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Secrecy Rate Optimization for Secure Multicast
Communications

Kanapathippillai Cumanan, Member, IEEE, Zhiguo Ding, Senior Member, IEEE,

Mai Xu, Member, IEEE and H. Vincent Poor Fellow, IEEE

Abstract—Recently, physical layer security has been recognized
as a new design paradigm to provide security in wireless
networks. In contrast to the existing conventional cryptographic
methods, physical layer security exploits the dynamics of fading
channels to enhance security of wireless communications. This
paper studies optimization frameworks for a multicasting net-
work in which a transmitter broadcasts the same information
to a group of legitimate users in the presence of multiple
eavesdroppers. In particular, power minimization and secrecy
rate maximization problems are investigated for a multicasting
secrecy network. First, the power minimization problem is solved
for different numbers of legitimate users and eavesdroppers.
Next, the secrecy rate maximization problem is investigated
with the help of private jammers to improve the achievable
secrecy rates through a game theoretic approach. These jammers
charge the transmitter for their jamming services based on
the amount of interference caused to the eavesdroppers. For a
fixed interference price scenario, a closed-form solution for the
optimal interference requirement to maximize the revenue of the
transmitter is derived. This rate maximization problem for a non-
fixed interference price scenario is formulated as a Stackelberg
game in which the jammers and transmitter are the leaders
and follower, respectively. For the proposed game, a Stackelberg
equilibrium is derived to maximize the revenues of both the
transmitter and the private jammers. To support the derived
theoretical results, simulation results are provided with different
numbers of legitimate users and eavesdroppers. In addition, these
results show that physical layer security based jamming schemes
could be incorporated in emerging and future wireless networks
to enhance the quality of secure communications.

Index Terms—Physical layer security, multicasting network,
convex optimization, game theory.

I. INTRODUCTION

In traditional wireless networks, security is achieved in the

upper layers based on conventional cryptographic methods.

However, some emerging networking paradigms present chal-

lenges in terms of key exchange and distribution. Recently,

physical layer based secret communication has received con-

siderable attention due to its suitability for dynamic network
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configurations and distributed processing techniques [1]–[3].

In addition, this approach implements security in the physical

layer as a complement to the cryptographic methods by

exploiting channel state information (CSI) of legitimate parties

as well as eavesdroppers.

The ideas behind physical layer security were first investi-

gated in [4] and [5] based on information theoretic concepts by

defining the secrecy capacity of wiretap and related channels.

Recently, multiantenna secrecy channels have received con-

siderable attention in the research community since the use

of multiple antennas yields spatial diversity and additional se-

crecy degrees of freedom [6]–[14]. In [6], the secrecy capacity

of multiple-antenna wiretap channels was presented under an

average power constraint, whereas the same secrecy capacity

was established in [7] as the saddle point solution to a min-max

problem. A transmit covariance matrix design was considered

in [8] to maximize the ergodic secrecy rate with a power

constraint for a multiple-input single-output (MISO) wiretap

channel model, whereas an optimal transmit design through the

semidefinite programming approach is proposed in [9] for the

same channel model as in [8]. In [10], full rank solutions have

been derived for the multiple-input multiple-output (MIMO)

wiretap channel with an average power constraint and an

alternative solution based on Taylor series has been proposed

for the same problem in [11].

Cooperative jamming is a well known approach to further

improve secrecy rates, in which the jamming signals are

introduced at the eavesdropper with the help of relays or

jamming nodes [15]–[20]. This scheme degrades the eaves-

dropper’s capability of retrieving the information intended for

the legitimate users. The achievable rates and an efficient coop-

erative jamming protocol have been presented for the general

Gaussian multiple access and two-way wiretap channels in

[15]. In [16], different cooperative jamming strategies have

been developed for two-hop relay networks to confuse eaves-

droppers with the assumption of global CSI. Opportunistic

relaying for secret communications has been presented in [17]

through cooperative jamming and relay chatting, whereas full-

duplex jamming and optimal cooperative jamming for relays

have been proposed in [18] and [19], [20], respectively. On

the other hand, jamming signals can be embedded in the

transmitted signal from the legitimate transmitter to confuse

the eavesdroppers, a strategy known as the artificial noise

(AN) technique in the literature [21]–[23]. In [21], a more

general framework of AN methods has been presented for

multi-antenna nodes. An AN scheme based on spatial selection

has been proposed for MISO multi-evesdropper secrecy rate

maximization in [22] and a quality of service based beam-

forming scheme is has been proposed in [23] to employ AN.

Recently, game theoretic techniques have been incorporated
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into the study of secure wireless communications for decision

making and resource allocation, e.g., [24]–[30]. In [24], a

novel cooperative paradigm has been proposed to improve

the secrecy of primary users with the help of the secondary

users in cognitive radio networks through a Stackelberg game

approach. Secure games have been formulated for a secret

communication network with an unfriendly jammer through a

non-cooperative zero-sum continuous game in [25]. Physical

layer security has been also investigated in a two way untrusted

relay system through a Stackelberg game in [26]. In [27],

a game theoretic framework has been developed for multi-

hop networks in the presence of eavesdroppers. Transmission

strategies have been proposed for MIMO secret communica-

tion networks in the presence of a multi-antenna eavesdropper

through game theoretic approaches in [28], whereas a secrecy

game for a Gaussian MISO interference channel has been

investigated in [29].

In this paper, we consider a secure multicasting network

as shown in Figure 1 where a transmitter broadcasts the

same information to multiple legitimate users. To the best of

the authors’ knowledge, only a few works have investigated

multicasting secrecy networks with multiple eavesdroppers. In

[31], multicasting secrecy rate maximization was investigated

for MISO channels with multiple eavesdroppers equipped with

multiple antennas based on convex approximation techniques,

whereas performance analysis has been derived for a secure

multicasting network consisting of a single-antenna transmitter

with multiple multi-antenna receivers as well as multiple

multi-antenna eavesdroppers in [32]. In [33], a multicarrier

based physical layer security scheme has been investigated

for multicasting systems and a waveform design has been

proposed for secure single-input single-output multicasting

transmission in [34]. Recently, different capacities have been

derived for secure multicasting in stochastic MIMO networks,

whereas a joint beamforming and user selection scheme has

been proposed for MISO wiretap channels with multiple

single-antenna eavesdroppers in [35]. However, secure mul-

ticasting communications with cooperative jamming has not

been considered in these works. In this paper, we propose

secrecy rate optimization frameworks with cooperative jam-

ming, in which a game theoretic approach is used to derive

the optimal strategies of the legitimate transmitter and the

jammers. The contributions of this paper are summarized as

follows:

1) Power minimization: We consider a beamforming design

for a secure communication network consisting of a

legitimate user and an eavesdropper, where our goal

is to minimize the transmit power with a secrecy rate

constraint. This problem can be easily formulated as

a second order cone programming (SOCP) problem.

Furthermore, we derive a closed-form optimal solution

based on the dual problem and Karush-Kuhn-Tucker

(KKT) conditions. The derived optimal solution is val-

idated through a comparison with the SOCP results

via simulations. Next, the power minimization problem

is considered for a scenario with multiple legitimate

users and multiple eavesdroppers. This problem is not

convex in terms of the beamformer at the transmitter.

However, we formulate this problem as a semidefinite

programming problem by introducing a new variable and

also using semidefinite relaxation.

2) Game theory based secrecy rate maximization: In the

above power minimization schemes, the legitimate trans-

mitter requires a certain amount of transmit power to

satisfy the required secrecy rates. However, it is not

always possible to realize the predefined secrecy rates,

either because the available transmit power is limited

or because it might be expensive to use the required

amount of power. To overcome these issues, external

jammers can be employed to introduce interference to

the eavesdroppers, which will improve the achievable se-

crecy rate at the legitimate users. Therefore, we consider

a multicasting secrecy network with multiple legitimate

users and multiple eavesdroppers as shown in Figure

2 in which private jammers introduce interference to

the eavesdroppers. Particularly, these private jammers

charge the transmitter for their jamming service based on

the amount of interference caused at the eavesdroppers.

On the other hand, the legitimate users also pay the

transmitter according to their achieved secrecy rates,

which provides a profit to the transmitter and compen-

sates for the charges of the private jammers. Based on

the revenues at both transmitter and the private jammers,

we formulate this problem as a Stackelberg game in

which the private jammers and the transmitter are the

leaders and the follower, respectively. For the proposed

game, we derive a Stackelberg equilibrium solution with

different numbers of legitimate users and eavesdroppers,

which maximizes the revenues of the transmitter as well

as the private jammers.

The remainder of the paper is organized as follows. The system

model is described in Section II. Section III presents the power

minimization problem with different numbers of legitimate

users and eavesdroppers. The Stackelberg game is introduced

in Section IV, whereas Stackelberg equilibrium solutions are

derived for the proposed game in Section V for different

scenarios. Section VI provides simulation results to support the

theoretical results. Finally, Section VII concludes the paper.

A. Notation

We use upper case boldface letters for matrices and lower

case boldface letters for vectors. (·)H denotes conjugate trans-

pose. Tr(·) and E{·} stand for the trace of a matrix and the

expectation of a random variable. A ≽ 0 indicates that A is

a positive semidefinite matrix. I denotes the identity matrix

of appropriate size. ∥ · ∥2 represents the Euclidean norm of a

matrix. [x]+ denotes max{x, 0}.

