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Abstract 

 

One of the defining features of the aerial environment is its variability; air is almost never still. This 

has profound consequences for flying animals, affecting their flight stability, speed selection, energy 

expenditure and choice of flight path. All these factors have important implications for the ecology 

of flying animals, and the ecosystems they interact with, as well as providing bio-inspiration for the 

development of unmanned aerial vehicles. In this introduction we touch on the factors that drive the 

variability in airflows, the scales of variability and the degree to which given airflows may be 

predictable. We then summarise how papers in this volume advance our understanding of the 

sensory, biomechanical, physiological and behavioural responses of animals to air flows. Overall, this 

provides insight into how flying animals can be so successful in this most fickle of environments.  
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Introduction 

 

Air is arguably the most dynamic medium: it is turbulent, it can move at high speeds ;ǁŝŶĚƐ ш ϭϬ ŵͬƐ 

are common at migration altitudes), and the strength and variability of air currents vary from sub-

second to seasonal scales, as well as through evolutionary time [1]. This has profound consequences 

for animals that move within it [2, 3]. To take one example, animals must fly faster than the flow if 

they are to orientate independently from it and approach their desired landing point in a controlled 

manner. Yet flight speeds in birds are only 0.7-1.6 times those of typical wind speeds [4, 5]. This is 

equivalent to a Boeing 747 having to operate in winds of some 780 km/h. In fact, even though wind 

speeds are a much lower proportion of the flight speeds of commercial aircraft (the ratio of flight 

speed to flow speed is in the order of 9.7:1), wind speed is still a key determinant of fuel 

consumption, journey time and flight route.  

 

The fact that the air is almost never still provides animals with potential opportunities as well as 

challenges. Organisms from aphids to eagles time their flights in order to exploit particular flow 

vectors [6, 7], enabling them to travel with very low energetic costs [8]. This is one of the simplest 

responses to airflows in the behavioural repertoire, although it is an interesting one, as periods of 

inactivity, as well as avoidance of particular airspace, may provide insight into the environmental 

factors that represent limits to flight performance. Animals also modulate their flight speed, route 

and mode (e.g. flapping versus soaring) in relation to airflows to reduce their costs of transport. One 

area of research advanced in this issue, is how these responses may be modulated further by risk. In 

most ecological areas of research, risk is associated with predation or the ability to find food. While 

both these factors can exert powerful influences on flying animals [9, 10], there are other types of 

risk, some of which are uniquely aerial, associated with flight control and stability, flight mode and 

performance [11], the possibility of collision, and drift (which is also relevant to aquatic movement).  

 

This volume provides insight into how flying animals can be so successful in this most fickle of 

environments, by considering biomechanical, physiological, behavioural and sensory responses of 

animals to air flows. In this introduction we provide a brief synthesis of the variability of airflows, 

and summarise how the papers in this volume advance our understanding of how animals respond 

to the costs, risks, and opportunities associated with them. We conclude by considering how 

biological solutions to the variable aerial environment could inform the flight planning and design of 

unmanned aerial vehicles (UAVs). 

 



Airflow components and flight speed 

 

Airflows are three dimensional and so can be split into three components. Typically, in fluid 

dynamics, the horizontal components are referred to as u and v, with the vertical component being 

w. For simplicity, the axes are often chosen so that u is in the direction of the mean wind. Each 

component is considered to consist of two parts, the mean (or average) wind speed (denoted by an 

overbar) and the instantaneous fluctuations about this mean value (denoted by a prime). So for 

example, ݑ ൌ Ǉݑ ൅  .Ԣ. Turbulence (the flow variability or gustiness) is related to the fluctuations [12]ݑ

The convention of treating the three components separately serves the biological community well, 

as u and w are linked to the mechanical power requirements of flight, with vertical motion affecting 

induced power costs, and wind causing power use to vary in relation to distance. Sustained 

turbulence or gusts can also influence flight costs when the turbulent components are of similar 

scales to the animals themselves, as kinematic or aerodynamic adjustments may be required to 

maintain flight stability [13, 14]. Yet despite the ubiquity of turbulent features, our understanding of 

how turbulence affects flight performance remains limited. Recent advances in this area are 

reviewed in this issue by Ortega-Jimenez et al [15], particularly in relation to humming bird flight. 

