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Abstract Results from an ensemble of models are used to investigate the response of lightning nitrogen
oxide emissions to climate change and the consequent impacts on ozone production. Most models
generate lightning using a parameterization based on cloud top height. With this approach and a
present-day global emission of 5 TgN, we estimate a linear response with respect to changes in global
surface temperature of +0.44 ± 0.05 TgN K−1. However, two models using alternative approaches give
+0.14 and −0.55 TgN K−1 suggesting that the simulated response is highly dependent on lightning
parameterization. Lightning NOx is found to have an ozone production efficiency of 6.5 ± 4.7 times that
of surface NOx sources. This wide range of efficiencies across models is partly due to the assumed vertical
distribution of the lightning source and partly to the treatment of nonmethane volatile organic compound
(NMVOC) chemistry. Careful consideration of the vertical distribution of emissions is needed, given its large
influence on ozone production.

1. Introduction

Lightning is the dominant source of nitric oxide in the upper troposphere. In this region of the atmosphere,
nitrogen oxides (NOx) are much more efficient at catalyzing ozone production than surface emissions [Wild,
2007; Wu et al., 2007; Dahlmann et al., 2011]. Lightning, driven by meteorological conditions, is expected to
respond to any future changes in climate. Understanding the sensitivity of this response is important for
assessment of future ozone concentrations and associated radiative forcing. In addition, the radiative forc-
ing from methane, which is indirectly influenced by NOx through reactions with OH, is affected by changes
in lightning.

Observational studies suggest that warmer surface temperatures are correlated with increased lightning
across diurnal to interannual time scales, although whether such a relationship also applies to longer-term
climate change remains uncertain [Williams, 2005]. Estimates from climate-chemistry models suggest that
lightning NOx emissions will increase by 4–60% per degree increase in global mean surface temperature
[Schumann and Huntrieser, 2007], with more recent estimates at the lower end of this range [Zeng et al.,
2008; Jiang and Liao, 2013; Banerjee et al., 2014]. There is a gathering concensus on the sensitivity of light-
ning NOx emissions to climate, but this may primarily be due to the similarity of lightning parameterizations
used in most models. One isolated study using an alternative lightning parameterization based on ice par-
ticle collisions [Jacobson and Streets, 2009] found that lightning NOx emissions decreased as temperatures
increased.

The approach used in most global scale models applies to a relationship between cloud top height and light-
ning [Price and Rind, 1992; Price et al., 1997]. This cloud top height relationship provides a reasonable proxy
for lightning activity but has several limitations. These include a high sensitivity to any biases in modeled
cloud top height and a relatively indirect link to the underlying physical processes [Tost et al., 2007; Wong
et al., 2013], which are described by the noninductive charging theory of storms [Reynolds et al., 1957]. Other
parameterizations, related to convection [e.g., Meijer et al., 2001; Allen and Pickering, 2002; Grewe et al., 2001;
Romps, 2014] or cloud ice [e.g., Deierling et al., 2008; Jacobson and Streets, 2009; Finney et al., 2014; Basarab
et al., 2015], have been demonstrated successfully in individual studies but have yet to be widely adopted. To
date there has been little investigation into how these alternative approaches respond to climate change.
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The recent Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) provides lightning
NOx emission (LNOx) distributions from 12 models using three distinct interactive lightning parameterizations
under past, present day, and a range of future emission scenarios [Lamarque et al., 2013]. There are 92 relevant
multiyear time slice experiments to compare to a multiyear baseline centered around the year 2000 (Table S1
in the supporting information), allowing a more complete assessment of lightning sensitivity than has been
possible in any previous study. The availability of three distinct parameterizations allows us to explore how
the choice of parameterization is important for the emission response to climate change. Ten of the models
use the same lightning parameterization based on cloud top height [Price and Rind, 1992], and this allows for
the most rigorous assessment of the climate response of the cloud top height approach to date. A subset of
models, from which ozone production was archived, is then used to explore how these climate-driven changes
in lightning NOx emissions can influence global ozone production.

2. Statistical Methods

A linear regression assumes independence of data points. However, data produced using the same model
share a dependence. To determine robust estimates of the standard errors of regression coefficients when
using a multimodel data set such as in this study, it is appropriate to use a linear mixed effect regression.

Linear mixed effect regressions are extensions of linear regression models which include random effects and
fixed effects [Pinheiro and Bates, 2000; Bolker et al., 2008]. Fixed effects are either numeric or categorical vari-
ables for which interest lies in the specific effects of each category. Random effects are categorical variables
for which the effects of each category can be regarded as being sampled from a larger population of possible
categories, so that interest lies in variation between categories.