II. SYSTEM MODEL

We consider a multicasting secrecy network with K le-

gitimate users and L eavesdroppers as shown in Figure 1,

where a transmitter broadcasts the same information to all the

legitimate users in the presence of multiple eavesdroppers. It

is assumed that the transmitter is equipped with NT transmit

antennas, whereas each of the legitimate users and the eaves-

droppers has a single receive antenna. The channel coefficients
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Fig. 1: A multicasting secrecy network in the presence of

multiple eavesdroppers.

between the legitimate transmitter and the kth legitimate user

and between the legitimate transmitter and lth eavesdropper

are denoted by hk ∈ C
NT×1 and gl ∈ C

NT×1, respectively.

Here, it is assumed that the transmitter has perfect CSI of

the legitimate users and the eavesdroppers. This assumption

is appropriate for the multicasting network being considered

here, in which potential eavesdroppers are also legitimate

members of the network, but do not have the permission to

receive a particular multicast content being protected. This

assumption has been widely used in the literature [2], [16],

[19], [23], [36]–[41]. The noise powers at the kth legitimate

user and the eavesdroppers are assumed to be σ2
k and σ2

e ,

respectively. The received signals at the kth legitimate user

and lth eavesdropper can be written as follows:

yk = hH
k ws+ nk, yl = gH

l ws+ nl, (1)

where s (E{s2} = 1), and w ∈ C
NT×1 are the signal intended

to the legitimate users and the beamformer at the legitimate

transmitter, respectively. nk and nl denote the noise at the kth

legitimate user and lth eavesdropper, respectively. Assuming

additive white Gaussian noise, the achievable secrecy rate at

the kth legitimate user is given by [7]

Rk=

[

log

(

1+
wHhkh

H
k w

σ2
k

)

−max
1≤l≤L

log

(

1+
wHglg

H
l w

σ2
e

)]+

.

III. SECRECY RATE OPTIMIZATIONS

In this section, we consider the power minimization problem

for a multicasting secrecy network in which the transmitter

provides the required secrecy rates for all the legitimate users

in the presence of multiple active eavesdroppers. This problem

can be formulated as an optimization framework in which the

total transmit power is minimized to satisfy the secrecy rate

constraints.

A. Power Minimization

First, the power minimization problem is investigated with a

single legitimate user and an eavesdropper. For this problem, a

closed-form optimal solution can be derived based on the dual

problem and KKT conditions. For the scenario of multiple

legitimate users in the presence of multiple eavesdroppers,

it is formulated into a semidefinite programming framework

through semidefinite relaxation.

Single Legitimate User and Single Eavesdropper

With a single legitimate user and a single eavesdropper,

the power minimization problem can be formulated with the

secrecy rate constraint as follows:

min
w

∥w∥22

s.t. log

(

1+
wHh1h

H
1 w

σ2
1

)

−log

(

1+
wHg1g

H
1 w

σ2
e

)

≥R̄s,(2)

where h1 and g1 are the channels between the legitimate

transmitter and legitimate user and between the legitimate

transmitter and the eavesdropper, respectively. In addition, R̄s

is the required secrecy rate of the legitimate user. The problem

in (2) can be formulated into an SOCP problem. However,

we derive a closed-form optimal solution based on the dual

problem and KKT conditions. In the simulation section, we

validate this closed-form solution by comparing it with SOCP

results.

Lemma 1: The optimal solution of (2) is given by

w∗ =
√
p∗w̃∗, w̃∗=

w1

∥w1∥2
,w1=vmax

(

ĥ1ĥ
H
1 −2R̄s ĝ1ĝ

H
1

)

p∗ =λ∗s

(

2R̄s − 1
)

, λ∗s =
1

λmax

(

ĥ1ĥ
H
1 − 2R̄s ĝ1ĝ

H
1

) , (3)

where ĥ1 = h1

σ1

, ĝ1 = g1

σe

and λmax(·), vmax(·) denote the

maximum eigenvalue and the eigenvector corresponding to the

maximum eigenvalue, respectively.

Proof: Please refer to Appendix A. �

Multiple Legitimate Users and Multiple Eavesdroppers

The power minimization problem with multiple legitimate

users and multiple eavesdroppers can be formulated as

min
w

∥w∥22

s.t. log

(

1+
wHhkh

H
k w

σ2
k

)

−max
1≤l≤L

log

(

1+
wHglg

H
l w

σ2
e

)

≥R̄k,

k = 1, · · · ,K, l = 1, · · · , L, (4)

where R̄k is the target secrecy rate of the kth legitimate user.

This problem is not convex in terms of the transmit beam-

former. However, by introducing a new semidefinite matrix

W = wwH and relaxing the rank-one constraint, the above

problem can be formulated into a semidefinite programming

(semidefinite relaxation problem) as follows:

min
W≽0

Tr{W}

s.t. 1 + Tr{h̃kh̃
H
k W} − 2R̄kTr{g̃lg̃

H
l W} ≥ 2R̄k ,

k = 1, · · · ,K, l = 1, · · · , L, (5)

where h̃k = hk

σk

and g̃l = gl

σe

. If the solution of the above

problem is rank-one, then it will be the optimal solution of

the original problem in (4). In case of a non-rank-one solution,

randomization techniques can be used to construct a rank-one

solution from the non-rank-one solution of (5) [42], [43].

IV. GAME THEORY BASED SECRECY RATE OPTIMIZATION

In order to satisfy the target secrecy rates, the transmitter

requires a certain amount of transmit power. However, it
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Fig. 2: A multicasting secrecy network with multiple

legitimate users, multiple eavesdroppers and private jammers.

is not always possible to provide the target secrecy rates

due to limited transmit power or because it might require a

significant amount of transmit power which will be infeasible

in terms of hardware implementations at the transmitter. On the

other hand, in multicasting networks, it is difficult to achieve

the target secrecy rates at different legitimate users with a

single beamformer. To overcome these issues, cooperative

jamming would be a solution, which will enhance the secrecy

performance at the legitimate users. Here, we consider a mul-

ticasting secrecy network in which a set of private (friendly)

jammers are employed to provide jamming services as shown

in Figure 2. These private jammers introduce interference to

the eavesdroppers who overhear the multicasting transmission

from the transmitter. In addition, these jammers ensure that

there is no interference leakage to the legitimate users, which

could be achieved by appropriately designing the beamformers

at the jammers and employing a dedicated jammer near to each

eavesdropper. Since, a dedicated jammer is closely located to

the corresponding eavesdropper, each eavesdropper receives

interference only from the corresponding private jammer1.

These private jammers charge the transmitter for their ded-

icated jamming service based on the amount of interference

caused to each eavesdropper. To compensate for these interfer-

ence prices, the legitimate transmitter also introduces charges

to the legitimate users for its enhanced secured service based

on the achieved secrecy rates. For this scenario, we consider

secrecy rate maximization with multiple legitimate users,

multiple eavesdroppers and multiple corresponding jammers.

We formulate this problem as a Stackelberg game and then

investigate the Stackelberg equilibrium for the proposed game.

A Stackelberg game consists of two set of players, namely,

leaders and followers, where both of them try to maximize

their revenues or profits. The leaders make a move first

and then their followers will move according to the leaders’

strategy. The leaders (private jammers) announce a set of unit

interference prices for each eavesdropper. Then, the follower

(transmitter) decides on the interference requirements at the

eavesdroppers according to the interference prices.

1Here, it is assumed that the jammers have the perfect CSI of the
corresponding eavesdroppers. This is a reasonable assumption, for networks
in which the eavesdroppers are also part of the system [16], [19], [23].

A. Stackelberg Game

The interference received at the lth eavesdropper from the

corresponding private jammer can be written as follows:

Il = pl|gjl|
2
, (6)

where |gjl|2 is the power gain between the corresponding

private jammer and the lth eavesdropper and the power al-

location at the lth private jammer is represented by pl. Here,

we are only interested in the power allocation policy at the

jammer, where the beamformer at the jammer is appropriately

designed with no interference leakage to the legitimate users

and hence interference is introduced only to the corresponding

eavesdropper.

The private jammers’ objective is to maximize their revenue

by selling interference to the transmitter. The revenue of the

lth private jammer can be written as follows:

φl(µl, pl) = µlpl|gjl|
2
, (7)

where µl is the unit interference price charged by the corre-

sponding jammer to cause interference at the lth eavesdropper.

Depending on the interference requirement at the lth eaves-

dropper, the interference price should be determined by the

corresponding jammer to maximize its revenue. The prices for

interference at each eavesdropper can be obtained by solving

the following optimization problem:

Problem (A): max
µ≽0

L
∑

l=1

φl(µl, pl), (8)

where µ = [µ1 · · ·µL] represents the interference prices for

all the eavesdroppers.

At the same time, the transmitter should maximize its utility

by introducing a price for secret communication established

between the transmitter and the corresponding legitimate users.

The revenue function at the transmitter can be written as

ψL(p,µ) =

K
∑

k=1

λkRk −

L
∑

l=1

µlpl|gjl|
2
, (9)

where λk and Rk are the unit price for the secrecy rate and

the achievable secrecy rate at the kth user, respectively. In

addition, it is assumed that the unit price for the secrecy rate

for each user is fixed to a certain value. Hence, the transmitter

should determine the beamforming vector and decide on

the interference requirements at different eavesdroppers to

maximize its revenue. However, we are only interested in de-

termining the interference requirements at each eavesdroppers

for a given beamformer at the transmitter. This problem can

be formulated as follows:

Problem (B): max
p≽0

ψL(p,µ), (10)

where p = [p1 · · · pL] represents the power allocation policy

at all jammers.

Problem (A) and Problem (B) form a Stackelberg game,

in which the jammers (leaders) announce the interference

prices at each eavesdropper and then the transmitter (fol-

lower) determines the required amount of interference to each

eavesdropper. The solution of this game can be obtained

by investigating the Stackelberg equilibrium, at which the
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transmitter and the jammers come to an agreement on the

interference requirements and the interference price at each

eavesdropper. The deviation of either the transmitter or the

jammers from this equilibrium will introduce loss in their

revenues.

