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Wedevelopa statistical-mechanicalmodel ofone-dimensionalnormalgraingrowth thatdoesnot require any
drift-velocity parameterization for grain size, suchasused in the continuityequationof traditionalmean-field
theories. The model tracks the population by considering grain sizes in neighbour pairs; the probability of a
pair having neighbours of certain sizes is determined by the size-frequency distribution of all pairs. Accord-
ingly, the evolution obeys a partial integro-differential equation (PIDE) over ‘grain size versusneighbour grain
size’ space, so that the grain-size distribution is a projection of the PIDE's solution. This model, which is
applicable before as well as after statistically self-similar grain growth has been reached, shows that the
traditional continuity equation is invalid outside this state. During statistically self-similar growth, the PIDE
correctly predicts the coarsening rate, invariant grain-size distribution and spatial grain size correlations
observed in direct simulations. The PIDE is then reducible to the standard continuity equation, andwe derive
an explicit expression for the drift velocity. It should be possible to formulate similar parameterization-free
models of normal grain growth in two and three dimensions.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Normal grain growth (NGG) refers to the gradual increase of the
mean grain or crystal size x of a polycrystalline material, as grain-
boundary motion causes larger grains to consume smaller grains
and small grains to be eliminated. For over five decades, NGG has
been studied as a fundamental process affecting texture evolution
in metals and geological materials [1,2], and more broadly in
connection with coarsening dynamics (e.g. soap-bubble growth) in
various physical, social and biological systems; e.g. [3e6]. It is
observed that, at large time t, NGG obeys the growth law

x � ðCtÞm (1)

(where the grain-growth exponent m and bulk growth rate C are
positive constants), with the frequency distribution n(x, t) of the
grain size x tending to a statistically quasi-stationary, or ‘invariant’,
self-similar state. For NGG in two- and three-dimensional (2D and
3D) polycrystals with uniform grain boundaries, whose migration
rate is curvature-driven, a parabolic growth law with m ¼ 1/2 has
been established through theoretical considerations [7,8] and nu-
merical simulations (e.g. [9e12]), and finds support also from
lsevier Ltd. This is an open access
laboratory experiments [13] (see discussion in Ref. [1]).
Statistical mean-field theories have been instrumental for

explaining how such coarsening arises from grain-scale kinetics un-
der the space-filling constraints that grains do not overlap and no
voids appear as grain boundaries move. These theories describe the
process by regarding each grain as embedded in the mean environ-
ment of the population [1]. In the Hillert-Mullins -type “driftmodels”
[14,15], the grain-size distribution n obeys the continuity equation

vn
vt

þ v

vx
ðvnðx; tÞÞ ¼ 0; (2)

where the drift velocity v (¼ dx/dt) represents grain exchange be-
tween different sizes. One would expect that, in a grain system
where the rules of grain-boundary migration and associated to-
pological reorganization are all known or prescribed, the evolution
can be tracked by a ‘complete’ statistical-mechanical model based
on nothing besides the rules, i.e. not involving extraneous as-
sumptions or approximations informed by the actual outcomes of
the NGG dynamics. This means that, if Eq. (2) is a valid model, then
a self-contained recipe for the velocity v ought to exist (and
hopefully can be found). However, as outlined below, all current
models invoke some kind of parameterization for v: thus there is a
knowledge gap.
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1 Many valid models describing complex phenomena without resorting to pa-
rameterizations have not yielded to analytical solution.
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The purpose of this paper is to provide a mean-field model for
NGG in 1D that is complete in the above sense. The model takes the
form of a partial integro-differential equation (PIDE), not a partial
differential equation. We detail its derivation, explore its relation-
ship with Eq. (2) and compare its predictions to direct simulations
of the system. As Mullins [15] explained, Eq. (2) stems from a
Fokker-Planck formulation and contains no diffusion term (unlike
as envisaged in Louat's model [16]) when the growth process is
dominated by curvature-driven grain boundary motion rather than
stochastic switching events in grain size or network topology. Our
work tackles the same regime.

Hillert's [14] original parameterization for the drift velocity is

v ¼ ak
�
1
xc

� 1
x

�
; (3)

where xc is a time-varying critical grain size (f x), k is the product
of grain-boundary energy and mobility, and a is an order-one
parameter that varies with the number of spatial dimensions in
the system. Eq. (3) summarizes the tendency that grains larger than
xc grow and smaller than xc shrink; it assigns a single drift velocity
to grains of equal size, even though such grains are neighboured by
grains of different sizes so they do not grow or shrink at the same
rate. By using techniques of the Lifshitz-Slyozov-Wagner [17,18]
theory for coarsening dynamics in solid solutions, Hillert pre-
dicted long-time parabolic growth with Eqs. (2) and (3) and
calculated the corresponding invariant grain-size distribution.
However, since his work, shortcomings of the model has spurred
many ‘modified’ mean-field models seeking to improve the
parameterization. A first key shortcoming is that Hillert's invariant
grain-size distribution mismatches the invariant distributions
found in direct 2D and 3D simulations; e.g. [9e11,19,20]. A second
issue, exposed also by simulations, is that “spatial grain size cor-
relations” develop as NGG occurs [21e23], with small grains
becoming neighboured by more large grains than expected from
n(x, t) (which is not surprising because the former grains have lost
material to the latter), and large grains neighboured by more small
grains than expected from n(x, t) (the former grains have gained
material from the latter). This finding conflicts with the idea behind
Eq. (3) that different-sized grains evolve under the same environ-
ment. Approaches to modify Hillert's drift-velocity parameteriza-
tion include: (i) pre-multiplying 1/xc in Eq. (3) by an empirically-
tuned function f(x/xc) so that the effective critical grain size xc/f
varies with x to mimic observed neighbour-size correlations
[21,22,24]; and (ii) using topological considerations to formulate
alternative functions to link v to the reduced grain size x/x (e.g.
[25e30]). Some of the latter approaches deduce the rate of grain
area/volume evolution by accounting for the topological class
(number of sides) of the grains (e.g. [30]) and invoke the von
NeumanneMullins 2D growth law [31,32] or its 3D extension [33].
Still other models track the grain-size distributions in different
topological classes with separate continuity equations [34,35],
although they are not usually considered as being of Hillert-Mullins
type. We do not review the large number of modified Hillert the-
ories here but point the reader to the paper by Ref. [36] for further
background. Crucially, all modified theories contain adjustable
parameters/coefficients that are determined through fitting to the
observed dynamics (typically the invariant grain-size distribution).
The model derived in this paper has no such necessity.