These authors also consider how the susceptibility to turbulent features, and the ability to respond 

to them, are likely to vary with flight speed and body size.  

 

In comparison, the effects of sustained horizontal and vertical flows on flight performance are 

relatively well understood. Indeed, in the case of wind, the U-shaped curve of power against speed 

allows energetically optimal flight speeds to be predicted, as well as how they vary with the 

head/tail wind component, and the ecological context for the flight e.g. food searching or not [16, 

17]. In this volume, Hedenström and Åkesson [18] examine how a range of internal and external 

factors combine to affect airspeed selection in a range of tern species during flapping flight. They 

show that the ecological objective, wing morphology, wind strength and direction, and number of 

flock mates are the dominant factors affecting airspeed, highlighting the complexity of this 

apparently simple behavioural response. Indeed, the number of factors that need to be controlled 

for may explain in part why results from some previous studies have not aligned with theoretical 

predictions.  

 

Predictions for optimal speeds of gliding flight are based on the glide polar. Recognising that these 

optima vary with both the headwind and updraught speed, which are unlikely to vary in isolation, 

Taylor, Reynolds and Thomas [19] derive the glide speeds that correspond to the aerodynamic cost 



of transport minima, in relation to simultaneously varying u and w values. They then test this 

framework using airspeeds measured on-board a gliding steppe eagle (Aquila nipalensis). The results 

are consistent with a strategy to reduce the aerodynamic costs of transport in relation to headwinds. 

Flight speeds were also among the parameters quantified by Harel et al [20] in rich, long-term and 

high-resolution movement datasets from Eurasian griffon vultures (Gyps fulvus). These authors 

compared three proxies of time, energy and risk minimization across three spatio-temporal scales, 

ranging from seconds and metres, to months and thousands of kilometres. They show that birds 

minimized time (by minimizing thermal climbing time in relation to the distance gained during 

subsequent glides) and energy (by flapping less) but were more risk prone (steeper inter-thermal 

glide angle), when flying to a known destination compared to flights with an uncertain destination. 

 

Flow selection 

 

Detecting wind direction 

Animals modulate their flight trajectories at a range of scales, and in both the horizontal and vertical 

dimensions, in order to benefit from flow assistance and reduce wind drift. Of course, animals have 

to be able to detect flows in order to respond to them, which is not necessarily straightforward given 

that air is both invisible and highly dynamic. But here too, it seems that the variability itself may 

have its benefits, being a potential source of information. For instance, insects use fine-scale 

anisotropic turbulence to detect the wind direction when flying hundreds of metres above ground. 

This enables them to reduce wind drift from seasonally optimal directions and maximise their travel 

distance [21]. In this volume, Reynolds et al  [22] review the different cues that insects may use to 

detect wind direction, and present a new mechanism for sensory detection ďĂƐĞĚ ŽŶ ƚŚĞ ͚ũĞƌŬƐ͛ ƚŚĂƚ 

insects experience in flight. While visual cues may not be important for high-flying insects, they are 

used by insects in other scenarios [23] as well as birds, which can use the apparent ground 

movement to correct for wind drift [18, 24].  

 

Airflows and route selection 

All other things being equal, animals are predicted to avoid factors that increase their power use and 

opt to fly in regions that offer power savings relative to still air. Organisms can achieve this in a 

variety of ways. Many alter their flight direction relative to the wind vector, in order to seek out 

beneficial tailwinds and reduce the costs of self-powered flight. This involves variation in altitude as 

well as variation in the horizontal path, and is seen amongst migrants from noctuid moths to oceanic 

seabirds and large raptors [4, 25, 26]. Power requirements are also reduced when flying through 



updraughts. In contrast to tailwind assistance, animals are able to use updraughts to cease flapping 

altogether. Nonetheless, sustained static soaring requires detours to integrate spatial and temporal 

variability in rising air (this variability is illustrated in figure 1), and is therefore only profitable for 

larger fliers due to their relatively low mass-specific metabolic rates and high flight speeds [27].   