B. Stackelberg Equilibrium

The Stackelberg equilibrium for the proposed game is

defined as follows:

Stackelberg equilibrium: Let p∗ be the optimal solution for

Problem (B), whereas µ
∗ contains the best prices for Problem

(A). The solutions p∗ and µ
∗ define the Stackelberg equilib-

rium point if the following conditions are satisfied for any set

of p and µ:

ψL(p
∗
,µ

∗)≥ψL(p,µ
∗), φl(p

∗
l , µ

∗
l )≥φl(p∗l , µl), ∀ l.

V. STACKELBERG EQUILIBRIUM SOLUTION

In this section, we derive Stackelberg equilibrium solutions

for the proposed game described in the previous section

with different numbers of legitimate users and eavesdroppers.

First, the best response of the transmitter is derived in terms

of power allocation at the jammers for fixed interference

prices. Then, the optimal interference prices are obtained to

maximize the revenue of the jammers. In order to obtain

the Stackelberg equilibrium points, the best responses of the

follower (legitimate transmitter) and the leaders (jammers)

should be obtained by solving Problem (B) and Problem

(A), respectively. Since, the leaders (jammers) derive the

optimal interference prices determined by the interference

requirements from the legitimate transmitter, the best response

function of the follower should be derived first in terms of

the interference requirements. For the proposed game, the

Stackelberg equilibrium can be derived by obtaining p∗ from

Problem (B) first and then by obtaining the best interference

prices µ
∗ from Problem (A). In the following subsections, we

solve the proposed Stackelberg game with different numbers

of legitimate users and eavesdroppers.

A. Single Legitimate User and Single Eavesdropper

In this subsection, the proposed game is considered with a

single legitimate user and an eavesdropper. First, the optimal

interference requirement (best response) at the transmitter is

obtained to maximize its revenue for the fixed interference

price at the jammer. Then, a Stackelberg equilibrium is derived

for this game where both the legitimate transmitter and jammer

attain an equilibrium by achieving their maximum revenues.

Fixed Interference Price

Here, the optimal interference requirement is obtained for a

fixed interference price at the jammer. For a given beamformer

at the transmitter, the achievable secrecy rate of the legitimate

user in the presence of an eavesdropper is defined as

RSL−SE = log(1 + β0)−log

(

1 +
β1

σ2
e + p1α1

)

, (11)

where

β0 =
wHh1h

H
1 w

σ2
, β1 = w

H
g1g

H
1 w, α1 = |gj1|

2
. (12)

Hence, the optimal interference requirement at the eavesdrop-

per can be obtained by solving the following optimization

problem:
max
p1≥0

λ1RSL−SE − µ1p1α1, (13)

where p1 is the power allocation policy at the corresponding

jammer. This problem is convex and the corresponding proof

has been provided in the next subsection. Hence, the optimal

power allocation can be obtained through standard interior

point methods [44]. However, we derive the closed-form

solution for the power allocation p1 to realize the Stackelberg

equilibrium in the following subsection.

Stackelberg Game

In this subsection, we derive the Stackelberg equilibrium

with a legitimate user and an eavesdropper. To obtain this

equilibrium, the best response (i.e., p∗1) of the follower (trans-

mitter) is derived for a given interference price (µ1), since the

leader (jammer) derives its best response from the interference

requirement decided by the follower (transmitter). Note that a

closed-form solution for the best response should be obtained

to derive the Stackelberg equilibrium of the proposed game.

The best response of the follower can be obtained by solving

the following problem:

max
p1≥0

ψSL-SE(p1, µ1), (14)

where ψSL-SE(p1, µ1) is the revenue function for the transmitter

and is defined in (15) at the top of the next page. λ1 and µ1 are

the unit prices for the secrecy rate at the legitimate user and

the price for the interference introduced at the eavesdropper.

The optimal interference requirement for a given w and µ1

can be obtained by solving the following problem:

max
p1≥0

λ1

[

log(1+β0)−log

(

1 +
β1

σ2
e + p1α1

)]

−µ1p1α1,(16)

where

β0 =
wHh1h

H
1 w

σ2
1

, β1 = w
H
g1g

H
1 w and α1 = |gj1|

2
. (17)

Lemma 2: The optimal interference requirement from the

jammer with a given interference price µ1 is given by

p
∗
1 =

1

α1





√

β2
1

4
+
λ1β1

µ1
−

(2σ2
e + β1)

2





+

(18)

Proof: Please refer to Appendix B. �

Corollary 1: With a given w and λ1, the interference

price µ1 is bounded as follows:

µ1 ≤
λ1β1

σ2
e (σ2

e + β1)
. (19)

Since p1 ≥ 0,
√

β2
1

4
+
λ1β1
µ1

≥ (2σ2
e + β1)

2
⇒ µ1 ≤ λ1β1

σ2
e (σ

2
e + β1)

.(20)

We have thus obtained the optimal interference requirement at

the eavesdropper to maximize the revenue of the legitimate

transmitter. The jammer should announce the optimal unit
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ψSL-SE(p1, µ1) = λ1

[

log

(

1 +
wHh1h

H
1 w

σ2
1

)

− log

(

1 +
wHg1g

H
1 w

σ2
e + p1α1

)]

− µ1p1α1 (15)

interference price µ1 to maximize its revenue by selling the

interference to the transmitter. The optimal unit interference

price can be obtained by solving the following optimization

problem:
max
µ1≥0

φ1(p
∗
1, µ1) = µ1p

∗
1α1 (21)

Lemma 3: The optimal unit interference price µ1 is given as

follows:

µ
∗
1 =

c2

2c1

[

c0
√

c20 − c1
− 1

]

, (22)

where

c0 =

(

2σ2
e + β1

)

2α1
, c1 =

β2
1

4α2
1

and c2 =
λ1β1

α2
1

. (23)

Proof: Please refer to Appendix C. �

Hence, a Stackelberg equilibrium for the proposed game with

a single legitimate user and an eavesdropper is (p∗1, µ
∗
1). Any

deviation from this equilibrium point will cause loss to both

the follower (legitimate transmitter) and leader (jammer).

Hence, both of them will operate at this Stackelberg

equilibrium to maximize their revenues.

Proposition 1: There is a unique Nash equilibrium for

the proposed game and the derived Stackelberg equilibrium

solution achieves this unique Nash equilibrium.

Proof: As mentioned before, the revenue function of

the legitimate transmitter is a concave function of the power

allocation policy at the jammer. Hence, the optimal and

unique jammer power allocation policy has been derived for

a given interference price. Similarly, the revenue function

of the jammer is also a concave function in terms of the

interference price which results in an optimal and unique

interference price. Since, both solutions are unique and

optimal, this equilibrium achieves a unique Nash equilibrium

for the proposed game. �

B. Multiple Legitimate Users and Single Eavesdropper

In this subsection, we extend the proposed game to the sce-

nario with multiple legitimate users and a single eavesdropper.

As in the previous subsection, first, the optimal interference

requirement is obtained for a fixed interference price and then,

a Stackelberg equilibrium is derived for the proposed game.

Fixed Interference Price

The achievable secrecy rate of the ith user can be defined

as

R
(i)
ML−SE = log(1 + βi)−log

(

1 +
βe

σ2
e + p2α1

)

, (24)

where

βi =
wHhih

H
i w

σ2
, βe = w

H
g1g

H
1 w α1 = |gj1|

2
. (25)

The optimal power allocation policy at the jammer for a fixed

interference price can be formulated as

max
p1≥0

K
∑

i=1

λiR
(i)
SL−ME − µ1p2α1, (26)

Lemma 4: The optimal power allocation policy at the jammer

to maximize the revenue at the legitimate transmitter is given

by

p
∗
2 =

1

α1









√

√

√

√β2
e

4
+
βe

(

∑K

i=1 λi

)

µ1
−

(2σ2
e + βe)

2









+

(27)

Proof: The proof is similar to that of Lemma 2. �

Stackelberg Game

In order to derive the Stackelberg equilibrium with multiple

legitimate users and an eavesdropper, the best response of

jammer should be obtained by solving the following problem:

max
µ2≥0

φ1(p
∗
2, µ2) = µ2p

∗
2α1 (28)

Lemma 5: The optimal unit interference price µ2 is given as

follows:

µ
∗
2 =

c̄2

2c1

[

c0
√

c20 − c1
− 1

]

, (29)

where

c0 =

(

2σ2
e + βe

)

2α1
, c1 =

β2
e

4α2
1

and c̄2 =
βe

∑K

i=1 λi

α2
1

. (30)

Proof: The proof is similar to that of Lemma 3. �

Hence, the Stackelberg equilibrium of the proposed game

with multiple legitimate users and single eavesdropper is

defined as (p∗2, µ
∗
2).

C. Single Legitimate User and Multiple Eavesdroppers

Here, the proposed game is investigated with a single

legitimate user and multiple eavesdroppers. This problem is

different from the above problems due to the fact that there are

the multiple active eavesdroppers. As in the previous subsec-

tion, first the fixed-interference scenario is solved, followed by

the derivation of the Stackelberg equilibrium of the proposed

game.