We seevalue in investigating aparameterization-free theory. The
modified Hillert theories have engendered a tradition of invoking
parameterizations to “close” the mean-field description. Such
approach is useful because an ansatz posed for the resulting model
often yields an analytical solution that can be evaluated straight-
forwardly for the invariant grain-size distribution. But
parameterizations sacrifice physical understanding of the phe-
nomenon, as the basis of some parameters involved remains
incompletely known (their values do not derive from first princi-
ples), and both themodel and its fit to the observed invariant grain-
size distribution are ultimately approximate. The choice of param-
eterization is also not unique; more parameters could mean higher
degrees of freedom for empirical fitting, and different parameteri-
zations can predict parabolic growth with near-identical-looking
invariant n(x,t). Some modified theories even assume self-
similarity for n as a starting condition. As we shall see, our PIDE
model has none of these limitations and captures collaborative
grain-growth dynamics to a sophisticated level: it predicts the
observed neighbour grain-size correlations, similarity scaling,
invariant grain-size distribution, and relationship between k and the
bulk growth rate C without parameter tuning. The PIDE also tracks
system evolution outside the self-similar state. It is not analytically
solvable by us so far, but this does not mean it is invalid or inap-
propriate.1 We are not suggesting that a ‘complete’ formulation is
superior to the Hillert-based approximatemodels, but rather it is an
essential part of our knowledge of NGG. Note that our model treats
NGG in one dimension only. However, the insights gained from it
suggest there is hope for completemean-field formulations for NGG
in 2D and 3D, despite vastly increased topological complexities. We
consider this avenue briefly at the end of the paper.

2. Model

2.1. One-dimensional NGG system

Fig. 1a shows our system, in which a large population of linear
crystals/grains, whose sizes we denote by x (> 0), participates in
NGG. Following previous work [37,21,24] we assume (by analogy to
curvature-driven kinetics in 2D/3D) that each grain boundary be-
tween adjacent grains migrates into the smaller grain at a speed
proportional to the difference between their size reciprocals 1/x.
Thus a grain of size x0 having left and right neighbours sized x1L and
x1R (respectively) grows at the instantaneous rate

_x0 ¼ k
��

1
x1R

� 1
x0

�
�
�
1
x0

� 1
x1L

��
; (4)

where k (constant) has the same meaning as in Eq. (3). A grain
vanishes when two grain boundaries merge. Although this
analogue system is an idealization as there are no curved grain
boundaries in 1D, its reduced geometrydgrains always having two
sides, the only switching events being grain-boundary mer-
gingdaids our goal of seeking analytical understanding. (In this
regard, even 2D models of NGG lose some of the topological
complexity of NGG in 3D.) Moreover, as found by Refs. [21,24] and
confirmed by our direct kinetic simulations (Fig. 1bee), the 1D
system displays the essential properties of NGG behaviour: its grain
population coarsens following parabolic growth and attains an
invariant self-similar n(x, t) at large time (Fig. 1bee).

Spatial grain size correlations occur in this 1D system also, as
reported by Hunderi and his colleagues [21,24]. These authors put
forward a modified Hillert model using Approach (i) described in
the Introduction, i.e.

v ¼ 2k
�
f ðx=xcÞ

xc
� 1

x

�
; (5)



Fig. 1. (a) 1D system of interacting grains; x is crystal/grain size; subscripts label left, far-left, and right neighbours of a crystal of interest (indexed 0). (b)e(e) Results from an
ensemble of 20,000 kinetic model simulations with k ¼ 1 unit [L2 T�1]. Each run was initialized with 104 grains of random size chosen from a uniform probability distribution
between 10�5 and 1 length unit. (b) Near-linear growth of x2 with time t; grey curves plot individual runs; black curve plots their average. (c) Grain-boundary motion and
coarsening dynamics in a run. (d) Ensemble mean of normalized grain-size distributions at three times. (e) Invariant grain-size distributions predicted by our mean-field PIDE
theory (curve) and from the ensemble runs in (d) (crosses); x=x is reduced grain size.
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specifically with

f ðx=xcÞ ¼ b1 þ b2
x
xc

þ ð1� b1 � b2Þ
�
x
xc

�2

; (6)

where b1¼0.702 and b2¼ 0.285were found by tuning themodel to
fit simulated correlations. Thus they predicted an analytical
invariant grain-size distribution that approximately matches the
observed distribution. This model provides additional context for
our work below, where we show how the PIDE removes the need
for parameterization altogether.
Fig. 2. Joint distribution variable g(x,y,t) and its link to n(x,t). Two processes drive the
motion of points depicting grain neighbour-pairs: 1. size evolution of a pair without
grain elimination; 2. creation of a new pair through grain-boundary merging and
elimination of a grain.
2.2. Statistical-mechanical formulation