In the context of this study, the inclusion of “model” as a random effect allows for differences in model con-
figuration to be accounted for (through random effects) while estimating the role of explanatory variables
(as fixed effects). Both applications of a linear mixed effect regression in this study use a random-slope regres-
sion which determines an individual slope and intercept, the random effect, for each model. The random
slopes and intercepts are assumed to be correlated.

As with a simple linear regression, it is useful to calculate the variance explained by the regression model, the
R2 value. For linear mixed effect models two values of R2 can be calculated: the marginal R2, reflecting the
proportion of the variance explained by fixed effects, and the conditional R2, reflecting the variance explained
by both fixed and random effects (Text S1 in the supporting information) [Nakagawa and Schielzeth, 2013;
Johnson, 2014].

3. Response to Temperature

Generation of thunderstorms is only partly related to the surface temperature and reflects local rather than
global conditions. However, based on past studies, surface temperature provides a simple proxy for changes
in the atmosphere that affect lightning.

Figure 1a shows the relationship between total annual lightning NOx emissions and global mean surface tem-
perature. Each data point is from a single time slice experiment, averaged over multiple years as specified in
Table 2 of Lamarque et al. [2013], where each year has identical anthropogenic and biomass burning emissions.
The data used encompass time slices of the present-day baseline, historical 1850 and 1980 simulations,
and all future scenarios using the Representative Concentration Pathways (RCPs) produced by each model.
A significant linear relationship between LNOx and surface temperature is evident for each model. This is the
first time enough comparable data have been produced from a range of models to allow robust conclusions
regarding the form of the relationship.

Despite the clear conclusion that each model exhibits a linear relationship, Figure 1a shows a substantial
spread between the models. Sources of intermodel spread include the magnitude of the baseline emissions,
which vary from 1.3 to 9.7 TgN yr−1 and differences in the baseline mean surface temperature which ranges
from 286.0 to 288.2 K (see circled points in Figure 1a). We remove these variations by normalizing the base-
line lightning NOx emissions in each model to 5 TgN and consider changes in temperature and lightning NOx

emissions relative to this baseline (Figure 1b). The choice of 5 TgN is based on the best estimate for present-day
emissions [Schumann and Huntrieser, 2007].
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Figure 1. Total annual lightning NOx emissions against global mean surface temperature for the ACCMIP models with
interactive lightning schemes. (a) Absolute global emissions and surface temperatures; (b) changes in lightning NOx
emissions with respect to the year 2000 baseline, normalized to 5 TgN in year 2000, and grouped according to lightning
parameterization. Circled points in Figure 1a are from the year 2000 baseline simulations.

Results from models using the cloud top height (CTH) approach are grouped together. These models show a
consistent linear response of LNOx to temperature once the differences in present-day surface temperature
and global emission totals are adjusted for. A linear mixed effect regression on the data points simulated by
models using the cloud top height approach has been applied. Surface temperature is the regressed fixed
effect, while random effects are a random intercept for each model and a random slope for the interaction
between each model and the effect of surface temperature. All effects considered are significant at the 5%
level, and the regression model has a marginal R2 of 0.82 and a conditional R2 of 0.96.

A robust estimate of the lightning NOx emission climate response of 0.44 ± 0.05 TgN K−1 is found for models
using the cloud top height approach (individual model fits are provided in Table S2). This corresponds to
8.8 ± 1.0%(baseline) K−1, where the uncertainty range represents 1 standard error. This is lower than the
median determined by Schumann and Huntrieser [2007] but similar to recent estimates which have a range
of 5.5–16% K−1 (Text S2 in the supporting information) [Zeng et al., 2008; Jiang and Liao, 2013; Banerjee et al.,
2014]. Differences in the LNOx response among models using the cloud top height approach arise from
differing responses to climate change from convective and microphysical schemes, the vertical resolution
for resolving cloud top height, and structural differences in implementation of the approach. Details of the
lightning parameterization used by each model are described in Text S3 and Table S3.

The ACCMIP data allow for a robust estimate of the sensitivity of the cloud top height approach. However, the
two ACCMIP models using alternative parameterizations provide rather different estimates. The EMAC model
uses a combination of updraft mass flux within the cloud and cloud depth [Grewe et al., 2001] and shows a
much weaker sensitivity (0.14 TgN K−1) than the cloud top approach. The CMAM model uses a parameteriza-
tion based on updraft mass flux at 440 hPa [Allen and Pickering, 2002] and shows the opposite response of a
reduction in LNOx with increasing temperature (−0.55 Tg K−1).