Fixed Interference Prices

The achievable secrecy rate with multiple eavesdroppers can

be defined as

RSL−ME = log(1 + β0)− max
1≤i≤L

log

(

1 +
βi

σ2
e + piαi

)

, (31)

where

β0 =
wHh1h

H
1 w

σ2
, βi = w

H
gig

H
i w, αi = |gji|

2
. (32)

Note that all the eavesdroppers may not necessarily influ-

ence the achievable secrecy rate at the legitimate user. The

eavesdropper with the highest achieved rate will determine the
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achieved secrecy rate of the legitimate user. By introducing

jamming to this eavesdropper, the secrecy rate can be im-

proved by reducing the achievable rate at the corresponding

eavesdropper. After this jamming, another eavesdropper might

now have the highest achievable rate which will deteriorate

the achievable secrecy rate of the legitimate user. Hence, it

is important to jam this eavesdropper in order to match the

achieved rate of the previous eavesdropper. Therefore, only

a subset of eavesdroppers require the interference from the

jammers and the rest of them do not need any interference

from the jammers, since their impact on the secrecy rate is

not dominant. Here, we divide these eavesdroppers into two

sets, namely, super-active and non-super-active eavesdroppers.

The eavesdroppers who receive interference from the jammers

and determine the achievable secrecy rate of the legitimate

user are called super-active eavesdroppers and the rest of

them are defined as non-super active eavesdroppers. In order

to improve the revenue of the legitimate transmitter, the

optimal interference requirements problem can be formulated

as follows:
max
p≽0

λ1RSL−ME −
∑

i∈K

µipiαi, (33)

where the vector p = {pi\i ∈ K} represents the power

allocations of private jammers in the set K consisting of all

super-active eavesdroppers. The optimal interference require-

ments from private jammers corresponding to the super-active

eavesdroppers can be obtained by formulating the problem as

follows:

max
p≽0, ti, t0

λ1 [log(1 + β0)− t0]−
∑

i∈K

µipiαi

s.t. log

(

1 +
βi

σ2
e + piαi

)

≤ ti, i ∈ K

max{ti\i ∈ K} = t0, ti ≥ 0, i ∈ K.

(34)

The problem in (34) is convex in p and can be easily solved

by interior point methods. However, one issue that might arise

is how to obtain the super-active eavesdroppers’ set K from

all available active eavesdroppers. This can be addressed by

solving the following optimization problem:

max
p≽0, ti, t0

λ1 [log(1 + β0)− t0]−
L
∑

i=1

µipiαi

s.t. log

(

1 +
βi

σ2
e + piαi

)

≤ ti, ∀ i

max{t1, · · · , tL} = t0, ti ≥ 0, ∀ i, (35)

where the super-active eavesdroppers’ set K is removed and

all the available eavesdroppers have been incorporated into

the optimization problem.

Proposition 2: At the optimal solution of (35), the achieved

rates of the super-active eavesdroppers (i.e., ti, i ∈ K)

will be equal and power allocations pis of non-super-active

eavesdroppers (i.e., i /∈ K) will be all zeros.

Proof : Assume that ti, i ∈ K are not equal. Let consider

the minimum ti = tmin < t0 from all ti, i = 1, · · · , L, and

the corresponding pi will be higher than that of tmin = t0.

Hence, the revenue of the transmitter (cost function of (35))

with ti = tmin will be less than that with ti = t0. Thus,

the achieved rates of the super-active eavesdroppers (i.e.,

ti, i ∈ K) will be equal at the optimal solution and the power

allocations strategy corresponding to the non-super-active

eavesdroppers (i.e., i /∈ K) will be zeros. �

Therefore, the optimal interference requirements from

the private jammers with fixed interference prices can be

obtained by solving the convex problem in (35).

Stackelberg Game

As in the previous subsections, this problem is formulated as

a Stackelberg game and the Stackelberg equilibrium is defined

for the proposed game. The best response of the transmitter

for a given set of interference prices can be determined by

solving the following problem:

max
p≽0

λ1RSL−ME −
∑

i∈K

µipiαi, (36)

where p represents power allocations of the private jammers

in the set K which is the set consisting of all the super-active

eavesdroppers. This problem can be formulated into a convex

problem as in (35) and the optimal power allocation strategy

can be obtained. However, it is necessary to find a closed-form

solution to derive a Stackelberg equilibrium for the proposed

game.

Lemma 6: The optimal power allocation policy at the ith

jammer is given by

p
∗
i =

1

αi

[

βi

γ∗
0

− σ
2
e

]+

, (37)

where

βi = wHgig
H
i w

γ∗0 =

∑K
i=1 µiβi+

√

∑K
i=1µiβi

(

4λ1+
∑K

i=1 µiβi

)

2λ1
(38)

Proof: Please refer to Appendix D. �

The optimal interference requirement has been derived

to maximize the transmitter’s revenue for a given set of

interference prices. However, the jammers should announce

their optimal interference prices to maximize their revenues.

The optimal interference price can be obtained by solving the

following problem:

max
µ≽0

L
∑

l=1

φi(p
∗
i , µi) =

L
∑

l=1

µip
∗
iαi. (39)

By substituting the optimal power allocations p∗i s in (37) in

terms of the interference prices µis, the above optimization

problem can be rewritten as

max
µ≽0









2λ1

∑K

i=1 µiβi

∑K

i=1 µiβi+

√

∑K

i=1µiβi

(

4λ1+
∑K

i=1 µiβi

)

− σ
2
e

K
∑

i=1

µi









+

(40)
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It is very difficult to find a closed-form solution for the optimal

interference prices µis and the problem in (40) generally must

be solved using existing numerical methods. However, we can

find a closed-form solution if we assume that each private

jammer announces the same interference prices (i.e., µ1 =
µ2 = · · · = µL = µ0). For this uniform interference price

scenario, the optimization problem in (40) can be modified as

max
µ0≥0









2λ1µ0

∑K

i=1 βi

µ0

∑K

i=1 βi+

√

µ0

∑K

i=1βi

(

4λ1+ µ0

∑K

i=1 βi

)

−Kσ
2
eµ0









+

(41)

Lemma 7: The optimal interference price µ∗
0 in (41) is given

by

µ
∗
0 =

1
2

[

−4λ1Kσ
2η1 + 2λ1

√

Kσ2η2 + 4K2σ4η21

]

Kσ2η2
(42)

where

η1 =

(

1 +
Kσ2

c̄2

)

, η2 =
(

c̄2 +Kσ
2)
, c̄2 =

K
∑

i=1

βi. (43)

Proof: Please refer to Appendix E. �

The Stackelberg equilibrium of the proposed uniform price

game with a single legitimate user and multiple eavesdroppers

is given by (p∗i ∀ i, µ∗
0). By using this equilibrium solution,

both the legitimate transmitter and the jammers achieve their

maximum revenues.

D. Multiple Legitimate Users and Multiple Eavesdroppers

In this subsection, the proposed game is extended to the

scenario with multiple legitimate users and multiple eaves-

droppers. As in the previous subsections, the fixed interference

price scenario and Stackelberg game are investigated.

Fixed Interference Prices

The achievable secrecy rate of the ith user can be defined

as

R
(i)
ML−ME = log

(

1 + β
(i)
0

)

− max
1≤i≤L

log

(

1 +
βi

σ2
e + piαi

)

, (44)

where

β
(i)
0 =

wHhih
H
i w

σ2
, βi = w

H
gig

H
i w. (45)

As mentioned in the previous subsection, all the eavesdroppers

might not be active due to the different achieved rates. By

considering only super-active eavesdroppers, the optimal inter-

ference requirements can be obtained by solving the following

problem:

max
p≽0

K
∑

i=1

λiR
(i)
SL−ME −

∑

i∈K

µipiαi, (46)

where the vector p represents power allocations of private

jammers in the set K which is the set consisting of all the

active eavesdroppers. As in the previous subsection, the opti-

mal interference requirements can be obtained by considering

both super-active and non-super-active eavesdroppers through

the following problem:

max
p≽0, ti, t0

K
∑

i=1

λi

[

log
(

1 + β
(i)
0

)

− t0

]

−
L
∑

i=1

µipiαi

s.t. log

(

1 +
βi

σ2
e + piαi

)

≤ ti, ∀ i

max{t1, · · · , tL} = t0, ∀ i, ti ≥ 0, ∀ i,(47)

At the optimal solution of (47), the achieved rates of the

super-active eavesdroppers will be equal and power allocations

corresponding to the non-super-active eavesdroppers will be

zeros, where the corresponding proof is similar to that of

Proposition 2.

Stackelberg Game

Here, we solve the Stackelberg game for the scenario with

multiple legitimate users and multiple eavesdroppers. The

derivation of the Stackelberg equilibrium is similar to that

of the scenario with a single legitimate user and multiple

eavesdroppers. The best response of the legitimate transmitter

can be obtained by solving the following problem:

max
p≽0

K
∑

i=1

λiR
(i)
ML−ME −

∑

i∈K

µipiαi, (48)

where the vector p consists of all the power allocations of

the jammers corresponding to the super-active eavesdroppers.