Traditional mean-field theories have focussed attention onwhat
happens in the “grain-size space” when deducing the form of the
drift velocity v or the evolution equation for n(x, t). But the very
occurrence of spatial grain size correlations shows that neighbour
interactions lie at the heart of the problem. This clue motivates our
radically different formulation here. Rather than address n directly,
we consider how the size combinations of neighbouring pairs of
grains evolve. We do this by tracking the joint-distribution variable
g(x, y, t), defined as the number density of grains of size x having a
left-neighbour grain of size y. As this quantification of grain-to-
grain relationships applies iteratively to the neighbours of neigh-
bours, g carries statistical information about the grains' spatial
arrangement, and our formulation automatically captures the long-
range impact of each grain's evolution (via neighbours, to all or-
ders) on the population dynamics. As we shall see, the full grain-
growth dynamics are indeed embedded in the “grain size versus
neighbour grain size space”dthe x-y plane. This is why tracking
grain size alone is not generally sufficient.

Fig. 2 illustrates relevant mathematical concepts. At a given
time, each neighbouring pair of grains is located at a point on the x-
y plane; g dx dy counts all pairs within an incremental area. For a
system of grains with no directional preference in their ordering (as
is assumed here), g has symmetry: g(x,y,t) ≡ g(y,x,t). The physical
requirement that there are no infinitely large grains implies g /

0 as x, y / ∞. We also expect g / 0 as x, y / 0 as the system
evolves in t > 0, because, according to Eq. (4), vanishingly small
grainsdand thus vanishingly small grain neighboursdshrink at
rates that ‘blow up’ towards infinity. (Specifically, as one leaves
either axis in the perpendicular direction, g is expected to have a
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positive bounded gradient. This limiting behaviour ensures well-
posedness of our PIDE in Eq. (15) below by preventing its terms
from becoming singular.) The grain-size distribution is now given
by the integral projection

nðx; tÞ ¼
Z∞
0

gðx; y; tÞ dy: (7)

The total length of the domain is time-invariant:

L ¼
Z∞
0

xnðx; tÞ dx; (8)

and the population P and the mean crystal size x are, respectively,

PðtÞ ¼
Z∞
0

nðx; tÞ dx (9)

and

xðtÞ ¼ L
P
: (10)

A key feature of this model is that a population of grains can be
ordered differently to exhibit different spatial grain size correla-
tions. This is reflected by the possibility for different joint distri-
butions g to yield the same n(x, t) in Eq. (7). The ratio g(x,y,t)/n(x,t),
which is the probability density distribution of the neighbour size y
for grains sized x, describes all spatial grain size correlations. Later
we show (in Section 4) that this distribution deviates from the
normalized grain-size distribution for the population (i.e. g(x,y,t)/
n(x,t) s n(y,t)/P(t)) during statistically self-similar NGG, as is
consistent with earlier findings [21e23] that led to queries about
the classical mean-field assumption.

Our mean-field evolution equation for g is now derived. As the
system evolves, all points depicting neighbour grain pairs migrate
on the x-y plane (Fig. 2). At any time, pairs of a given size, say (x,
y) ¼ (x0, x1L) (this notation means a grain of size x0 with a left-
neighbour of size x1L), are neighboured by grains of different size
combinations x2L and x1R (see Fig. 1a) so they grow/shrink at
different rates. Crucially, the probabilities of these combinations are
known from g instantaneously. The probability of a grain of size x
having on its left (or right) a grain neighbour of size y to y þ dy is
given by

pðyjxÞ ¼ gðx; y; tÞ
nðx; tÞ dy: (11)

It follows that the fraction of pairs (x0, x1L) forming the spatial
arrangement x2Ldx1Ldx0dx1R is

pðx1Rjx0Þpðx2Ljx1LÞ ¼
gðx0; x1R; tÞ
nðx0; tÞ

gðx1L; x2L; tÞ
nðx1L; tÞ

dx1Rdx2L: (12)

By representing each grain pair as a delta function at (x, y)¼ (x0, x1L)
moving with velocity ( _x0; _x1L) (Process 1 in Fig. 2), where _x0 and _x1L
are known from the kinetic description in Eq. (4), we quantify the
effect of the pair's motion on g by writing:

dg ¼
�
� _x0

v

vx
� _x1L

v

vy

�
dðx� x0; y� x1LÞdt: (13)

Consequently, the rate of change of g is found by summing Eq. (13)
over all pairs and all neighbour combinations, using the joint
probability in Eq. (12) as weight.

What happens when grain-boundary merging eliminates a
grain? This process introduces a source term for g. Suppose the left-
hand grain of a pair is removed: x1L/ 0. On the x-y plane, this event
causes the points (x0, x1L) and (x1L, x2L) representing two pairs to
reach the x and y axes respectively, and creates an interior point for
a new pair (x0, x2L) (Process 2, Fig. 2). The rate of elimination of the
left-neighbours of grains sized x0 is �limx1L/0 _x1Lg(x0,x1L,t)dx0, and
weighting this by p(x2Lj x1L) gives the production rate of new pairs
at size (x0, x2L).