 

Clearly, varying flight direction can only result in energy savings when there are regions with 

beneficial flow characteristics. The extent to which these opportunities exist depends on how heat 

and wind interact with the substrate. Heat-driven flows will generally be favoured in conditions of 

clear skies and light winds [1] but they are obviously strongly dependent on the time of day, with 

peak heating and thermal strength around midday / early afternoon (figure 1). In this issue, 

Shamoun-Baranes et al [28] model the environmental envelope of modes of soaring versus flapping 

flight in breeding black-backed gulls (Larus fuscus) (i.e. the conditions under which each flight mode 

is observed). Their results demonstrate how the probability of soaring flight tracks diurnal changes in 

convective conditions. Presumably the flight costs of a range of flying animals may show some 

diurnal variation even for those that do not switch from flapping to soaring flight.  

 

Mechanically-driven processes also produce vertical motion, and these are more likely with stronger 

wind conditions. In these scenarios, regions of vertical air motion are either geographically fairly 

fixed e.g. airflow separation behind a hill [29, 30] or forest edge [31] (figure 2), or propagating (e.g. 

mountain waves, sea breeze fronts [32]). What is interesting about the former, from the perspective 

of animal flight paths, is that the distribution of vertical flows is relatively predictable, because given 

substrate features will always alter the mean wind condition, even though the precise regions where 

air is forced up or down will vary with the wind direction (figure 2). This leads to the question of 

whether visually orientating animals predict the distribution of beneficial or costly airflows a priori, 

according to wind direction (either from memory or reaction to current conditions), or whether they 

only establish where beneficial airflows are with respect to a landmark as they approach it. The 

latter strategy is potentially costly/ risky given that rising air is spatially and temporally coupled with 

regions of sinking air.  

 

Our understanding of static soaring flight and tailwind assistance owe much to the use of migratory 

(and wide-ranging) animals as models [e.g. 25, 33, 34]. Yet horizontal and vertical airflow 

components vary over fine scales ʹ as indeed does turbulence. Far less attention has been paid to 

smaller-scale airflows in terms of whether and how they might affect flight decisions (although see 

[35] for an excellent consideration of the small-scale processes that have been associated with insect 



concentrations). Nonetheless, features as small as hedgerows, buildings and stands of trees, 

generate updraughts and turbulence, and accelerate horizontal flow components in repeatable ways 

(figure 3). In this volume, Shepard, Williamson and Windsor [36], demonstrate that gulls alter their 

flight trajectories in relation to wind conditions to exploit updraughts over features as small as a row 

of low-rise buildings (with their positioning at even finer scales potentially being beneficial for flight 

control in the face of gusts). Exploitation and/ or avoidance of these, and other, small-scale features 

may lead to a much greater degree of predictability in the daily movement paths of flying animals 

than has generally been considered [see also 15]. 

 

A final and exciting example of the exploitation of small-scale aerial heterogeneity is presented by 

Warrick et al [37]. This study coupled high-speed video with measurements of near-ground wind 

speeds. The results demonstrate that barn swallows (Hirundo rustica) use near-ground wind speed 

gradients to gain potential and kinetic energy in both flapping and gliding turns. This provides 

evidence that such exploitation of the shear layer is not solely the province of the Procellariiform 

seabirds. In fact, swallow flight is perhaps an ultimate example of aerial multi-tasking, as birds 

simultaneously harvest energy from the air, avoid obstacles (embedded in a solid substrate) and 

catch prey.  