Lemma 8: The optimal power allocation strategy at the

ith jammer is given by

p
∗
iML−ME

=
1

αi

[

βi

γ1
− σ

2
e

]+

, (49)

where

βi = wHgig
H
i w

γ1=

∑K
i=1 µiβi+

√

∑K
i=1µiβi

(

4
∑K

i=1 λi+
∑K

i=1 µiβi

)

2
∑K

i=1 λi

Proof: The proof is similar to that of Lemma 6. �

For this interference requirement, the jammers should

determine their optimal interference prices to maximize their

revenues which can be obtained by solving the following

problem:

max
µ≽0

K
∑

i=1

φi(p
∗
i , µi) =

L
∑

i=1

µip
∗
iαi. (50)

However, it is difficult to find a closed-form optimal solution

for the problem in (50) with different interference prices µis

at each jammer. In the case of the uniform interference price

(i.e.,µ1 = µ2 = · · · , µL = µ0), the problem in (50) can be

modified as follows:

max
µ0≥0

2µ0c̄3c̄2

µ0c̄2+
√

µ0c̄2 (4c̄3+ µ0̄c2)
−Kσ

2
eµ0 (51)

where

c̄2=

K
∑

i=1

βi, c̄3=

K
∑

i=1

λi. (52)
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Lemma 9: The optimal interference price µ∗
0 is given by

µ
∗
ML−ME =

1
2

[

−4Kσ2c̄3η1 + 2c̄3
√

Kσ2η2 + 4K2σ4η21

]

Kσ2η2
(53)

where

η1=1 +
Kσ2

c̄2
, η2= c̄2 +Kσ2. (54)

Proof: The proof is similar to that of Lemma 7. �

Hence, a Stackelberg equilibrium of the proposed game

with multiple legitimate users and multiple users is defined

by (p∗iML−ME
, ∀ i, µ∗

ML−ME) which provides the maximum

revenues for both the legitimate transmitter and the private

jammers.

VI. SIMULATION RESULTS

In this section, we provide simulation results to support the

theoretical results derived in the previous sections. In order

to evaluate the performance of the proposed schemes, we

consider a multicasting secrecy network in which the trans-

mitter broadcasts the same information to all the legitimate

users in the presence of multiple eavesdroppers. In addition,

private jammers are employed to confuse the eavesdroppers

by introducing interference in order to improve the secrecy

rates at the legitimate users. The legitimate transmitter is

equipped with three antennas, whereas the legitimate users

and the eavesdroppers have a single-antenna. The unit secrecy

rate price has been set to 5 (i.e., λ1 = 5). In this secrecy

network, all channels have been generated using zero-mean

circularly symmetric independent and identically distributed

complex Gaussian random variables. The noise power at all

the terminals has been assumed to be 0.1.

A. Power Minimization

In this subsection, we provide simulation results to support

the closed-form results derived in (3) for the scenario with

a single legitimate user and an eavesdropper. As mentioned

before, the original power minimization problem can be

formulated into a convex optimization (SOCP) framework.

However, we derived a closed-form solution in (3). We have

obtained the required transmit power and the corresponding

beamformer based on the closed-form solution as well as the

convex optimization framework for different sets of channels

as provided in Table 1 where the target secrecy rate has been

set to 3.5. As seen in Table 1, both results are the same which

validates the accuracy of the closed-form solution in (3). Due

to space limitations, the performance for the corresponding

beamformers as well as the simulation results for the case

with multiple legitimate users and multiple eavesdroppers are

not provided here.

B. Fixed Interference Prices

In this subsection, we evaluate the performance of the

proposed schemes with private jammers, where the legitimate

transmitter is charged with fixed interference prices. The

simulation results are provided with different numbers of

legitimate users and eavesdroppers.

Channels Required Transmit Power
Closed Form Convex Optimization

Channel 1 1.1610 1.1610

Channel 2 1.3431 1.3431

Channel 3 1.2069 1.2069

Channel 4 0.7455 0.7455

Channel 5 0.6082 0.6082

TABLE 1: The required transmit power for the closed-form

and convex optimization based solutions.
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Fig. 3: The revenue of the legitimate transmitter against

power allocation at the private jammer for different channels

with fixed interference price (i.e., µ1 = 1).

Single Legitimate User and Single Eavesdropper

A secrecy network with a single legitimate user and an

eavesdropper is considered in which a private jammer in-

troduces interference to the eavesdropper by charging the

legitimate transmitter with a price of one (i.e., µ1 = 1)

for unit interference. First, we validate the concavity of the

revenue function of the legitimate transmitter (f(p1) in (60))

in terms of the power allocation (p1) at the private jammer and

then simulation results based optimal power allocations are

obtained to support the theoretical derivations. Figure 3 shows

the revenue function of the legitimate transmitter for different

sets of channels for a fixed interference price. As seen in

Figure 3, the revenue functions are concave for different sets of

channels, which validates the proof of the convexity of f(p1)
provided in Appendix B. On the other hand, Table 2 presents

the optimal power allocation policy at the private jammer, the

achieved secrecy rate and the corresponding revenue of the

legitimate transmitter obtained through theoretical and simu-

lation results. As seen in Table 2, the theoretical and simulation

results are identical, which demonstrates the accuracy of the

derivations in (18). In addition, the optimal power allocations

at the jammer corresponding to the maximum revenue at

transmitter in Figure 3 is the same as the theoretical results in

Table 2 for the five channels considered in this simulation.

Hence, these results confirm the optimality of the derived

results for the scenario of the single legitimate user and the

single eavesdropper.
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Channels
Power Allocation:

Jammer
Achieved

Secrecy Rate
Revenue:

Legitimate Transmitter
Derivation Simulation Derivation Simulation Derivation Simulation

Channel 1 1.1809 1.2000 1.6445 1.6458 7.8207 7.8206

Channel 2 1.5019 1.5000 2.0534 2.0531 8.9325 8.9325

Channel 3 3.5984 3.6000 2.0505 2.0507 7.4198 7.4198

Channel 4 0.9452 1.0000 1.9921 2.0041 8.6606 8.6583

Channel 5 2.4107 2.4000 1.8168 1.8152 7.2427 7.2427

TABLE 2: The optimal power allocation policy of the private jammers with fixed interference prices µ1 = 1, achievable

secrecy rates and revenues of legitimate transmitter for single legitimate transmitter and single eavesdropper obtained from

the closed-form solution and simulation for different sets channels.

Channels
Power Allocation:

Jammer 1
Power Allocation:

Jammer 2
Achieved

Secrecy Rate
Revenue:

Legitimate Transmitter
Derivation Simulation Derivation Simulation Derivation Simulation Derivation Simulation

Channel 1 0.3324 0.3324 0.7457 0.7458 2.7083 2.7241 13.0855 12.8145

Channel 2 0.1264 0.1264 0.5729 0.5430 3.3334 3.3223 15.2002 15.2016

Channel 3 3.3886 3.3889 1.0284 1.0284 2.8085 2.8234 13.4161 13.4203

Channel 4 1.1613 1.1614 1.0441 1.0442 2.9185 2.9296 13.7907 13.7928

Channel 5 0.2778 0.2778 2.0209 2.0211 3.2938 3.2949 15.1031 15.1031

TABLE 3: The optimal power allocation policy of the private jammers with fixed interference prices µ1 = 1 and µ2 = 3,

achievable secrecy rates and revenues of legitimate transmitter. The unit price for the achieved secrecy rate at the legitimate

user is 5 (λ1 = 5).

Single Legitimate User and Multiple Eavesdroppers

Here, we consider a multicasting secrecy network with a

single legitimate user and two eavesdroppers. The price used

by the jammers to charge the legitimate transmitter is 1 and 3

(i.e., µ1 = 1, µ2 = 3), respectively, for unit interference. Simi-

lar to the previous simulations, first, we validate the convexity

of the revenue function of the legitimate transmitter in (35)

in terms of power allocations (i.e., p1 and p2) at the private

jammers for different sets of channels. Then, the correctness of

the derived theoretical results is supported through numerical

results. Figure 4 depicts the revenue functions of the legitimate

transmitter for Channel 1 provided in Table 3 which confirms

the convexity of the revenue function in terms of power

allocation policy at the jammers. In addition, Table 3 provides

the theoretical and simulation based optimal power allocations

at the private jammers which maximize the revenue of the

transmitter for five sets of channels. As seen in Table 3, the

theoretical and simulation results are indistinguishable, which

validates the derivation of the closed-form power allocations

in (37). On the other hand, the maximum revenue from Figure

4 is the same as that of Channel 1 in Table 3 with the same

power allocations at the private jammers. This confirms the

optimality of the results obtained in Table 3 for different sets

of channels. Note that we have only presented the revenue of

the transmitter for Channel 1 in Figure 4; however, the rest of

the channels in Table 3 provide similar results. We have not

presented those results here due to space limitations.

C. Stackelberg Game

In this subsection, we validate the equilibrium of the pro-

posed Stackelberg games for different numbers of legitimate

users and eavesdroppers.

Single Legitimate User and Single Eavesdropper

To support the derived Stackelberg equilibrium, a secrecy

network with a single legitimate user and an eavesdropper is
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Fig. 4: The revenue of the legitimate transmitter for Channel

1 with different power allocations at both the private

jammers for fixed interference prices.

considered. First, for different sets of channels, the revenue

function of the jammer is evaluated with different interference

prices as shown in Figure 5. These results confirm that

the jammer revenue function is concave with respect to the

interference price (i.e., µ1) and support the proof provided in

Appendix C. The choices for the optimal interference prices

and the maximum revenues of the jammers are provided in

Table 4, which verifies the accuracy of the analytical results.

The Stackelberg equilibria (p∗1, µ
∗
1) for the proposed game are

also presented in Table 4. These validate the derived unique

Stackelberg equilibrium of the game through simulation re-

sults, where both the transmitter and the private jammer will

come to an agreement to maximize their revenues.
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Channels Interference Price (µ1): Revenue of Jammer:
Stackelberg Equilibrium:

(p∗1, µ
∗
1)

Derivation Simulation Derivation Simulation

Channel 1 4.4313 4.4000 0.5534 0.5530 (0.3670, 4.4313)
Channel 2 8.5462 8.5000 2.2242 2.2240 (0.2929, 8.5462)
Channel 3 5.6251 5.6000 3.6714 3.6715 (0.8291, 5.6251)
Channel 4 8.5640 8.6000 2.1736 2.1735 (0.1863, 8.5640)
Channel 5 7.8066 7.8000 2.8496 2.8495 (0.4779, 7.8066)

TABLE 4: The optimal interference prices and revenues of the private jammer as well as Stackelberg equilibrium for

different sets of channels. The unit price for the achieved secrecy rate at the legitimate user is 5 (λ1 = 5).