Taking both of these processes into account now leads to the
master equation

vg
vt

¼
Z∞
0

Z∞
0

gðx0; x1L; tÞ
Z∞
0

Z∞
0

gðx0; x1R; tÞ
nðx0; tÞ

gðx1L; x2L; tÞ
nðx1L; tÞ

�
� _x0

v

vx

� _x1L
v

vy

�
dðx� x0; y� x1LÞ dx1Rdx2Ldx0dx1L

þ
Z∞
0

Z∞
0

lim
x1L/0

gðx1L; x2L; tÞ
nðx1L; tÞ

½ � _x1Lgðx0; x1L; tÞ�dðx� x0;

y� x2LÞ dx2Ldx0;
(14)

where the two right-hand terms describe contributions from grain
evolution without and with elimination events, respectively.
Substituting for _x0 and _x1L (using Eq. (4)) and evaluating the limit
and integrals yields the first-order partial integro-differential
equation (PIDE):

vg
vt

þ k
v

vx

��
hðx; tÞ
nðx; tÞ �

2
x
þ 1

y

�
g
�
þ k

v

vy

��
hðy; tÞ
nðy; tÞ �

2
y
þ 1

x

�
g
�

¼ 2k
vg
vx

����
x¼0

vg
vy

����
y¼0

,Z∞
0

vg
vx

����
x¼0

dy:

(15)

Here the final source term is due to Process 2, n has been defined in
Eq. (7), and

hðx; tÞ ¼
Z∞
0

gðx; y; tÞ
y

dy: (16)

This formulation is complete as it utilized all rules of grain in-
teractions. The PIDE has no tuning parameters because k is a
phenomenological constant.

We acknowledge that alternative rules for the grain-scale ki-
netics can be supposed for modelling coarsening dynamics in 1D
interacting grain systems. Such rule might not involve the recip-
rocal of the grain size, for instance. A more general form of Eq. (4) is
_x0 ¼ s(x1R, x0) e s(x0, x1L), where the function s(x, y) defines the
migration speed of the grain boundary between each grain pair. In
Appendix I we present the corresponding master PIDE found by the
same derivation as the one above.
2.3. Preliminary analysis of the PIDE

Eq. (15) with the homogeneous boundary conditions g/ 0 as x,
y / 0 and ∞ is to be solved for the non-trivial solution (g u 0).
Although the problem admits any multiples of a solution also as
solution, it is nonlinear (g1 þ g2 is not a solution if g1 and g2 are
independent solutions) because g in the advection terms in Eq. (15)
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is pre-multiplied by h/n, a ratio involving g. Writing this ratio as

hðx; tÞ
nðx; tÞ ¼

Z∞
0

gðx; y; tÞ
ynðx; tÞ dy ¼

Z∞
�∞

gðx; y; tÞ
nðx; tÞ dðln yÞ (17)

shows that it represents a different function for different g's
yielding the same n. This means that h/n encapsulates information
about grain spatial ordering.

The pervasiveness of nonlocal effects in grain-growth dynamics
can be seen from the PIDE structure. Both the advection and source
terms in Eq. (15) contain integrals of quantities based on g, implying
that the spatial size-ordering of all grains statistically influences the
evolution of every grain pair and the formation rate of new pairs at
different sizes (due to grain elimination).

If the spatial arrangement of the grains did not matter to the
dynamics, a self-contained description of n without g would be
possible. We explore this idea by integrating Eq. (15) with respect
to y from 0 to ∞ (see details in Appendix II), which gives

vn
vt

þ 2k
v

vx

�
hðx; tÞ � n

x

�
¼ 0: (18)

It is not possible here to get rid of h (and thus g) to obtain a closed
problem for n (as in Continuity Eq. (2)) unless extra constraints
come into play to link h to n. This result indicates that NGG in 1D
cannot be correctly or comprehensively described by the traditional
drift model. However, in Section 5 we show that the condition of
statistical self-similarity provides a sufficient constraint to close the
problem. Thus, tracking of NGG before self-similarity is reached
strictly requires the PIDE model, although it can be done with the
drift model during self-similar growth.

Eq. (18) also confirms that while the grain-size distribution
appears to spread in a diffusion-like manner (Fig. 1d) during NGG,
there is, for the 1D system at least, no diffusion term of the kind v2n/
vx2 as posited by Louat [16] in the model.

3. Self-similarity

We proceed to study the self-similar properties of the system by
using the PIDE model, notably to show that it successfully predicts
the observed parabolic growth law.

Model Eqs. (15), (16), (7) and (8) are invariant under the scaling
transformations t / εt, (x,y) / ε

1/2(x,y) and g / ε
�3/2g. If we

introduce the new time t ¼ kt and let

GðX; Y ; tÞ ¼ t3=2gðx; y; tÞ ; X ¼ x
t1=2

; Y ¼ y
t1=2

;

NðX; tÞ ¼ tnðx; tÞ; HðX; tÞ ¼ t3=2hðx; tÞ;
(19)

then, in these “similarity variables”, the model becomes

vG
vðlntÞ �

1
2

�
X
vG
vX

þY
vG
vY

þ3G
�
þ v

vX

��
HðX;tÞ
NðX;tÞ�

2
X
þ1
Y

�
G
�

þ v

vY

��
HðY ;tÞ
NðY ;tÞ�

2
Y
þ1
X

�
G
�
¼ 2

vG
vX

����
X¼0

vG
vY

����
Y¼0

,Z∞
0

vG
vX

����
X¼0

dY

(20)

where

NðX; tÞ ¼
Z∞
0

GðX; Y ; tÞ dY and HðX; tÞ ¼
Z∞
0

GðX; Y ; tÞ
Y

dY :

(21)
The domain length in Eq. (8) remains time-invariant:

L ¼
Z∞
0

XNðX; tÞ dX ¼
Z∞
0

Z∞
0

XGðX; Y ; tÞ dY dX: (22)

Like the original master equation, Eq. (20) is a PIDE. The behaviour
of its solution at the boundaries is G / 0 as X, Y / 0 and ∞.

