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Abstract. We report a study on the dynamics of a near-solid density plasma using an
ultraviolet (266 nm) femtosecond probe laser pulse, which can penetrate to densities of ∼ 1022

cm−3, nearly an order of magnitude higher than the critical density of the 800 nm, femtosecond
pump laser. Time-resolved probe-reflectivity from the plasma shows a rapid decay (picosecond-
timescale) while the time-resolved reflected probe spectra show red shifts at early temporal
delays and blue shifts at longer delays. This spectral behaviour of the reflected probe can be
explained by a laser-driven shock moving inward and a subsequent hydrodynamic free expansion
in the outward direction.

1. Introduction

Ultra-intense lasers can create extremely hot, high-density plasma while interacting with a
solid. Extreme states of matter, achieved on a laboratory table-top by such interactions are very
interesting to study, the measurement of the equation of state similar to that of an astrophysical
object being a striking example[1]. Relativistic energy electron beams produced at the plasma
critical surface in such interactions are crucial to the success of fast ignition[2] of the fusion
pellet in inertial confinement fusion(ICF). A lot of experimental and theoretical studies have
been performed in recent decades for the basic understanding of intense short-pulse-laser matter
interaction[3] and for applications like particle acceleration[4, 5]. The hot dense plasma created
via various laser absorption mechanisms[6] evolves very rapidly (on femtosecond and picosecond
time-scales) and these dynamics can be monitored using the pump-probe technique[7, 8, 9].

In this paper, we investigate the temporal dynamics of a highly dense electron layer(ne =
1022 cm−3 ) inside a plasma created on an aluminium-coated BK7 glass target by a laser at
relativistic light intensities. Doppler spectrometry of the reflected probe enables the observation
of the ultrafast motion of its critical surface (high density layer) inside the hot dense plasma. A
numerical simulation is performed which reproduces the results of the experiment.
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Figure 1. Experimental setup: T-target, BS-Beamsplitter, M-mirror, L-lens, SM-spectrometer,
PD- Photo diode.

2. Experiment

The experiment (Fig. 1) was carried out with a chirped-pulse-amplification-based 20 TW laser
system (800 nm, 40 fs, 10 Hz) at Tata Institute of Fundamental Research. An extra Pockels’
cell was used to obtain a 10−6 nanosecond intensity contrast. The pump pulse was focussed on
a solid slab at 450 angle of incidence to a focal spot of 17 µm (FWHM) to obtain intensities of
∼ 1018 W/cm2. A small portion of the laser pulse (5 %) was extracted using a beam-splitter,
up-converted to 266 nm, and focussed to a spot of 60 µm at the interaction point at near-normal
incidence using a fused-silica lens. The reflected probe pulse was then split into two parts and
fed to a photodiode and a high-resolution ultraviolet spectrometer. A delay line was introduced
in the path of the probe to change the relative temporal delay between the pump and the probe.
The focussed probe intensity was ∼ 1011 W/cm2. Spatial and temporal overlap was achieved by
looking at the reflected probe intensity from a plasma created on a dielectric slab at relatively
lower pump intensity (1017W/cm2). We define the temporal zero where the reflectivity shows
a sudden spike. In this experiment we observed the probe reflectivity and spectrum from a
solid-density plasma on aluminium-coated BK-7 target.

3. Results & Discussions

Figure 2(a) shows reflection of the probe as a function of probe delay with respect to the
pump from a super critical layer (ne=1022 cm−3) in the plasma. Target: Al-coated 5 mm BK-7
glass target. The probe reflection shows an exponential decay (τ = 5 ps) as the plasma eveolves
after excitation by pump. The reflectivity of the normally incident probe can be written as [10]

R ∝ exp

(

−

8ν∗eiL

3c

)

(1)

where ν∗ei is the effective electron ion collision frequency. L is the spatial scale length of plasma
over which the probe gets absorbed. The collision frequency is a function of electron density
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Figure 2. (a) Reflected probe intensity as a function of probe delay. The blue line is the
exponential fit to the experimental data (blue asterisks). The decay time is measured to be 5
ps from the fit. (b) A similar plot for the velocity of the probe-critical-layer is shown. These
velocities (black open circles) are calculated from the Doppler shifts of the ultraviolet probe
measured from pump-probe Doppler spectrometry.

and temperature. In this context of fast time scale (few picosecond) probe reflectivity is mainly
dependent on L, if we assume quasi-static values of density and temperature.

The velocity of the supercritical layer was measured by pump-probe Doppler spectrometry[8].
The velocity can be expressed as,

vexp = −0.5c
∆λ

λ
(2)

Where ∆λ is the Doppler shift from the experiment and λ = 266 nm in our case. Figure
2(b) shows the velocity of the probe-critical-layer, calculated from the Doppler shift at various
probe delays. At initial few picoseconds, the probe critical-surface moves deeper into the plasma
(negative velocity) riding on a non-relativistic shock. At subsequent times, the critical surface
moves towards vacuum with the freely expanding plasma (positive velocity).

4. Simulation

Figure 3 shows the velocity of the probe critical-layer results from 1-D hybrid simulations. First,
the HYADES code was run on a 500 µm silicate target. The output form this (ion, mass and
electron density) was then interpolated onto a regular grid for use in an 1-D PIC code (ELPS) to
find the hotspot formed by the pump laser. The code was run with 800 nm, 30 fs, 2×1018W/cm2

laser pulse. A density spike was observed and its motion was simulated by a Lagrangian hydro
code. These 1-D simulations calculate a slightly higher velocity of the critical-layer of the 266
nm probe beam than the experimental observation. The sign reversal of the velocity is around
6 ps, which is close to the experimental result.
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Figure 3. The simulated velocity of the probe-critical-layer as a function of the probe delay.
The sign convention: outward motion corresponds to positive velocity.

5. Conclusions

In this study, we observe ultrafast motion of a supercritical (1022 cm−3) electron layer in a
plasma created by a high-intensity, femtosecond laser pulse on a solid target. We see laser-
driven density pile-up and propagation of a non-relativistic shock inside the solid. 1-D hybrid
HYADES-PIC-HYDRO simulations support the experiment results.
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