Channels Interference Price: Revenue of Jammers:
Stackelberg Equilibrium:

(p∗1, p
∗
2, µ

∗
0)

Derivation Simulation Derivation Simulation

Channel 1 4.0721 4.1000 1.5381 1.5378 (0.0677, 0.3070, 4.0721)
Channel 2 2.1647 2.2000 0.5372 0.5378 (0.3076, 0.6900, 2.1647)
Channel 3 2.6639 2.7000 0.7088 0.7084 (0.1501, 1.0917, 2.6639)
Channel 4 3.1023 3.1000 0.8887 0.8892 (0.1501, 0.6996, 3.1023)
Channel 5 4.0322 4.0000 1.4932 1.4935 (2.5895, 0.7858, 4.0322)

TABLE 5: The optimal interference prices and revenues of the private jammers as well as Stackelberg equilibrium for

different sets of channels. The unit price for the achieved secrecy rate at the legitimate user is 5 (λ1 = 5).
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Fig. 5: The revenue of the jammer with a single legitimate

user and a single eavesdropper for different sets of channels.

Single Legitimate User and Multiple Eavesdroppers

In order to validate the proposed Stackelberg equilibrium,

the same secrecy network as in the fixed interference price

case is considered with a single legitimate user and multiple

eavesdroppers. First, we evaluate the revenue function of

the legitimate transmitter (f(γ0)) in (76) in terms of γ0 for

different sets of channels. Figure 6 plots the revenues of the

legitimate transmitter versus γ0 with fixed interference prices

(i.e., µ1 = 1, µ2 = 3) for different sets of channels. This

confirms the derivation of the convexity of f(γ0) (Appendix

D) in terms of γ0. In addition, the achievable maximum

revenues are the same as the derived solutions represented

in Table 5. Next, we evaluate the achievable revenues of the

jammers with different interference prices where it is assumed

that the all the jammers introduce the same interference price

(i.e., µ1 = µ2 = µ0). Figure 7 plots the revenues of the

jammers versus the interference price µ0 for different sets

of channels which confirms the convexity of the revenue

of the jammers in the interference price µ0 (Appendix E).

Table 5 provides the theoretical and simulation based optimal

interference prices (i.e., µ∗
0s) and corresponding revenues of

the jammers for the proposed Stackelberg game with different

sets of channels, where the theoretical results are the same as

the simulated results. In addition, Stackelberg equilibria of the

proposed game are also provided in Table 5. The deviation of

the legitimate transmitter and jammers from this equilibrium

solution will introduce a loss in their corresponding revenues

as evidenced by Figures 6 and 7.
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Fig. 6: The revenue of the transmitter in terms of γ0 with

fixed interference prices for different sets of channels.

VII. CONCLUSIONS

In this paper, we have proposed optimization techniques

for a multicasting secrecy network. For the scenario with a

single legitimate user and a single eavesdropper, a closed-

form solution has been derived for the power minimization

problem based on the corresponding dual problem, whereas

it was formulated as a semidefinite programming problem in
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Fig. 7: The revenue of the jammer with different interference

prices for different sets of channels.

the case with multiple legitimate users and multiple eaves-

droppers. On the other hand, optimization problems have been

considered for a multicasting secrecy network with jammers

to improve the achievable secrecy rates. These private jam-

mers introduce charges for their jamming service. For fixed

interference prices, we have derived the optimal interference

requirements for different numbers of legitimate users and

eavesdroppers. For non-fixed interference prices, we have

formulated the optimization problem into a Stackelberg game

in which jammers and the transmitter are the leaders and

follower, respectively. A Stackelberg equilibrium has been

developed for the proposed game with different numbers of

legitimate users and eavesdroppers. To validate the derived

theoretical results, simulation results have been provided for

a variety of scenarios.

APPENDIX A: PROOF OF LEMMA 1

The original power minimization problem in (2) can be

written without of loss of generality as

min
p,w̃

pw̃Hw̃

s.t.
w̃H

(

I+ pĥ1ĥ
H
1

)

w̃

w̃H
(

I+pĝ1ĝ
H
1

)

w̃
≥2R̄s , w̃Hw̃=1, p≥0,(55)

where ĥ1 = h1

σ1

and ĝ1 = g1

σe

. In order to obtain the optimal

solution of (55) (i.e., w̃∗, p∗), we derive the corresponding

dual problem. The Lagrangian of (2) can be defined as

L(w,λs)=wHw+λs

[

2R̄s

(

1+wH ĝ1ĝ
H
1 w

)

−
(

1+wH ĥ1ĥ
H
1 w

)]

,

where λs is the Lagrange multiplier associated with the

secrecy rate constraint. The corresponding dual problem can

be defined as

max
λs≥0

λs
(

2Rs−1
)

, s.t. Z,I−λs
(

ĥĥH−2R̄s ĝH
1 ĝ1

)

≽0.(56)

The constraint in (56) means that the matrix Z should have

at least one zero eigenvalue. On the other hand, λs can take

the maximum to satisfy the positive semidefinite constraint in

(56) as

λ
∗
s =

1

λmax

(

ĥĥH − 2R̄s ĝH
1 ĝ1

) , (57)

where λmax(·) denotes the maximum eigenvalue of its ar-

gument. The original problem in (2) can be formulated as

a convex problem. Hence, strong duality holds between the

original problem in (2) and the corresponding dual problem

in (56). The required minimum power to achieve the secrecy

rate constraint is

p
∗ = λ

∗
s

(

2R̄s − 1
)

. (58)

On the other hand, the optimal w should be in the null space

of Z:

w1 = vmax

(

ĥĥH − 2Rs ĝH
1 ĝ1

)

, w̃∗ =
w1

∥w1∥2
, (59)

where vmax(·) denotes the the eigenvector corresponding to

the maximum eigenvalue. Hence the optimal solution of (2)

can be expressed as in (3). This completes the proof for Lemma

1. �

APPENDIX B: PROOF OF LEMMA 2

We first show that the problem in (16) is a convex problem

by showing that the following function is concave in p1:

f(p1)=λ1

[

log(1+β0)−log

(

1+
β1

σ2
e+p1α1

)]

−µ1p1α1. (60)

The concavity of this function can be shown by finding the

second derivative respect to p1 as follows:

∂f(p1)

∂p1
=

λ1α1β1

(σ2
e + p1α1 + β1)(σ2

e + p1α1)
− µ1α1 (61)

∂2f(p1)

∂p21
= −

λ1α1β1
(

2α2
1p1 + 2α1σ

2
e + β1α1

)

[α2
1p

2
1 + (2σ2

e + β1)α1p1 + β1σ2
e + σ4

e ]
2 . (62)

Since
∂2f(p1)

∂p2

1

< 0, f(p1) is a concave function in terms of p1.

Hence the optimal solution should satisfy the KKT conditions

as follows [44]:

∂f(p1)

∂p1
=

λ1α1β1

(σ2
e + p1α1 + β1)(σ2

e + p1α1)
− µ1α1 = 0. (63)

By arranging the terms of (63), we obtain the following:

α12p21 +
(

2σ2
e + β1

)

α1p1 + β1σ
2
e + σ

4
e −

λ1β1

µ1
= 0. (64)

By solving this equation, the optimal power allocation policy

p1 at the jammer is obtained as p1 ≥ 0,

p
∗
1 =

1

α1





√

β2
1

4
+
λ1β1

µ1
−

(2σ2
e + β1)

2





+

. (65)

This completes the proof of Lemma 2. �

APPENDIX C: PROOF OF LEMMA 3

The problem in (21) can be proven to be a convex problem

by showing the following function is concave in the interfer-

ence price µ1 for p∗1(> 0) in (18):

f(µ1) = µ1

(
√

c1 +
c2

µ1
− c0

)

, (66)

where c0, c1 and c2 are defined in (23). This function can be

shown to be concave by finding its second derivative respect
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to µ1 as follows:

∂f(µ1)

∂µ1
=

(

c1 +
c2

µ1

) 1

2

−
c2

2µ1

(

c1 +
c2

µ1

)− 1

2

− c0 (67)

∂2f(µ1)

∂µ2
1

= −
c22
4µ3

1

(

c1 +
c2

µ1

)− 3

2

. (68)

Hence the second derivative of f(µ1) with respect to µ1 is

negative (i.e.,
∂2f(µ1)

∂µ2

1

< 0), and f(µ1) is a concave function

in µ1. In addition, the optimal interference price µ∗
1 should

satisfy the KKT conditions as follows [44]:

∂f(µ1)

∂µ1
=

(

c1 +
c2

µ1

) 1

2

−
c2

2µ1

(

c1 +
c2

µ1

)− 1

2

− c0 = 0. (69)

By rearranging the (69), we obtain the following:

4c1
(

c
2
0 − c1

)

µ
2
1 + 4c2

(

c
2
0 − c1

)

µ1 − c
2
2 = 0. (70)

By solving the above equation, the optimal interference price

µ∗
1 to maximize the jammer’s revenue is obtained as µ1 > 0,

µ
∗
1 =

c2

2c1

[

c0
√

c20 − c1
− 1

]

. (71)

This completes the proof of Lemma 3. �

APPENDIX D: PROOF OF LEMMA 6

With the optimal power allocation in (34), the achieved rates

of the super-active eavesdroppers (i.e., i ∈ K) will be equal

as stated in Proposition 2. Hence, the power allocation at the

ith private jammer can be written as

βi

σ2
e + piαi

= γ0,=⇒ pi =
1

αi

[

βi

γ0
− σ

2
e

]+

. (75)

The original optimization problem in (34) can be formulated

in terms of γ0 as follows:

max
γ0≥0

λ1 [log(1 + β0)−log(1+γ0)]−
1

γ0

K
∑

i=1

µiβi+σ
2
e

K
∑

i=1

µi

, f(γ0) (76)

The optimal γ∗0 should satisfy the KKT conditions and there-

fore we obtain the following:

∂f(γ0)

∂γ0
=− λ1

1+γ0
+
τ

γ20
,
∂2f(γ0)

∂γ20
=

λ1
(1+γ0)2

− 2τ

γ30
, (77)

where τ =
∑K

i=1µiβi. The function f(γ0) is concave if the

following condition is satisfied:

γ3
0

(1 + γ0)2
≤

2τ

λ1
. (78)

Hence, the optimal γ∗0 can be obtained if λ1 is large enough

to satisfy the above condition. This means that the legitimate

transmitter should charge the legitimate user a reasonable

price to make a profit by introducing interference to the

eavesdroppers with the help of the private jammers. However,

the optimal γ∗0 should satisfy the KKT conditions
∂f(γ0)
∂γ0

= 0.