The transformation essentially performs a suitable magnifica-
tion in length-scale to view grain sizes relative to each other as time
progresses. NGG becomes statistically self-similar when Eq. (20)
reaches its steady state v/vt / 0 in the long-time limit; then all
dependences on t drop from Eqs. (20)e(22). If we denote the
steady-state solution by G ¼ GS(X, Y), then the similarity solution of
the untransformed problem is g ¼ t�3/2 GS(x/t1/2, y/t1/2), and

N ¼ NSðXÞ ¼
Z∞
0

GSðX;YÞ dY (23)

describes the invariant grain-size distribution in terms of scaled
grain size X; similarly, H becomes HS(X) in Eq. (21). Because any
multiples of GS is also a solution, the value of L specified in the
integral constraint in Eq. (22) is arbitrary. For convenience, below
we present solutions and simulated forms of GS that have been
normalized as a probability density distribution (i.e.R∞
0

R∞
0 GS dYdX ¼ R∞

0 NS dX ¼ 1).
Like g(x,y,t)/n(x,t) described before, G(X,Y,t)/N(X,t) in the trans-

formed problem defines the instantaneous probability density
distribution of neighbour size. That this ratio becomes GS(X,Y)/NS(X)
(independent of t) at steady state means that during statistically
self-similar NGG, all spatial grain size correlations also become
invariant.

Turning to the grain-growth rate, the transformed expression
for the grain population in Eq. (9) is

P ¼ t�1=2
Z∞
0

NSðXÞ dX (24)

after N has attained NS(X), so the population decays as t�1/2 at the
self-similar state. Correspondingly, the mean grain size (¼ L/P)
becomes

x ¼
ffiffiffiffiffi
kt

p
X

�
∝ t1=2

�
; (25)

in which

X ¼
Z∞
0

XNS dX

,Z∞
0

NS dX (26)

is the (constant) mean value of X in the scaled grain-size distribu-
tion. We determine X z 1.61 from the numerical solution of the
next section. The PIDE theory thus predicts m ¼ 1/2 in Eq. (1) with

C ¼ kX
2
z2:6k; (27)

which agrees with the mean coarsening rate observed in the
ensemble simulations in Fig. 1b (where k ¼ 1). Note that the
parabolic growth law predicted here is a universal result for one-
dimensional NGG that holds for any k, and it derives from the ki-
netic description of the system without any assumed parameteri-
zations or fitting.
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4. Numerical solution

In modified Hillert theories, a common practice is to fit the
predicted invariant grain-size distribution to the simulated distri-
bution by tuning parameters in the drift velocity. In our PIDE the-
ory, no tuning is possible. The question is simply whether it predicts
the observed grain-size distribution and correlations.

Analytical solution of the steady-state form of the PIDE (20)
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vX

����
X¼0

dY

(28)

or its original untransformed version (Eq. (15)) can yield valuable
insights into NGG dynamics, but doing this presents obstacles. As
noted before, the PIDE has nonlocal advection terms and is
nonlinear. The nonlinearity rules out series expansion and integral
transformmethods. Although nonlocal advection equations arise in
other continuum-mechanical contexts (e.g. [38]), analytical tech-
niques for solving them are not well developed. Logan [39] used the
method of characteristics to solve a first-order nonlocal advection
equation, but the occurrence in our PIDE of both a source term and
the ratio of integrals HS/NS (or h/n) in the advection terms makes
the trajectories of characteristics difficult to anticipate before the
solution has been found. Exploiting the xey symmetry of the
problem has also not led us to progress. However, it suffices for our
goal in this paper to demonstrate the model's success by solving it
numerically. We therefore leave the analytical solution (of Eq. (28),
or (20) or (15)) as an open problem for the community to tackle. We
reiterate that a model's validity rests on the rigour of its
Fig. 3. Predictions of mean-field (PIDE) theory tested against results from direct kinetic simu
GS of Eq. (20), normalized to form a probability density function over grain size vs. neighbo
kind used in Fig. 1bee. (c) Normalized invariant grain-size distribution NS from Eq. (23) (solid
and to the modified Hillert theory of Hunderi and Ryum [21] (dashed). Squares and dots pl
probability density distributions GS(X,Y)/NS(X) (curves) at four values of X=X compared with
by white lines in (a) and (b). Black curve plots the normalized form of NS. (e) Rate of new
function of X=X and Y=X.
formulation and how well it explains the phenomenon, not on its
analytical solubility. That the PIDE is non-trivial to solve reflects the
true complexity of 1D NGG.

Herewe show numerically that the steady-state solution GS(X,Y)
correctly predicts the long-time invariant grain-size statistics of the
system found from direct kinetic simulations. To compute GS, we
use a finite-difference scheme to evolve G in Eq. (20) forward in
time (ln t) until steady state, starting with an initial distribution
representing small grains, G f XYexp[e(X2þY2)]. Some quantities
(notably H/N) are evaluated at staggered grid points in the scheme.
This approach is equivalent to relaxational methods that introduce
a fictitious time derivative in Eq. (28) to let GS converge.