The various responses described above for each parameterization fundamentally depend on the changes in
convection simulated by the models. It is possible that these two models are anomalous in their responses
to climate change for convection. Further investigation of convection in the different models or application
of different parameterizations would be needed to establish this. However, it is unlikely that the models with
different lightning parameterizations also have anomalous convection responses and therefore we suggest
that the lightning parameterizations are the source of the different responses seen. It is also possible that
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changes in cloud top height differ somewhat from changes in the intensity of convective updrafts. Stevenson
et al. [2005] and Banerjee et al. [2014] have found that in some locations the occurrence of deep convection
decreases under climate change but that the depth increases. Our findings suggest that it is vital to determine
whether the cloud top height approach provides the most appropriate representation of lightning or whether
a greater diversity of lightning parameterizations is needed. Uncertainty remains as to whether lightning NOx

emissions will increase or decrease in the future.

4. Spatial Variation of Response to Temperature

The impacts of LNOx on atmospheric chemistry and radiative forcing are dependent on the spatial distribution
of emissions as well as the global total [Liaskos et al., 2015; Finney et al., 2016]. We consider here the spatial
distribution of LNOx and change in LNOx between present day and future, and whether there is anomalous
behavior underlying the distributions.

Figures 2a–2c shows the mean baseline (year 2000) distribution of lightning NOx emissions from eight models
using the cloud top height approach for which spatial distributions of emissions are available, as well as from
each of the models using alternative schemes. The emission distributions of all three approaches represent,
to a reasonable extent, the climatological distribution of lightning flash rate provided by the Lightning
Imaging Sensor and Optical Transient Detector [Cecil et al., 2014]. In particular, they show lightning NOx emis-
sion peaks in tropical continental locations and lower values toward the poles and over the oceans. The
distributions of change in surface temperature (Figure S4) and precipitation (Figure S5) between the present
day and year 2100 using the RCP8.5 scenario are shown in the supporting information. CMAM and EMAC do
not simulate anomalous temperature or precipitation changes compared to the other ACCMIP models. The
robustness of these two models, which use alternative lightning parameterizations, among the other ACCMIP
models regarding these three variables gives confidence that they are not outliers in terms of their broad
representation of climate change.

Figures 2d–2f show the absolute changes in lightning NOx emissions between the present day and year 2100
using the RCP8.5 scenario for each type of lightning parameterization. As with the global total LNOx changes
in Figure 1, the three approaches represent largely positive (Figure 2d), mixed (Figure 2e), and largely negative
changes (Figure 2f ). From all three approaches, it is clear that changes in LNOx under future climate change
are nonuniform. The largest absolute changes typically occur where there are highest baseline lightning NOx

emissions and the sign of these changes are generally consistent with the sign of global total LNOx changes
found with each lightning parameterization.

The percentage changes in lightning NOx emissions between the present day and year 2100 using the RCP8.5
scenario are shown in Figures 2g–2i. The changes in the models using alternative schemes appear more noisy.
This is partly due to averaging over a number of models that use CTH (Figure 2g), but even compared to
individual model simulations of LNOx based on cloud top height the alternative schemes produce a more
heterogeneous response (Figure S3). The cloud top height will be partly limited by the tropopause which will
vary smoothly and, therefore, may lead to smoothness in the simulated LNOx distribution by models using
the CTH approach.

Percentage changes between present day and future are generally large over ocean as well as over land.
Most of the globe experiences changes of >10%. While absolute changes in LNOx are small away from domi-
nant source regions, the percentage changes are larger away from high-emission regions. Such large relative
changes may be important in remote locations where there are few other sources of NOx .

There is agreement between the different schemes on the sign of the change in some locations which can be
seen in Figures 2g–2i. Mostly, these are located in the midlatitudes. Increases in LNOx in the Northwest Atlantic
and Pacific suggest an increase in lightning activity within northern midlatitude storms or a shift in location of
the storm tracks. Decreases in the Southeast Pacific are consistent with significant drying reported in the IPCC
AR5 report by Collins et al. [2013, Figure 12.22]. Collins et al. [2013] indicated significantly increased rainfall in
Russia and eastern Canada in the year 2100 under RCP8.5, corresponding to increases in LNOx in Figures 2g–2i,
thereby suggesting that the changes in rainfall in these regions correspond to changes in the frequency or
intensity of thunderstorms. There are many other locations where changes in lightning NOx emissions do
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Figure 2. Annual vertically integrated lightning NOx emission distribution for the year 2000 baseline, and absolute and
percentage change with respect to RCP8.5 year 2100. Annual emissions for year 2000 baseline are normalized to 5 TgN
for all models with the same normalization factors applied to year 2100 RCP8.5 emissions. Shown are (a–c) the baseline
distributions for year 2000, (d–f ) the absolute changes in distribution for the year 2100 RCP8.5 experiments, and (g–i)
the equivalent percentage changes. The left column plots are the mean of eight models using the cloud top height
approach. The middle and right column plots are the individual results for the EMAC and CMAM models, respectively.
Mean values are calculated after scaling and regridding all models to a common resolution (5∘ × 5∘). In Figure 2g the
greyed cells represent grid cells in which there is not at least five models that estimate the same sign of change.

not correspond to similar changes in precipitation. The nonuniformity of these changes in lightning is an
important argument for using interactive lightning schemes that are not constrained spatially by present-day
observations.