The optimal γ∗0 can be obtained by solving the following

equation:

λ1γ
2
0 − γ0

K
∑

i=1

µiβi−

K
∑

i=1

µiβi = 0, (79)

and γ0 > 0,

γ
∗
0 =

∑K

i=1 µiβi +

√

∑K

i=1 µiβi

(

4λ0+
∑K

i=1 µiβi

)

2λ1
. (80)

Hence the optimal power allocation policy of the ith can be

written as

p
∗
i =

1

αi

[

βi

γ∗
0

− σ
2
e

]+

. (81)

This completes the proof of Lemma 6. �

APPENDIX E: PROOF OF LEMMA 7

We first show that the revenue function of the jammers in

(41) is concave in terms of µ0 for pi > (0) in (37) and then we

derive the optimal interference price µ∗
0. The revenue function

of the jammers is defined as

f(µ0) =
2λ1µ0c̄1

µ0c̄1+
√

µ0c̄1 (4λ1+ µ0̄c1)
−Kσ

2
eµ0, (82)

where c̄1 =
∑K

i=1 βi. The concavity of f(µ0) can be proven

by finding the second derivative with respect to µ0 as in (72),

which is at the top of the next page. In order to prove that the

function in (82) is concave, we need to show that the second

derivative (i.e.,
∂2f(µ0)

∂µ2

0

) is negative. This has been proved in

(73) and (74) which are at the top of the next page. This

confirms that the revenue function of the jammers is concave

in µ0 and the optimal µ∗
0 should satisfy the KKT conditions

∂f(µ0)
∂µ0

= 0 [44]:

2λ1c̄1
µ0c̄1 + q

−
2λ1c̄1µ0

(

c̄1 +
c̄2
1
µ0+2λ1c̄1
µ0c̄1+q

)

(µ0c̄1 + q)
2 = 0, (83)

µ
∗
0 =

1
2

[

−4λ1Kσ
2η1 + 2λ1

√

Kσ2η2 + 4K2σ4η21

]

Kσ2η2
.

This completes the proof of Lemma 7. �
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[3] X. Tang, R. Liu, P. Spasojević, and H. V. Poor, “Interference assisted se-

cret communication,” IEEE Trans. Inf. Theory, vol. 57, no. 5, pp. 3153–
3167, May 2011.

[4] A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. Journ., vol. 54,
pp. 1355–1387, Jan. 1975.

[5] I. Csiszár and J. Körner, “Broadcast channels with confidential mes-
sages,” IEEE Trans. Inf. Theory, vol. 24, pp. 339–348, May 1978.

[6] T. Liu and S. Shamai, “A note on the secrecy capacity of the multiple-
antenna wiretap channel,” IEEE Trans. Inf. Theory, vol. 55, no. 6,
pp. 2547–2553, Jun. 2009.

[7] A. Khisti and G. W. Wornell, “Secure transmission with multiple
antennas II: The MIMOME wiretap channel,” IEEE Trans. Inf. Theory,
vol. 56, no. 11, pp. 5515–5532, Nov. 2010.

[8] J. Li and A. P. Petropulu, “On ergodic secrecy rate for Gaussian MISO
wiretap channels,” IEEE Trans. Wireless Commun., vol. 10, no. 4,
pp. 1176–1187, Apr. 2011.

[9] Q. Li and W.-K. Ma, “Optimal and robust transmit designs for MISO
channel secrecy by semidefinite programming,” IEEE Trans. Signal

Process., vol. 59, no. 8, pp. 3799–3812, Aug. 2011.
[10] S. A. A. Fakoorian and L. A. Swindlehurst, “Full rank solutions for

the MIMO Gaussian wiretap channel with an average power constraint,”
IEEE Trans. Signal Process., vol. 61, no. 10, pp. 2620–2631, May. 2013.



14

∂f(µ0)

∂µ0
=

2λ1c̄1

µ0c̄1 + q
−

2λ1c̄1µ0

(

c̄1 +
c̄2
1
µ0+2λ1 c̄1
µ0 c̄1+q

)

(µ0c̄1 + q)2
, where q =

√

µ0c̄1(4λ1 + µ0c̄1), c̄1 =

K
∑

i=1

βi

∂2f(µ0)

∂µ2
0

=
−4λ1c̄1

(

c̄1 +
c̄2
1
µ0+2λ1 c̄1

q

)

(c̄1µ0 + q)2
+

4λ1c̄1µ0

(

c̄1 +
c̄2
1
µ0+2λ1 c̄1

q

)2

(c̄1µ0 + q)3
−

2λ1c̄1µ0

(

c̄2
1

q
− (c̄1µ0+2λ1c̄1)

2

q3

)

(c̄1µ0 + q)2
(72)

∂2f(µ0)

∂µ2
0

=
−4λ1c̄

2
1q(q + c̄1µ0 + 2λ1)[q

2 − c̄1µ0(c̄1µ0 + λ1)]− 2λ1c̄
3
1µ0 (c̄1µ0 + q)

[

q2 − (c̄1µ0 + 2λ1)
2
]

q3 (c̄1µ0 + q)3
(73)

By substituting q =
√

µ0c̄1(4λ1 + µ0c̄1),=⇒
∂2f(µ0)

∂µ2
0

=
−12λ2

1c̄
3
1qµ0 (q + c̄1µ0 + 2λ1)− 8λ3

1c̄
3
1µ0 (c̄1µ0 + q)

q3 (c̄1µ0 + q)3
< 0 (74)

[11] K. Cumanan, Z. Ding, B. Sharif, G. Y. Tian, and K. K. Leung, “Secrecy
rate optimizations for a MIMO secrecy channel with a multiple-antenna
eavesdropper,” IEEE Trans. Veh. Technol., vol. 63, no. 4, pp. 1678–1690,
May, 2014.

[12] W. Xiang, S. L. Goff, M. Johnston, and K. Cumanan, “Signal mapping
for bit-interleaved coded modulation schemes to achieve secure com-
munications,” IEEE Wireless Commun. Lett., vol. 4, no. 3, pp. 249–252,
Jun. 2015.

[13] Z. Chu, K. Cumanan, M. Xu, and Z. Ding, “Robust secrecy rate
optimisations for multiuser multiple-input-single-output channel with
device-to-device communications,” IET Commun., vol. 9, no. 3, pp. 396–
403, 2015.

[14] Z. Chu, K. Cumanan, Z. Ding, M. Johnston, and S. L. Goff, “Robust
outage secrecy rate optimizations for a MIMO secrecy channel,” IEEE

Wireless Commun. Lett., vol. 4, no. 1, pp. 86–89, Feb. 2015.

[15] E. Tekin and A. Yener, “The general Gaussian multiple access and two-
way wiretap channels: Achievable rates and cooperative jamming,” IEEE

Trans. Inf. Theory, vol. 54, no. 6, pp. 2735–2751, Jun. 2008.

[16] J. Huang and L. A. Swindlehurst, “Cooperative jamming for secure
communication in MIMO relay networks,” IEEE Trans. Signal Process.,
vol. 59, no. 10, pp. 4871–4884, Oct. 2011.

[17] Z. Ding, K. K. Leung, D. L. Goeckel, and D. Towsley, “Opportunistic
relaying for secrecy communications: Cooperative jamming vs relay
chatting,” IEEE Trans. Wireless Commun., vol. 29, no. 10, pp. 2067–
2076, Jun. 2011.

[18] G. Zheng, I. Krikidis, J. Li, A. P. Petropulu, and B. Ottersten, “Improving
physical layer secrecy using full-duplex jamming receivers,” IEEE Trans.

Signal Process., vol. 61, no. 20, pp. 4962–4974, Oct. 2013.

[19] G. Zheng, L. C. Choo, and K. K. Wong, “Optimal cooperative jamming
to enhance physical layer security using relays,” IEEE Trans. Signal

Process., vol. 59, no. 3, pp. 1317–1322, Mar. 2011.

[20] Z. Chu, K. Cumanan, Z. Ding, M. Johnston, and S. Le Goff, “Secrecy
rate optimizations for a MIMO secrecy channel with a cooperative
jammer,” IEEE Trans. Veh. Technol., vol. 64, no. 5, pp. 1833–1847,
May, 2015.

[21] S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE

Trans. Wireless Commun., vol. 7, no. 6, pp. 2180–2189, Jun. 2008.