Fig. 3 compares the numerical results of our PIDE theory to
ensemble-mean results from 106 direct simulations. As in the
simulations reported in Fig. 1, each run here started with 104 grains
of random length chosen from a uniform probability distribution
between 10�5 and 1 units. GS(X,Y) is found to be symmetrical about
X ¼ Y (as expected) and single-humped (Fig. 3a), and matches the
normalized form of g(x,y,t) compiled from the ensemble runs
(Fig. 3b) at t ¼ 40, a time far into the self-similarity regime (Fig. 1b
and d). This match implies that spatial grain size correlations are
automatically reproduced by the theory, as shown in Fig. 3d, which
compares the neighbour-size probability density distribution
GS(X,Y)/NS(X) at four values of reduced grain size against results
from the ensemble runs. The way these distributions deviate from
the grain-size distribution of the population (black curve, Fig. 3d)
confirms the spatial grain size correlations found in earlier studies
[21,24]. As the deviations show that transects of GS(X,Y) at different
values of X or Y are dissimilar in shape (this is also apparent from
the planform of GS in Fig. 3a), we know that GS is not separable as
the product of a function of X and a function of Y, and consequently
the PIDE cannot be solved analytically by such separation. [Notice
that if GS were separable as GS ¼ f(X)f(Y) symmetrically, normali-
zation of GS as a probability density distribution would imply
lations. Reduced grain sizes are used to ensure comparability. (a) Steady-state solution
ur-grain size space. (b) Ensemble mean of g(x,y,t) at t ¼ 40 from 106 simulations of the
curve), plotted in logarithmic frequency axis and compared to simulated data (crosses)
ot simulated data in the distribution's tail from smaller ensembles. (d) Neighbour-size
simulated data (symbols, coloured the same as the curves). These transects are located
grain-pair production (source term on the right-hand side of Eqs. (20) and (28)) as a
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R∞
0 f ðXÞ dX ¼ 1. Then f(X) ≡ NS(X) follows from Eq. (23) and the
neighbour-size probability density distribution would be given by
GS(X,Y)/NS(X) ≡ NS(Y). In other words, the erroneous assumption
that grain neighbours have a size distribution identical to the
population's grain-size distribution would be true.]

Fig. 1e shows the agreement between the invariant grain-size
distribution NS(X) predicted by the PIDE (which we compute from
GS using Eq. (23)) and the ensemble-mean invariant grain-size
distribution found from the direct simulations. It is typical for
modified Hillert theories [21,22,24e29] and function-based ap-
proximations (e.g. [40]) of grain-size distributions during self-
similar NGG to evaluate this kind of match in linear scale, as done
in Fig. 1e. Few studies examine discrepancies in the tail of the
distribution in order to discern deficient model behaviour at large
grain sizes. To see how well our theory captures the tail, in Fig. 3c
we replot the comparison of Fig. 1e in logarithmic scale. The
agreement between theory and data at X=X (¼ x=x) < 2 visible in
linear scale is again found. Mismatch becomes noticeable at X=X >
2.5 but this occurs at low probability density (NS < 10�4) with small
absolute errors (< 10�5). Crucially, as we increase the number of
ensemble runs used to calculate the invariant distribution towards
106, more and more of the simulated data points at large grain size
reach the theoretical curve (see different symbols in Fig. 3c) and the
errors decrease (to < 10�6). This convergence and the alignment of
the curve with the points show that the PIDE theory captures the
tail of the distribution with remarkable precision.

Numerically, an imperfect match at arbitrarily large X=X between
theory and ensemble simulation is always expected due to rounding
errors and discretization of time in the kinetic simulations, and
because the simulations produce few large grains whose statistics
must be found by averaging over many runs. Furthermore, since the
simulated grain size is finite, grain counts must become zero at a
sufficiently large size. Given the simulations have a fixed domain
length, the resulting deficit in probability density causes a slight
overestimation of probability density at all sizes registering non-zero
grain counts. This explains why the simulated data points in the tail
in Fig. 3c tend to approach the curve of the PIDE theory from above.

For comparison, in Fig. 3c we include the grain-size distribution
predicted for the same 1D NGG system by the modified Hillert
model of Hunderi and Ryum [21], which assumes the drift-velocity
parameterization in Eqs. (5) and (6). Their model predicts an over-
steep decay that underestimates the abundance of grains at X=X > 2.

A final discovery from our numerical solution, revealed by the
distribution of the source term of Eq. (28) plotted in Fig. 3e, is that
most new neighbour pairs produced through the elimination of
small grains contain grains that are larger than themost frequent or
modal grain size (which turns out to be zX). This result makes
sense because these larger grains eliminate their small neighbours
faster despite their lower abundance.
5. Validating and informing the Hillert-type drift model with
the PIDE theory

In this section, we extend our analysis of the PIDE to explainwhy
the traditional drift model validly describes 1D NGG during sta-
tistical self-similaritydand only in this state. We also calculate an
explicit expression for the corresponding drift velocity.

Recall that our effort in Section 2.3 to derive an evolution equa-
tion for n from the PIDE had led to Eq. (18), here rewritten slightly as:

vn
vt

þ v

vx

�
2k

�
h
n
� 1

x

�
n
�
¼ 0: (29)

Comparing this to the general continuity equation (2) identifies the
drift velocity to be

v ¼ 2k
�
hðx; tÞ
nðx; tÞ �

1
x

�
: (30)

Although this drift velocity does not close the problem for n (Sec-
tion 2.3), it resembles and supports the mathematical form of the
parameterizations assumed in the Hillert-type models, which posit
v as being proportional to 1/xc e 1/x, where xc is the critical grain
size (Section 1).