5. Ozone Production

Ozone is sensitive to a large number of variables influenced by climate change and so it is difficult to
attribute changes in ozone concentration directly to changes in lightning NOx emissions. Changes in
temperature, humidity, deposition, other ozone precursor emissions, and stratosphere-troposphere exchange
all contribute to changes in ozone [Fiore et al., 2012; Doherty et al., 2013; Young et al., 2013]. The most direct
impact of lightning NOx emissions on ozone is through chemical production. Based on model sensitivity
studies, Wild [2007] found that an increase in LNOx produced ∼3 times more global tropospheric ozone pro-
duction per Tg(N) than an increase in surface NOx emissions. Using alternative methods, Wu et al. [2007] and
Dahlmann et al. [2011] found that LNOx produced 6 and 5 times more ozone that surface NOx , respectively.
This disproportionately large effect is due to lightning NOx emission in the middle and upper troposphere
where temperatures are cooler, NOx and ozone have longer lifetimes, and where ozone production efficiency
is high.

Tropospheric ozone chemical production fluxes were archived from a subset of six models during ACCMIP.
Relevant emission variables from all time slices and scenarios (Table S1) are used here to perform a linear
mixed effect regression to describe global tropospheric ozone production. Fixed effects for lightning NOx ,
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surface NOx , CO and NMVOC emissions, and the methane tropospheric burden were included within the initial
mixed effect regression, along with random effects for “model” and for the interaction between model and
the effect of lightning. The surface NOx variable includes NOx emissions from aircraft, but these are less than
2% of the total emissions and we assume that their effects are small.

A stepwise selection process, based on the Akaike information criteria (AIC) [Burnham and Anderson, 2002],
was used to identify whether the initial regression model could be simplified, and this led to NMVOC emissions
and CO emissions being removed. The remaining explanatory variables all have significant coefficients with
p < 0.05. The model has a marginal R2 of 0.57 and a conditional R2 of 0.99. An equation for the fitted linear
model is given by

P̂ = 104(±37)ELNOx
+ 16.0(±0.9)Esurf NOx

+ 0.0793(±0.0104)BCH4
− 1.85(±14.74) + U1,mELNOx

+ U2,m (1)

where P̂ is the estimated global tropospheric ozone production (mol(O3) yr−1), ELNOx
and Esurf NOx

are emissions
of lightning NOx and surface NOx (mol(N) yr−1), and BCH4

is methane tropospheric burden (mol(CH4)). Ranges
given in equation (1) are the standard errors associated with each coefficient. The random model slope, U1,m,
represents an adjustment to the fixed lightning effect, and the random model intercept, U2,m, an adjustment
to the regressed intercept, for each model, m. There are six models and therefore U1 and U2 are each a vector
of six values. The mean of the values of any random effect, U, is zero. The standard deviations of the values of
U1,m and U2,m are 75 and 28, respectively.

The coefficients of equation (1) represent the number of moles of ozone produced for each mole of the
species, i.e., the ozone production efficiency (OPE). For example, the OPE associated with surface NOx sources
is 16 mol(O3) mol−1(N). The underlying fixed LNOx effect found in the regression is 6.5 times larger than that
of surface NOx sources, similar to that found by Wu et al. [2007] and Dahlmann et al. [2011], and representing
a disproportionally larger efficiency of LNOx in producing ozone.

It is important to consider the size of the emissions or burden in combination with regression coefficients to
fully understand the context of the statistical regression results. By applying the regressed ozone production
efficiencies of equation (1) for ELNOx

including the random slopes, Esurf NOx
and BCH4

, to the emissions in each
time slice experiment, we can attribute a proportion of the estimated ozone production to each of the indi-
vidual effects. There are 50 time slice experiments used (summarized in Table S1). The mean and range for the
three effects are as follows: ELNOx

41% (3–78%), Esurf NOx
38% (12–68%), and BCH4

21% (9–51%). These results
show that the three effects, at least for the range of experiments in ACCMIP, produce similar amounts of ozone,
with CH4 generally producing less ozone and with a wider range of contributions to ozone production from
LNOx across the experiments.