[22] Q. Li and W.-K. Ma, “Spatially selective artificial-noise aided transmit
optimization for MISO multi-eves secrecy rate maximization,” IEEE

Trans. Signal Process., vol. 61, no. 10, pp. 2704–2717, May 2013.

[23] W.-C. Liao, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “QoS-based transmit
beamforming in the presence of eavesdroppers: An optimized artificial-
noise-aided approach,” IEEE Trans. Signal Process., vol. 59, no. 3,
pp. 1202–1216, Mar. 2011.

[24] Y. Wu and K. Liu, “An information secrecy game in cognitive radio
networks,” IEEE Trans. Inf. Forensics Security, vol. 6, no. 3, pp. 831–
842, Sep. 2011.

[25] M. Yuksel, X. Liu, and E. Erkip, “A secure communication game with
a relay helping the eavesdropper,” IEEE Trans. Inf. Forensics Security,
vol. 6, no. 3, pp. 818–830, Sep. 2011.

[26] R. Zhang, L. Song, Z. Han, and B. Jiao, “Physical layer security for
two-way untrusted relaying with friendly jammers,” IEEE Trans. Veh.

Technol., vol. 61, no. 8, pp. 3693–3704, Oct., 2012.

[27] W. Saad, X. Zhou, B. Maham, T. Basar, and H. V. Poor, “Tree forma-
tion with physical layer security considerations in wireless multi-hop
networks,” IEEE Trans. Wireless Commun., vol. 11, no. 11, pp. 3980–
3991, Nov. 2012.

[28] A. Mukherjee and A. Swindlehurst, “Jamming games in the MIMO
wiretap channel with an active eavesdropper,” IEEE Trans. Signal

Process., vol. 61, no. 1, pp. 82–91, Jan. 2013.
[29] S. A. A. Fakoorian and A. L. Swindlehurst, “Competing for secrecy in

the MISO interference channel,” IEEE Trans. Signal Process., vol. 61,
no. 1, pp. 170–181, Jan. 2013.

[30] I. Stanojev and A. Yener, “Improving secrecy rate via spectrum leasing
for friendly jamming,” IEEE Trans. Wireless Commun., vol. 12, no. 1,
pp. 134–145, Jan. 2013.

[31] Q. Li and W. K. Ma, “Multicast secrecy rate maximization for MISO
channels with multiple multi-antenna eavesdroppers,” in Proc. 2011

IEEE Int. Conf. Commun, pp. 1–5, Kyoto, Japan, Jun. 2011.
[32] A. Shrestha, J. Jung, and K. Kwak, “Robust beamforming in cogni-

tive radio,” in Proc. International Symposium on Communications and

Information Technologies, pp. 814–817, Sep. 2013.
[33] T. Lin, K.-Z. Huang, and W.-Y. Luo, “A multicarrier-based physical

layer security scheme for the multicast systems,” in Proc. International

Conference on Information Science and Technology, pp. 1584–1587,
Mar. 2013.

[34] M. Li, S. Kundu, D. A. Pados, and S. N. Batalama, “Waveform design
for secure SISO transmissions and multicasting,” IEEE J. Sel. Areas

Commun., vol. 31, no. 9, pp. 1864–1874, Sep. 2013.
[35] X. Liu, F. Gao, G. Wang, and X. Wang, “Joint beamforming and

user selection in multicast downlink channel under secrecy-outage
constraint,” IEEE Commun. Lett., vol. 18, no. 1, pp. 82–85, Jan. 2014.

[36] P. K. Gopala, L. Lai, and H. E. Gammal, “On the secrecy capacity of
fading channels,” IEEE Trans. Inf. Theory, vol. 54, pp. 4687–4698, Oct.
2008.

[37] S. A. A. Fakoorian and L. A. Swindlehurst, “Solution for the MIMO
Gaussian wiretap channel with a cooperative jammer,” IEEE Trans.

Signal Process., vol. 59, no. 10, pp. 5013–5022, Oct. 2011.
[38] M. Dehghan, D. Goeckel, M. Ghaderi, and Z. Ding, “Energy efficiency

of cooperative jamming strategies in secure wireless networks,” IEEE

Trans. Wireless Commun., vol. 11, no. 9, pp. 3025–3029, Sept. 2012.
[39] E. A. Jorswieck and A. Wolf, “Resource allocation for the wire-tap

multi-carrier broadcast channel,” in Proc. Int. Conf. Telecommun., pp. 1–
6, 2008.

[40] J. Lin, A. P. Petropulu, and S. Weber, “Secrecy rate optimization under
cooperation with perfect channel state information,” in Proc. Asilomar

Conf. Sign., Syst. Comp., Pacific Grove, CA, pp. 824–828, Nov. 2009.
[41] J. Yang, I. M. Kim, and D. I. Kim, “Optimal cooperative jamming for

multiuser broadcast channel with multiple eavesdroppers,” IEEE Trans.

Wireless Commun., vol. 12, no. 6, pp. 2840–2852, Jun. 2013.
[42] N. Sidiropoulos, T. Davidson, and Z.-Q. Luo, “Transmit beamforming

for physical-layer multicasting,” IEEE Trans. Signal Process., vol. 54,
no. 6, pp. 2239–2251, Jun. 2006.

[43] Z.-Q. Luo, W.-K. Ma, A.-C. So, Y. Ye, and S. Zhang, “Applications of
convex optimization in signal processing and digital communication,”
IEEE Signal Process. Mag., vol. 27, no. 3, pp. 20–34, May, 2010.

[44] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.



15

Kanapathippillai Cumanan (M’10) received the
B.Sc. (Hons.) degree in electrical and electronic
engineering from the University of Peradeniya, Sri
Lanka, in 2006, and the Ph.D. degree in signal pro-
cessing for wireless communications from Lough-
borough University, Loughborough, U.K.,in 2009.

He is currently a Lecturer with the Department of
Electronics, University of York, U.K. He was with
the School of Electronic, Electrical and System En-
gineering, Loughborough University, U.K. He was a
Teaching Assistant with the Department of Electrical

and Electronic Engineering, University of Peradeniya, Sri Lanka, in 2006. In
2011, he was an Academic Visitor with the Department of Electrical and
Computer Engineering, National University of Singapore, Singapore. He was
a Research Associate with the School of Electrical and Electronic Engineering,
Newcastle University, U.K., from 2012 to 2014. His research interests include
physical layer security, cognitive radio networks, relay networks, convex
optimization techniques, and resource allocation techniques.

Dr. Cumanan was a recipient of an Overseas Research Student Award
Scheme from Cardiff University, Wales, U.K., where he was a Research
Student from 2006 to 2007.

Zhiguo Ding (S’03, M’05, SM’15) received the
B.Eng. degree in electrical engineering from the Bei-
jing University of Posts and Telecommunications, in
2000, and the Ph.D. degree in electrical engineering
from Imperial College London, in 2005. From 2005
to 2014, he was with Queens University Belfast,
Imperial College, and Newcastle University. Since
2014, he has been with Lancaster University as a
Chair Professor. From 2012 to 2016, he was also
with Princeton University as an Academic Visitor.
His research interests are 5G networks, game theory,

cooperative and energy harvesting networks, and statistical signal processing.
He serves as an Editor of the IEEE TRANSACTIONS ON COMMUNICA-
TIONS, the IEEE TRANSACTIONS ON VEHICULAR NETWORKS, the
IEEE WIRELESS COMMUNICATION LETTERS, the IEEE COMMUNI-
CATION LETTERS, and the Journal of Wireless Communications and Mobile
Computing. He received the best paper award at the IET Communcation Con-
ference on Wireless, Mobile and Computing, 2009, the IEEE Communication
Letter Exemplary Reviewer Award, 2012, and the EU Marie Curie Fellowship
2012-2014.

Mai Xu (M’10) received the B.S. degree from
Beihang University in 2003, M.S. degree from Ts-
inghua University in 2006 and Ph.D degree from
Imperial College London in 2010. From 2010-2012,
he was working as a research fellow in the Electrical
Engineering Department, Tsinghua University. Since
Jan. 2013, he has been with Beihang University as
an Associate Professor. During 2014 to 2015, he
was a visiting researcher of MSRA. His research
interests mainly include visual communication and
image processing. He has published more than 50

technical papers in international journals and conference proceedings. He is
the recipient of best paper awards of two IEEE conferences.

H. Vincent Poor (S’72, M’77, SM’82, F’87) re-
ceived the Ph.D. degree in EECS from Princeton
University in 1977. From 1977 until 1990, he was
on the faculty of the University of Illinois at Urbana-
Champaign. Since 1990 he has been on the faculty
at Princeton, where he is the Michael Henry Strater
University Professor of Electrical Engineering. From
2006 till 2016, he served as Dean of Princeton’s
School of Engineering and Applied Science. Dr.
Poor’s research interests are in the areas of statistical
signal processing, stochastic analysis and informa-

tion theory, and their applications in wireless networks and related fields.
Among his publications in these areas is the recent book Mechanisms and

Games for Dynamic Spectrum Allocation (Cambridge UniversityPress, 2014).
Dr. Poor is a member of the National Academy of Engineering and the

National Academy of Sciences, and a foreign member of the Royal Society.
He is also a Fellow of the American Academy of Arts and Sciences and
the National Academy of Inventors, and of other national and international
academies. He received the Technical Achievement and Society Awards of
the IEEE Signal Processing Society in 2007 and 2011, respectively. Recent
recognition of his work includes the 2014 URSI Booker Gold Medal, the
2015 EURASIP Athanasios Papoulis Award, the 2016 John Fritz Medal, and
honorary doctorates from Aalborg University, Aalto University, HKUST and
the University of Edinburgh.