Eq. (30) specifically implies that the instantaneous reciprocal
value of xc is given by

x�1
c ¼ hðx; tÞ

nðx; tÞ ¼ t�1=2HðX; tÞ
NðX; tÞ ; (31)

where h/n carries information about grain spatial ordering (Section
2.3). Hitherto in this analysis, it is not in fact known whether h/n
has the right dependence on x to make xc behave such that large
grains grow and small grains shrinkdwe confirm this to be the case
below. However, the final transformation in Eq. (31), which casts xc
in the similarity variables, shows that during statistically self-
similar NGG we have xc f t1/2 (since N ^ NS(X) and H ^ HS(X)),
just as x does, as indicated by the scaling in Eq. (19). What this
means is that during self-similar growth, there is a unique recipe
for xc dependent on the reduced grain sizedbut independent of
tdthat closes the drift model. The reason for this is that all scaled
spatial grain size correlations are then invariant (this is the
constraint mentioned in Section 2.3). Away from the similarity
state, no such recipe exists because spatial grain size correlations
are varying: then the drift model must break down.

Next we establish this outcome formally, determining the ratio
HS(X)/NS(X) (and thus xc�1) at the same time. First, transforming Eq.
(29) with Eq. (19) yields:
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Under the self-similarity condition, v/v(ln t) ¼ 0, N ¼ NS(X) and H ¼
HS(X) so that
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(Another way to find this result is to integrate Eq. (28) w.r.t. Y from
0 to ∞.) Eq. (33) can be integrated once, with the knowledge (from
(21)) that HS ¼ 0 as X / ∞, to give

HSðXÞ ¼
�
X
4
þ 1
X

�
NS �

1
4

Z∞
X

NSðXÞ dX: (34)

As HS vanishes also at X ¼ 0, it follows that
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X/0
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X

¼ vNS
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¼ 1
4
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NSðXÞ dX ¼ 1
4

(35)

(if we assume NS has been normalized). The slope predicted here
for NS at the origin is confirmed by our numerical solution. The
preceding series of steps parallel the mathematical derivation of
Hunderi and Ryum's [41] well-known result that the invariant
grain-size distribution and reduced grain-growth rate are uniquely
related at the similarity state. The difference here is that the PIDE
tells us the exact form of the drift velocity. Also, the step between
Eqs. (32) and (33) shows that the ratio H/N cannot be invariant of t



Fig. 4. Dependences, against reduced grain size r, of the reciprocal of the effective
reduced critical grain size 1/rc predicted by our PIDE theory (solid) and the same
quantity predicted by the modified Hillert theory of Hunderi and Ryum [21] (dashed
curve).
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away from self-similarity.
Armed with Eq. (34), we now write the reciprocal of the critical

grain size during statistically self-similar NGG as xc�1 ¼ t�1/2 HS(X)/
NS(X), where

HSðXÞ
NSðXÞ

¼ X
4
þ 1
X
� 1
4NS

Z∞
X

NSðXÞ dX: (36)

In terms of untransformed variables, the corresponding drift ve-
locity is

v ¼ 1
2t

0
@x� 1

n

Z∞
x

nðx; tÞ dx
1
A: (37)

Note that substituting Eq. (37) back into the continuity equation
(29) leads to t(vn/vt) þ (x/2)(vn/vx) ¼ en, which merely ascertains
the similarity scaling in Eq. (19). Determining the form of n(x,t) or
NS(X) still requires solving the PIDE for g or GS.

From the foregoing analysis, it should be clear that the param-
eterized form f(x/xc)/xc in the modified Hillert theory of Hunderi
and Ryum [21] (Eq. (5) and (6) in Section 2.1) serves to approximate
h/n. It is interesting to compare their parameterization to the exact
drift velocity known from our theory. This can be done by writing v
in terms of the reduced grain size r ¼ x/x ¼ X/X, i.e.

v ¼ 2k
x

�
1
rc

� 1
r

�
; (38)

where rc, the reduced effective critical grain size, is given by

1
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¼

8><
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c0f ðc0rÞ ðHunderi & RyumÞ
: (39)

The constant c0 (¼ 1.229) is the ratio of x to xc in Hunderi and
Ryum's theory [21].

Fig. 4 plots the two functions on the right-hand side of Eq. (39)
against r. (Our evaluation of HS/NS uses Eq. (36) and the
numerically-computed form of NS(X) from Section 4.) Comparing
the functions with 1/r (dashed-dotted line) shows that they both
predict growth for large grains and shrinkage for small grains.
Hunderi and Ryum denoted their function “G1(r)” and called it the
“quasi-stationary correlation function” (see Ref. [21] and their
Fig. 4a). It deviates from our result and overestimates the drift
velocity near r ¼ 0 and at r a 1.5. Notably, as r / ∞, our function

asymptotes towards a constant slope (X
2
=4) whereas their para-

bolic function continues to steepen (see Eq. (6)); we suspect this to
be responsible for the inaccurate tail of their invariant grain-size
distribution (Fig. 3c). Their function also misses out the sharp
change in 1/rc for small r; this illustrates how much an assumed
parameterization can misrepresent the actual dynamics.
6. Discussions and conclusion

We have formulated an exact and complete statistical mean-
field model of NGG in one dimension. Taking the form of a partial
integro-differential equation (PIDE), the model accounts for all ki-
netic interactions of the system and matches key aspects of the
observed dynamics (including spatial grain size correlations)
without tuning. In fact it lacks tunable parameters: the constant k
describing grain-boundary migration rate is prescribed, as in the
direct simulations used to test the model. In contrast, the modified
Hillert model developed by Ref. [21] for the same NGG system
necessitates a drift-velocity parameterization to close the descrip-
tion. In our view, models that parameterize physics and require
tuning afterwards essentially make an engineering approximation
to predict nearly the right result.