6. Causes of Variability in Ozone Production Efficiency

The regression model described by equation (1) provides a means to remove the estimated ozone produc-
tion by species other than LNOx and therefore study the production by LNOx alone. In addition, the random
slope values, U1,m, determined in the regression can either be removed to see the estimated underlying
ozone production from LNOx across models or included to see the estimated ozone production from LNOx in
each model. These components of ozone production are shown by the partial residuals of ozone production
against LNOx in Figures 3a and 3b.

The partial residual is the actual ozone production with the estimated ozone production of some terms in the
regression removed. Figure 3a is the conditional partial residual of ozone production with respect to lightning
NOx emissions, 𝜖1, i.e., the general relationship across models given by the fixed effect of ELNOx

in equation (1)
and described by equation (2):

𝜖1 = P̂ − 16.0Esurf NOx
− 0.0793BCH4

− 1.85 − U1,mELNOx
− U2,m (2)

Figure 3b shows the individual model relationships between ozone production and LNOx , 𝜖2, i.e., the com-
bination of the fixed effect, ELNOx

and individual random slopes, U1,m. This partial residual is described by
equation (3):

𝜖2 = P̂ − 16.0Esurf NOx
− 0.0793BCH4

− 1.85 − U2,m (3)
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Figure 3. Tropospheric ozone production from lightning NOx emissions and the role of NMVOC emissions and the
vertical distribution of lightning NOx emissions. (a) “General ozone production from LNOx” is a partial residual with
respect to LNOx described by equation (2). (b) “Individual model ozone production from LNOx” is a partial residual with
respect to LNOx described by equation (3). The text in Figure 3b for each model is, from top to bottom, the ozone
production efficiency (OPE) from LNOx , the percentage of baseline lightning NOx emissions in the middle and upper
troposphere [500–100 hPa], and the mean NMVOC emissions. (c) The baseline global LNOx vertical distribution.
The MIROC model is not included in Figure 3c because the emission distribution was not archived. For Figure 3c,
values of pressure are based on a uniform 1000 hPa surface pressure, and annual lightning NOx emissions
are normalized to 5 TgN.

These partial residuals demonstrate the effect of lightning NOx emissions and clearly reveal the differences in

OPE between the models.

The vertical distribution of LNOx differs greatly between the models, as shown in Figure 3c. Vertical distri-

bution methods are based upon modeled updrafts, prescribed distributions [Pickering et al., 1998; Ott et al.,

2010], or air density [Goldenbaum and Dickerson, 1993; Stockwell et al., 1999; Jourdain and Hauglustaine, 2001].

The LNOx vertical distribution method used by each model in ACCMIP is given in Table S3.

The proportion of lightning NOx emission in the middle and upper troposphere (500–100 hPa) and the gra-

dient (OPE) for each individual model determined by the mixed effect regression are presented in Figure 3b.

Although there are relatively few models, there is a direct relationship between the amount of ozone in the

middle and upper troposphere and the OPE of lightning. An exception is the CMAM model which has a rela-

tively weak relationship between ozone production and LNOx and a low OPE. It would require a targeted study

to identify the cause of this difference, but we note that CMAM does not include NMVOC chemistry, repre-

senting this instead through extra CO emissions. The majority of NMVOC emissions are in the form of biogenic

emissions and are high over tropical rainforests where lightning activity is also high. It is possible that the

combined emissions of NMVOC and LNOx increase OPE in these regions through a greater radical pool. CMAM

also has a different spatial distribution of the response of LNOx to climate change compared to other models.

Changes in regions of lower ozone production may contribute to a weaker relationship between ozone

production and LNOx .

The considerations above encourage further research to understand variability among models. LNOx and

OPE will have seasonal and regional responses to climate change which have not been investigated here.

Furthermore, research into the effect on OPE of LNOx being concentrated within convective outflow plumes

would be valuable, given that this feature is not captured by the resolutions of ACCMIP models. Dedicated

sensitivity simulations within a climate-chemistry model would allow quantification of the role of the verti-

cal emission distribution of lightning NOx and the representation of NMVOCs on the OPE of LNOx . This would

permit these effects to be isolated and allow determination of the contribution of LNOx differences to the

intermodel variation of OPE in Figure 3b. The standard deviation of individual model estimates of OPE can be

used as a proxy for the uncertainty on the fixed LNOx effect discussed in section 5, suggesting that the OPE

of LNOx is 6.5 ± 4.7 times that of surface NOx sources.
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7. Conclusions

The large data set of model results archived for ACCMIP has allowed a rigorous analysis of the climate sen-
sitivity of lightning NOx emissions for models using the cloud top height parameterization of Price and Rind
[1992]. This parameterization is widely used and performs very similarly across models with a positive linear
response of 0.44 ± 0.05 TgN K−1 for a baseline annual emission of 5 TgN. Two models using different param-
eterizations of lightning simulate a weaker and an opposite climate response of lightning NOx emissions.
Therefore, despite the important role that lightning NOx emission plays in ozone chemistry, it is clear from
the two ACCMIP models using alternative lightning schemes that there cannot be complete confidence in
the magnitude or even sign of the lightning NOx emission sensitivity to climate change. While there is agree-
ment among the three parameterizations in a few locations regarding the projected spatial change of LNOx

in future, generally this is as uncertain as the global changes.