 

Overall, the vertical motion, wind gradients and gusts from which animals harvest energy, largely 

result from the interaction between the air and the substrate (whether solid or not). This leads to 

the interesting irony that while flying animals are celebrated for their ability to escape the apparent 

bonds of the ground, many of them exploit, and in some cases depend on [38], heterogeneity in the 

airscape that derives ĨƌŽŵ ƚŚĞ Ăŝƌ͛Ɛ ŝŶƚĞƌĂĐƚŝŽŶ ǁŝƚŚ ƚŚĞ ƐƵďƐƚrate, rendering ƚŚĞŵ ůĞƐƐ ͚ĨƌĞĞ͛ ƚŚĂŶ ǁĞ 

might imagine them to be. In support of this, there is increasing evidence that the distribution of a 

range of highly aerial species is fundamentally linked to the properties of the aerial environment [39, 

40]. 

 

Ultimately, the extent to which animals vary their flight paths in relation to airflows will depend on 

the interplay between internal and external factors [cf. 41]. Internal factors include the driver for 

movement, the flight speed (in relation to flow speed), and the relative costs of assisted and 

unassisted flight. External factors include the spatial and temporal variability in flow conditions, 

temperature and other factors such as the availability of food. Åkesson, Bianco and Hedenström [42] 

demonstrate how intra-annual changes in ecological context lead to the use of different spring and 

autumn migration routes for common swifts (Apus apus) moving between northern Europe and 



Africa. In the autumn, animals cross the potential barrier of the Sahara on a broad front, using wind 

assistance, in a largely energy-selected migration. The more well-defined and conserved spring 

migration routes, are driven by the need to exploit rich foraging grounds as well as favourable winds, 

in what are more time selected movements.  

 

Physiological and morphological factors 

 

Flight is the most energetically demanding form of locomotion, per unit time [43]. The feats of 

exercise undertaken by birds in particular are at, or near, the extreme limits of organismal 

physiology. No taxon flies higher or migrates further than birds [44]. Birds occupy every continent on 

the planet and can fly in thin air at altitudes of over 7 000 m while crossing the Himalayas [45], and 

can endure temperatures from -ϱϬȗC ƚŽ ϰϱȗC͘ TŚĞǇ ĂƌĞ ĂůƐŽ ĞǆƚƌĞŵĞ ĞŶĚƵƌĂŶĐĞ ĂƚŚůĞƚĞƐ͕ ĂŶĚ ĂƌĞ 

capable of travelling over 11,000 km non-stop during migrations comprising over 215 hours of 

continuous powered flight [46]. The morphology and musculature that has evolved to provide the 

necessary functional units to allow such flight behaviour is unique to birds, and is discussed in detail 

in this volume by Tobalske [47]. The physiology that is required to power such endurance exercise is 

a detailed network linking primarily the cardiovascular and respiratory systems. The impressive fat 

stores that birds deposit, fuelling such long flights, are extensive, and key aspects of flight physiology 

are described by Butler [48].  

 

During long-duration flights in particular, there is a great need for heat dissipation, due to the 

intense flight muscle activity generating heat (see Dudley [49] for a discussion of thermoregulation 

in insect flight). The dissipation of this heat is presumably hampered by the insulating fat and 

plumage layers, particularly in species that inhabit colder regions, and so may cause problems for 

birds during migrations. Indeed, migrations typically represent the largest sustained period of energy 

expenditure for birds over the annual cycle [50], and migrations are responsible for the highest 

cause of mortality in both juvenile and adult birds [51]. Increases in flight costs are likely to be 

exacerbated in species with a high wing loading [27]. One such species is the common eider 

(Somateria mollissima) and Guillemette et al [52] provide evidence on how heat dissipation during 

migratory flights will contribute to shaping migration strategies, and flight duration. Changes in the 

air flow environment on a small scale will have substantial impacts on the flight costs of birds, and 

such impacts will be exacerbated during long migratory flights. Unfavourable or rapid changes in 

prevailing winds will all potentially contribute to higher flight costs, negatively affecting the energy 

balance of migrating individuals, having deleterious effects on their survival. 