Whereas the Hillert-type drift models are valid only in the self-
similar state of NGG (only then does a well-defined drift velocity
exist), the PIDE captures the statistical mechanics generally
(including outside that state), because its formulation does not rely
on assumptions of self-similarity or scaling. Whether one considers
the PIDE model or modified Hillert models to be more useful de-
pends on the scientific context. We imagine that for physicists
wanting to understand NGG from first principles, the PIDE theory
provides a more fundamental and rigorous starting point.

As far as we know, the PIDE in Eqs. (7), (15) and (16) (or its
transformed version in Eqs. (20) and (21)) has not been described
before.We solved it numerically in this study; its analytical solution
remains outstanding. Future work should investigate the stability
of the transformed PIDE to determine under what conditions GS
behaves as an attractor of G. Such study may yield insights into
abnormal grain growth, in which a few large grains grow much
faster than the rest of the population to cause a non-scale-invariant,
bimodal grain-size distribution [14,42]. Following the theoretical
framework of [43], we regard the similarity solution of our PIDE not
only as a special-case solution, but also as the “intermediate as-
ymptotics” of the system's evolutionwhen it is far from equilibrium
but when it no longer depends on the details of the initial condi-
tions (i.e. when mean grain size x far exceeds its initial value).
Naturally, when x grows to nearly the size of the polycrystal, edge
effects can destroy the self-similarity and there may be too few
grains for the mean-field description to be appropriate.

The role of nonlocal effectsdstemming from neighbour-to-
neighbour interactions between grainsdin the collaborative grain
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dynamics is recognized throughout our study. These effects, which
cause the observed spatial grain size correlations, motivate our use
of the joint distribution function g(x, y, t) in the model formulation
and explain why integrals of g appear in the master equation to
render it a PIDE.

Nothing suggests to us that similar nonlocal effects are absent
from higher-dimensional NGG, especially as there is evidence of
spatial correlations in grain size and in grain-boundary network
topology from simulations [22,23,44]. Consequently, using a joint
distribution function may enable the development of complete
statistical mean-field models of NGG in 2D and 3D also. Although
pursuing these descriptions is beyond the scope of this paper, some
of the key ingredients and obstacles can be anticipated. In 2D (/3D),
most grains will have more than 3 (/4) neighbours so grain “pair-
ing” occurs in many directions, and each grain's geometry demands
more characterization than size alone. The kinetic description must
also specify the rules of topological reorganizations of the grain-
boundary network, namely those causing neighbour switching
events and changes in the topological classes (number of sides) of
grains [34,35,44]. Potentially, a joint distribution function akin to g
can be used to quantify the frequency of different combinations of
geometrical variables acrossmultiple adjacent grains. It will involve
a large number of independent variables (cf. x and y in our model).
Despite the level of mathematical complexity involved, as before
we expect the grain-size distribution to be given by an integral
projection, and the master equation to emerge as a PIDE (or system
of PIDEs). Based on what we have learned from the 1D system, it is
likely that a completemean-field theory of this kindwill also enrich
the foundation behind the range of existing parameterized models
of 2D/3D NGG dynamics. Research that complements this line of
enquiry is already under way. Barmak et al. [45,46] recently
explored a new statistical approach to model critical events in the
reconfiguration of the grain-boundary network during NGG.
Interestingly, their description also involves PIDEs.

More generally, we suggest that the emergence of correlated
spatial structures may be an inherent property of many other
evolving networks and cellular systems (besides NGG) where
neighbour interactions conspire to give the agglomerated behav-
iour. Nonlocal PIDEs may be essential for understanding these
systems.
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Appendix I: Generalized PIDE for g

Let s be themigration speed of the grain boundary between each
grain pair (x, y), taken positive if the boundary moves to the right; y
is the size of the left-hand grain as before. For consistent kinetics
regardless of how direction is defined, the function s(x, y) must be
antisymmetric: s(x, y) ¼ es(y, x); thus, s(x, x) ¼ 0 for all x. Grain-
boundary migration towards the smaller grain requires s > 0 when
y > x. We expect this condition to cause coarsening dynamics
because all grains smaller than their two neighbours will shrink
(and be eliminated if they remain to be so), although different
functional forms for s are still possible. For example, whereas we
assumed s(x, y) ¼ k(1/x e 1/y) in our analysis in the paper, Ref. [47]
investigated coarsening in a system where s(x, y) ¼ k(y e x).

Eq. (4) is replaced by the general kinetic description:
_x0 ¼ sðx1R; x0Þ � sðx0; x1LÞ: (A.1)

The evaluation of Eq. (14), with _x0 and _x1L now given by Eq. (A.1),
yields the PIDE
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(A.2)

where we have used the definition

Jðx; tÞ ¼
Z∞
0

sðx; yÞgðx; y; tÞ dy: (A.3)

(With our assumed function for s(x, y), this integral is given by J ¼ k
[n(x, t)/x e h(x, t)].) The far-field boundary conditions g / 0 as x, y
/∞ remain valid. However, the behaviour of g as x, y/ 0, as well
as the value of the limit in Eq. (A.2), will depend on the functional
form of s(x, y) at those limits.
Appendix II

Integrating Eq. (15) with respect to y from 0 to ∞ leads to
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or, after using the definitions for n and h in Eqs. (7) and (16),
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Now, the boundary behaviour g/ 0 at y ¼ 0 and as y/∞ implies
that gjy¼∞

y¼0 ¼ 0 and
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:

If we anticipate that h(y,t)g(x,y,t)/n(y,t) vanishes when y ¼ 0 and y
/ ∞, as verified by our numerical solution, then the result in Eq.
(A.4) reduces to
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