There is no indication that the models using alternative schemes are outliers in terms of their representation of
surface temperature or precipitation change. We therefore conclude that the different responses of lightning
to climate change are due to the use of different lightning parameterizations. Studies establishing the climate
sensitivity of multiple lightning parameterizations within the same model are needed to confirm whether the
results here solely reflect the different parameterizations. The cloud top height approach has been well char-
acterized in this study thereby providing a useful reference point in understanding the behavior of alternative
schemes. We therefore suggest that climate-chemistry modeling groups consider additional simulations with
alternative lightning schemes, as a greater diversity of schemes would help advance our understanding of
uncertainties in the response of lightning NOx to climate change and its subsequent effects on ozone.

Uncertainty in the climate response of lightning will undoubtedly lead to uncertainty in the changes in ozone
production from LNOx . The tropospheric ozone production from LNOx and other sources has been quantified
using the data from a selection of models in ACCMIP. The results suggest that lightning NOx emissions are
6.5±4.7 times more efficient than surface NOx sources at producing ozone in the troposphere. The method for
distributing emissions vertically as well as the treatment of emissions of NMVOCs appear to be responsible for
at least some of this variability in ozone production efficiency from lightning. Therefore, direct determination
of the role of the vertical LNOx distribution for ozone production is necessary before a consistent approach
among models can be developed.

References
Allen, D. J., and K. E. Pickering (2002), Evaluation of lightning flash rate parameterizations for use in a global chemical transport model,

J. Geophys. Res., 107(D23), 4711, doi:10.1029/2002JD002066.
Banerjee, A., A. T. Archibald, A. C. Maycock, P. Telford, N. L. Abraham, X. Yang, P. Braesicke, and J. A. Pyle (2014), Lightning NOx , a key

chemistry-climate interaction: Impacts of future climate change and consequences for tropospheric oxidising capacity, Atmos. Chem.
Phys., 14, 9871–9881, doi:10.5194/acp-14-9871-2014.

Basarab, B. M., S. A. Rutledge, and B. R. Fuchs (2015), An improved lightning flash rate parameterization developed from Colorado DC3
thunderstorm data for use in cloud-resolving chemical transport models, J. Geophys. Res. Atmos., 120, 9481–9499,
doi:10.1002/2015JD023470.

Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, and J.-S. S. White (2008), Generalized linear mixed models:
A practical guide for ecology and evolution, Trends Ecol. Evol., 24(3), 127–135, doi:10.1016/j.tree.2008.10.008.

Burnham, K. P., and D. R. Anderson (2002), Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, Springer,
New York.

Cecil, D. J., D. E. Buechler, and R. J. Blakeslee (2014), Gridded lightning climatology from TRMM-LIS and OTD: Dataset description,
Atmos. Res., 135–136, 404–414, doi:10.1016/j.atmosres.2012.06.028.

Collins, M., et al. (2013), Long-term climate change: Projections, commitments and irreversibility, in Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by T. F. Stocker et al., pp. 1029–1136, Cambridge Univ. Press, Cambridge, U. K., and New York,
doi:10.1017/CBO9781107415324.024.

Dahlmann, K., V. Grewe, M. Ponater, and S. Matthes (2011), Quantifying the contributions of individual NOx sources to the trend in ozone
radiative forcing, Atmos. Environ., 45(17), 2860–2868, doi:10.1016/j.atmosenv.2011.02.071.

Deierling, W., W. A. Petersen, J. Latham, S. Ellis, and H. J. Christian (2008), The relationship between lightning activity and ice fluxes in
thunderstorms, J. Geophys. Res., 113, D15210, doi:10.1029/2007JD009700.

Doherty, R. M., et al. (2013), Impacts of climate change on surface ozone and intercontinental ozone pollution: A multi-model study,
J. Geophys. Res. Atmos., 118, 3744–3763, doi:10.1002/jgrd.50266.

Finney, D. L., R. M. Doherty, O. Wild, H. Huntrieser, H. C. Pumphrey, and A. M. Blyth (2014), Using cloud ice flux to parametrise large-scale
lightning, Atmos. Chem. Phys., 14(12), 12,665–12,682, doi:10.5194/acp-14-12665-2014.