 

Modelling airflows 

 

Our understanding of how animals interact with airflows has been greatly enhanced by 

meteorological models and measurements of airflows. These vary from relatively low resolution 

global forecasting and reanalysis models that incorporate heat and mechanically driven flows at 

regional scales, to high resolution models that predict complex airflows, such as those in urban 

environments and fragmented landscapes [53]. Atmospheric models can now be run with a 

resolution of tens of metres. Such resolutions allow the accurate representation of hills and 

mountains, and potentially urban areas, and are also capable of resolving the larger scales of 

turbulence in the atmosphere as well as the mean flow [e.g. 54]. These simulations provide new 

opportunities for understanding the world in which animals fly, incorporating not only the mean 

flow, but also the variability and predictability of that flow. Such high resolution eddy-resolving 

simulations are computationally expensive and primarily research tools, however lower resolution 

simulations (of order a few km resolution) are now run routinely both for general weather 

forecasting (e.g. the UK Met Office forecast model runs at 1.5 km resolution), and specifically for 

forecasting flight conditions for glider pilots (e.g. RASP). These simulations will not resolve the 

turbulence or small scale thermals explicitly, but give a good general idea of where and when 

thermals might occur.  

 

Further insight about fine-scale variation in airflows, particularly relevant for many flying animals, is 

likely to come as researchers instrument UAVs with sensors usually carried by full-scale aircraft to 

inform model development. The development of UAVs offers exciting opportunities to observe the 

small-scale 3-d spatial structure of atmospheric flows over the lowest couple of 100m of the 

atmosphere in a way that has hitherto not been possible with ground-based instruments or larger 

manned aircraft (e.g. [55, 56]). Engineers also stand to gain from biological advances, and there is 

great interest in applying lessons from the way birds and insects fly in order to produce more 

efficient, stable and controllable UAVs [see 57 and papers in this special issue]. 

 

Unmanned aerial vehicles and bio-inspiration 

 

The last decade has seen major technological advances in the development and use of UAVs. These 

are now being used for purposes as diverse as search and rescue efforts, military surveillance, 

habitat mapping and conservation efforts [58]. Nonetheless, key challenges remain in the 



performance of UAVs, including in their responses to both variable airflows and cluttered 

environments. The behavioural responses of animals to variable airflows, in terms of route and 

speed selection could potentially inform UAV flight path planning in this regard, particularly as their 

responses likely represent strategies that reconcile different currencies of risk and cost minimisation 

[cf. 20, 36]. 

 

Liu et al [59] review how robotics engineers have studied animal flight in general to understand how 

animals manoeuvre through the aerial environment, and regain flight control following a 

perturbation. This is an active area of research for both biologists and engineers, and one that is 

particularly pertinent for micro air vehicles (MAVs) ʹ insect- and bird- sized drones, with maximal 

dimensions of 15 cm and speeds of around 10 m/s, which experience flight control challenges. 

Ortega-Jimenez et al [15] suggest that flight research in hummingbirds presents opportunities for 

advancing our understanding of aerial manoeuvrability, as the flight performance of this group far 

exceeds that of similar-sized MAVs. In fact, the kinematics of hovering in hummingbirds are strikingly 

similar to those seen in other hovering animals such as honeybees, hawkmoths and fruit flies 

(Drosophila melanogaster), showing that similar solutions can operate over a range of scales (which 

may be the result of constraints in this case)[60]. The hovering performance of fruit flies has been 

exceptionally parameterised, and Dickenson and Muijres [60] review this here, as well as the 

aerodynamic, biomechanical, and neurological underpinnings of the flight manoeuvrability of these 

tiny insects.  

 

These advances are likely to be crucial for the further development of flapping-wing micro air 

vehicles, - an active research area, also reviewed by Liu et al [59], which has biomimetics at its heart. 

Developments in biomimetic wing design are also important for flapping MAVs, and consequently 

there is much interest in the topography and geometry of insect wings.  Bomphrey et al [23] 

synthesize current understanding of wing morphology in Odonata and how this affects 

aerodynamics and force generation. They also present new data on a range of factors including the 

variation in flight speed, turn rate and acceleration for a variety of flight types, in a comprehensive 

treatment of aerodynamics and mechanics in this ancient and highly conserved group of fliers.  

