenta ×, 20ESB; blue cross, 9D8WSB; green triangle, 8D4WSB; orange open square, 20ESB. (b) Bulk conductivity versus time of Sr-doped NB$_{0.49}$T at selected temperatures. (c) Fitting curve and parameters of the conductivity decay for Sr-doped NB$_{0.49}$T at 300 °C using eq 2. The open circles are experimental data and the red line is the fitting curve.
In conclusion, we report a Sr-doped NB$_{0.57}$T perovskite material that shows excellent ionic conductivity with extremely low levels of degradation and reasonable stability in a 5% H$_2$ reducing atmosphere at ≤550 °C. This demonstrates A-site acceptor doping to be as effective as B-site acceptor doping in enhancing the ionic conductivity of NB$_{0.57}$T. Although first-principles calculations predict A-site acceptor doping to be superior to B-site acceptor doping, results from this work do not support significant superiority of bulk conductivity by A-site acceptor doping. This might be due to the lower polarizability of Sr$_2$O$_2$(4.24 Å3) and higher Sr–O bond strength (454 kJ/mol) compared with that of Bi$_3$(6.12 Å3) and Bi–O (343 kJ/mol), which will also influence the mobility of the oxygen ions.

Compared with the two best known δ-Bi$_2$O$_3$ oxide-ion conductors, 8D4WSB and 20E5SB, Sr-doped NB$_{0.57}$T perovskite shows competitive levels of oxide-ion conductivity at 500 °C with the advantage of insignificant degradation of the bulk conductivity at this temperature and it exhibits much higher bulk conductivity below 300 °C. Sr-doped NB$_{0.57}$T also has an advantage over these δ-Bi$_2$O$_3$ phases as a more sustainable (RE-free) material. Similar behavior is also observed for Ca and Ba-doped NB$_{0.57}$T. Further work is in progress to understand the relationship between phase-coexistence and conductivity between ~250 and 400 °C, as well as to further enhance the conductivity of NB$_{0.57}$T via appropriate chemical doping.
conductors based on the ferroelectric perovskite \(\text{Na}_{0.5}\text{Bi}_{0.5}\text{TiO}_3 \). *Nat. Mater.* 2014, 13, 31–35.

(30) Li, M.; Zhang, H.; Cook, S. N.; Li, L.; Kilner, J. A.; Reaney, I. M.; Sinclair, D. C. Dramatic influence of A-site Nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide \(\text{Na}_{0.5}\text{Bi}_{0.5}\text{TiO}_3 \). *Chem. Mater.* 2015, 27, 629–634.

(31) Dawson, J. A.; Chen, H.; Tanaka, I. Crystal structure, defect chemistry and oxygen ion transport of the ferroelectric perovskite, \(\text{Na}_{0.5}\text{Bi}_{0.5}\text{TiO}_3 \): insights from first-principles calculations. *J. Mater. Chem. A* 2015, 3, 16574–16582.

(32) He, X.; Mo, Y. Accelerate materials design of \(\text{Na}_{0.5}\text{Bi}_{0.5}\text{TiO}_3 \) oxygen ionic conductors based on first principles calculations. *Phys. Chem. Chem. Phys.* 2015, 17, 18035–18044.

(33) Zhang, T.; Hirig, P.; Huang, H.; Kilner, J. A. Ionic conductivity in the \(\text{CeO}_2\text{-Gd}_2\text{O}_3 \) system \((0.05 \leq \text{Gd/Ce} \leq 0.4) \) prepared by oxalate coprecipitation. *Solid State Ionics* 2002, 148, 567–573.

(34) Suchanicz, J.; Kwapulinski, J. X-ray diffraction study of the phase transitions in \(\text{Na}_{0.5}\text{Bi}_{0.5}\text{TiO}_3 \). *Ferroelectrics* 1995, 165, 249–253.