Finney, D. L., R. M. Doherty, O. Wild, and N. L. Abraham (2016), The impact of lightning on tropospheric ozone chemistry using a new global
parametrisation, Atmos. Chem. Phys. Discuss., 16, 1–28, doi:10.5194/acp-2016-59.

Fiore, A. M., et al. (2012), Global air quality and climate, Chem. Soc. Rev., 41(19), 6663–6683, doi:10.1039/c2cs35095e.
Goldenbaum, G. C., and R. R. Dickerson (1993), Nitric oxide production by lightning discharges, J. Geophys. Res., 98(D10), 18,333–18,338.

Acknowledgments
Declan Finney was supported by a
Natural Environment Research Council
grant NE/K500835/1. Adam Butler’s
contribution was supported by the
Rural and Environment Science and
Analytical Services (RESAS) Division of
the Scottish Government. We thank
model groups contributing to ACCMIP
for use of their data, in particular,
David Plummer for discussions
regarding CMAM. Access to the
ACCMIP data set can be requested
from the British Atmospheric Data
Centre. We are grateful to Oliver Binks
and Claudia Steadman for discussions
regarding mixed effects models.

FINNEY ET AL. LIGHTNING, OZONE AND CLIMATE CHANGE 5499

http://dx.doi.org/10.1029/2002JD002066
http://dx.doi.org/10.5194/acp-14-9871-2014
http://dx.doi.org/10.1002/2015JD023470
http://dx.doi.org/10.1016/j.tree.2008.10.008
http://dx.doi.org/10.1016/j.atmosres.2012.06.028
http://dx.doi.org/10.1017/CBO9781107415324.024
http://dx.doi.org/10.1016/j.atmosenv.2011.02.071
http://dx.doi.org/10.1029/2007JD009700
http://dx.doi.org/10.1002/jgrd.50266
http://dx.doi.org/10.5194/acp-14-12665-2014
http://dx.doi.org/10.5194/acp-2016-59
http://dx.doi.org/10.1039/c2cs35095e


Geophysical Research Letters 10.1002/2016GL068825

Grewe, V., D. Brunner, M. Dameris, J. Grenfell, R. Hein, D. Shindell, and J. Staehelin (2001), Origin and variability of upper tropospheric
nitrogen oxides and ozone at northern mid-latitudes, Atmos. Environ., 35, 3421–3433, doi:10.1016/S1352-2310(01)00134-0.

Jacobson, M. Z., and D. G. Streets (2009), Influence of future anthropogenic emissions on climate, natural emissions, and air quality,
J. Geophys. Res., 114, D08118, doi:10.1029/2008JD011476.

Jiang, H., and H. Liao (2013), Projected changes in NOx emissions from lightning as a result of 2000–2050 climate change, Atmos. Oceanic
Sci. Lett., 6(5), 284–289, doi:10.3878/j.issn.1674-2834.13.0042.1.

Johnson, P. C. (2014), Extension of Nakagawa and Schielzeth’s R2 GLMM to random slopes models, Methods Ecol. Evol., 5, 944–946,
doi:10.1111/2041-210X.12225.

Jourdain, L., and D. A. Hauglustaine (2001), The global distribution of lightning NOx simulated on-line in a general circulation model,
Phys. Chem. Earth Part C, 26(8), 585–591.

Lamarque, J.-F., et al. (2013), The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and description
of models, simulations and climate diagnostics, Geosci. Model Dev., 6(1), 179–206, doi:10.5194/gmd-6-179-2013.

Liaskos, C. E., D. J. Allen, and K. E. Pickering (2015), Sensitivity of tropical tropospheric composition to lightning NOx production as
determined by the NASA GEOS-Replay model, J. Geophys. Res. Atmos., 120, 8512–8534, doi:10.1002/2014JD022987.

Meijer, E., P. van Velthoven, D. Brunner, H. Huntrieser, and H. Kelder (2001), Improvement and evaluation of the parameterisation of nitrogen
oxide production by lightning, Phys. Chem. Earth Part C, 26(8), 577–583, doi:10.1016/S1464-1917(01)00050-2.

Nakagawa, S., and H. Schielzeth (2013), A general and simple method for obtaining R2 from generalized linear mixed-effects models,
Methods Ecol. Evol., 4(2), 133–142, doi:10.1111/j.2041-210x.2012.00261.x.

Ott, L. E., K. E. Pickering, G. L. Stenchikov, D. J. Allen, A. J. DeCaria, B. Ridley, R.-F. Lin, S. Lang, and W.-K. Tao (2010), Production of lightning
NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations, J. Geophys. Res.,
115, D04301, doi:10.1029/2009JD011880.

Pickering, K. E., Y. Wang, W.-K. Tao, C. Price, and J.-F. Muller (1998), Vertical distributions of lightning NOx for use in regional and global
chemical transport models, J. Geophys. Res., 103(D23), 31,203–31,216.