 

Conclusion 

Recent advances in the ability to quantify animal movements and model airflows are opening up 

novel opportunities to investigate the many interactions between the aerial environment and the 

animals that move within it.  Animal-attached tags are being routinely deployed, and are becoming 



ever smaller and more sophisticated, allowing researchers to quantify the biomechanical, 

physiological and behavioural responses of an increasing number of animals in flight, as well as the 

energetic implications of their decisions [61, 62]. As most tags are still too big for all but the largest 

insects, a combination of remote sensing (e.g. through radar and LiDAR) and aerial sampling will 

remain key for investigating the movements of the smallest fliers. Ultimately, a greater 

understanding of how animals respond to airflows should allow researchers to predict flight paths, 

or aspects of them, over a range of scales, which has clear implications for conservation and 

management [63]. UAV engineers are also interested in animal responses to airflows, including the 

sensory mechanisms that underpin flow detection, as bio-inspiration lies at the heart of much UAV 

design and development [59]. Another fundamental driver of research into animal flight, which 

thankfully shows no signs of diminishing, is the sheer delight in watching animals move through a 

medium in ways that are largely inaccessible to us. Overall, these promise to be exciting times for 

flight research. 
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Figure legends 

 

Figure 1. Remote sensing can now provide vertical velocity profiles through the boundary layer. 

LiDAR measurements of vertical velocity (sampled every minute), are shown in colour in relation to 

height and time. It is clear that there are much weaker vertical motions at night and early morning, 

and stronger, more coherent updraughts and downdraughts later in the day driven by thermal 

heating. The nature of the variability in relation to altitude and time give an idea of the structures 

that can be seen in a daytime convective boundary layer. Measurements were made above a valley 

top, in conditions of low winds and clear skies, nonetheless, thermal heating was limited as data 

were collected in March 2010 and daytime temperatures reached up to about 7°C (data are from 

the COLPEX project, see Price et al [64]for details).  

 

Figure 2. The spatial predictability in wind driven flows (including the vertical flow component) is 

demonstrated by site-specific measurements of vertical wind speed (w) against horizontal wind 

speed (u). Data are from tri-axial sonic anemometers measuring at two different heights (black = top 

of tower, grey = bottom of tower) on two different towers (left and right), on a complex hilly, 

forested site [65]. Wind speeds are 15 minute averages from measurements made at 10 Hz. In all 

cases there is a strong correlation between u and w, with sharp edges to the data suggesting that 

the wind is following preferred streamlines (either along the slope, or over the forest). On the left, 

the site was on a small plateau on the slope of hill.  The lowest measurements (2.96m) are 

dominated by the proximity to the surface of this plateau, which produces little vertical motion. The 

top measurements (15.65m) are more influenced by the larger scale slope of the hill and also, 

possibly, the proximity to the forest edge. Site 2 was near the summit of the ridge, and hence air will 

be forced up or down, depending on the direction of the wind. 

 

Figure 3. TŚĞ ƵƐĞ ŽĨ ĐŽůŽƵƌĞĚ ƐŵŽŬĞ ͚ŐƌĞŶĂĚĞƐ͛ ĚĞŵŽŶƐƚƌĂƚĞ ŚŽǁ Ă ƉĂƌĂůůĞů ǁŝŶĚ ĨŝĞůĚ ŝƐ ĂůƚĞƌĞĚ ďǇ Ă 

tree, according to whether or not the tree is in leaf. Grenades were released into a section of piping 

that was held on poles at a height of 5 m, and parallel to the oncoming airflow, in order to direct a 

plume of smoke towards the target tree. Photographs taken in the summer and winter (left and right 

images respectively) demonstrate how the oncoming airflow is directed over the tree when it is in 

leaf, producing vertical air motion, whereas the smoke passes through the tree in winter due to the 

lack of leaves.   
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