Pinheiro, J. C., and D. M. Bates (2000), Mixed-Effects Models in S and S-PLUS, Springer, New York.
Price, C., and D. Rind (1992), A simple lightning parameterization for calculating global lightning distributions, J. Geophys. Res., 97(D9),

9919–9933, doi:10.1029/92JD00719.
Price, C., J. Penner, and M. Prather (1997), NOx from lightning 1. Global distribution based on lightning physics, J. Geophys. Res., 102(D5),

5929–5941.
Reynolds, S. E., M. Brook, and M. F. Gourley (1957), Thunderstorm charge separation, J. Meteorol., 14, 426–436.
Romps, D. M. (2014), Projected increase in lightning strikes in the United States due to global warming, Science, 346(6211), 851–854,

doi:10.1126/science.1259100.
Schumann, U., and H. Huntrieser (2007), The global lightning-induced nitrogen oxides source, Atmos. Chem. Phys., 7, 3823–3907,

doi:10.5194/acpd-7-2623-2007.
Stevenson, D., R. Doherty, M. Sanderson, C. Johnson, B. Collins, and D. Derwent (2005), Impacts of climate change and variability on

tropospheric ozone and its precursors, Faraday Discuss., 130, 41–57, doi:10.1039/b417412g.
Stockwell, D. Z., C. Giannakopoulos, P. H. Plantevin, G. D. Carver, M. P. Chipperfield, K. S. Law, J. A. Pyle, D. E. Shallcross, and

K. Y. Wang (1999), Modelling NOx from lightning and its impact on global chemical fields, Atmos. Environ., 33, 4477–4493,
doi:10.1016/S1352-2310(99)00190-9.

Tost, H., P. Jöckel, and J. Lelieveld (2007), Lightning and convection parameterisations—Uncertainties in global modelling, Atmos. Chem.
Phys., 7(3), 4553–4568, doi:10.5194/acpd-7-6767-2007.

Wild, O. (2007), Modelling the global tropospheric ozone budget: Exploring the variability in current models, Atmos. Chem. Phys., 7,
2643–2660, doi:10.5194/acp-7-2643-2007.

Williams, E. (2005), Lightning and climate: A review, Atmos. Res., 76(1–4), 272–287, doi:10.1016/j.atmosres.2004.11.014.
Wong, J., M. C. Barth, and D. Noone (2013), Evaluating a lightning parameterization based on cloud-top height for mesoscale numerical

model simulations, Geosci. Model Dev., 6, 429–443, doi:10.5194/gmd-6-429-2013.
Wu, S., L. J. Mickley, D. J. Jacob, J. A. Logan, R. M. Yantosca, and D. Rind (2007), Why are there large differences between models in global

budgets of tropospheric ozone?, J. Geophys. Res., 112, D05302, doi:10.1029/2006JD007801.
Young, P. J., et al. (2013), Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate

Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, 2063–2090, doi:10.5194/acp-13-2063-2013.
Zeng, G., J. A. Pyle, and P. J. Young (2008), Impact of climate change on tropospheric ozone and its global budgets, Atmos. Chem. Phys., 8(2),

369–387, doi:10.5194/acp-8-369-2008.

FINNEY ET AL. LIGHTNING, OZONE AND CLIMATE CHANGE 5500

http://dx.doi.org/10.1016/S1352-2310(01)00134-0
http://dx.doi.org/10.1029/2008JD011476
http://dx.doi.org/10.3878/j.issn.1674-2834.13.0042.1
http://dx.doi.org/10.1111/2041-210X.12225
http://dx.doi.org/10.5194/gmd-6-179-2013
http://dx.doi.org/10.1002/2014JD022987
http://dx.doi.org/10.1016/S1464-1917(01)00050-2
http://dx.doi.org/10.1111/j.2041-210x.2012.00261.x
http://dx.doi.org/10.1029/2009JD011880
http://dx.doi.org/10.1029/92JD00719
http://dx.doi.org/10.1126/science.1259100
http://dx.doi.org/10.5194/acpd-7-2623-2007
http://dx.doi.org/10.1039/b417412g
http://dx.doi.org/10.1016/S1352-2310(99)00190-9
http://dx.doi.org/10.5194/acpd-7-6767-2007
http://dx.doi.org/10.5194/acp-7-2643-2007
http://dx.doi.org/10.1016/j.atmosres.2004.11.014
http://dx.doi.org/10.5194/gmd-6-429-2013
http://dx.doi.org/10.1029/2006JD007801
http://dx.doi.org/10.5194/acp-13-2063-2013
http://dx.doi.org/10.5194/acp-8-369-2008

	Abstract
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


