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Abstract11

Optimal sex allocation theory is one of the most intricately developed areas of evolu-12

tionary ecology. Under a range of conditions, particularly under population sub-division,13

selection favours sex being allocated to offspring non-randomly, generating non-binomial14

variances of offspring group sex ratios. Detecting non-binomial sex allocation is complicated15

by stochastic developmental mortality, as offspring sex can often only be identified on ma-16

turity with the sex of non-maturing offspring remaining unknown. We show that current17

approaches for detecting non-binomiality have limited ability to detect non-binomial sex18

allocation when developmental mortality has occurred. We present a new procedure using19

an explicit model of sex allocation and mortality and develop a Bayesian model selection20

approach (available as an R package). We use the double and multiplicative binomial distri-21

butions to model over- and under-dispersed sex allocation and show how to calculate Bayes22

factors for comparing these alternative models to the null hypothesis of binomial sex allo-23

cation. The ability to detect non-binomial sex allocation is greatly increased, particularly24

in cases where mortality is common. The use of Bayesian methods allows for the quantifi-25

cation of the evidence in favour of each hypothesis, and our modelling approach provides26

an improved descriptive capability over existing approaches. We use a simulation study to27

demonstrate substantial improvements in power for detecting non-binomial sex allocation in28
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situations where current methods fail, and we illustrate the approach in real scenarios using29

empirically obtained datasets on the sexual composition of groups of gregarious parasitoid30

wasps.31

Key words: Sex ratio; under-dispersion; Bayes factor; Markov chain Monte Carlo32

1. Introduction33

The null model of sex allocation theory is the Düshing-Fisher theory of equal investment34

(West, 2009). When populations are both large and have unbiased sex ratios, selection for35

variance in the sexual composition of offspring groups is predicted to be absent (Kolman,36

1960). Under these conditions mothers will not be selectively penalized if they randomly37

allocate sex to offspring, with fixed probability of p = 0.5 that the offspring is male, in-38

dependently of the sex of previous offspring. Thus, the number of males in each offspring39

group would have binomial variance, i.e., np(1− p), where n is the number of offspring. In40

smaller populations and under sex ratio bias (p 6= 0.5), stabilizing selection for low sex ratio41

variance is predicted, i.e., variance less than np(1 − p) (Verner, 1965; West, 2009). Selec-42

tion on sex ratio variance is likely to be strong when populations are structured into small43

reproductive subgroups within which offspring mate with each other on maturity and prior44

to the dispersal of the daughters (local mate competition; Hamilton, 1967); here, selection45

favours the evolution of low sex ratio variance, especially when one or a very few mothers46

contribute offspring to the locally mating group (Green et al., 1982; Hardy, 1992; Nagelkerke47

and Hardy, 1994; Nagelkerke, 1996; West and Herre, 1998). This is because low variance48

maximizes the production of mated daughters, a close correlate of maternal fitness. If one49

male is sufficient to mate successfully with all females within a group and all offspring in50

the group are progeny of one mother, then the optimal sexual composition is one male and51

the remainder of the group being females (Green et al., 1982). Similar arguments predict52

low variance under local resource competition (a generalization of local mate competition)53

and its converse, local resource enhancement (Lambin, 1994). Variance in the number of54

males among groups lower than expected under binomial sex allocation is known as under-55

dispersion, and sex allocation is then termed precise (Green et al., 1982; Lambin, 1994;56

Nagelkerke, 1996).57
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Control of sex allocation can be detected in some organisms by direct observation of58

sexually differential aspects of individual offspring production, such as maternal movements59

during egg laying, or the placement of offspring, or by non-random production sequences60

(Cole, 1981; Hardy, 1992; Heinsohn et al., 1997; Krackow et al., 2002; Khidr et al., 2013;61

Ambrosini et al., 2014) but such evidence is not often available. Empiricists must more62

frequently rely on the statistical analysis of offspring group sex ratios to detect whether63

sex allocation is being controlled or whether it is, for instance, binomial, as might be the64

null-expectation under several chromosomal mechanisms of sex-determination (Avilés et al.,65

2000; Krackow et al., 2002; Ewen et al., 2003; Macdonald and Johnson, 2008; Postma et al.,66

2011). Furthermore, empirical evaluations of sex ratio variance can provide tests of explicit67

predictions of sex ratio theory (e.g., Lambin, 1994; Morgan and Cook, 1994; Hardy and Cook,68

1995; Hardy et al., 1998; Nagelkerke and Sabelis, 1998; West and Herre, 1998; Kapranas et al.,69

2011; Khidr et al., 2013; Bowers et al., 2013).70

One practical problem often faced by investigations of sex ratios and sex ratio variance is71

that information on the sexual compositions of offspring is available at maturity but not at72

the time of sex allocation, and it is not uncommon for some offspring to die before maturity,73

(e.g., Hardy et al., 1998; Dyrcz et al., 2004; Ewen et al., 2004; Forsyth et al., 2004; Dietrich-74

Bischoff et al., 2006; Øigarden and Lifjeld, 2013). Provided it has a stochastic component,75

developmental mortality will act to increase the variance of observed sex ratios, making76

initially under-dispersed data appear closer to binomial. This effect is expected on logical77

grounds (Section 3) and has been shown empirically both within and across several species78

of organisms with group structured mating (Hardy et al. 1998; Kapranas et al. 2011; Khidr79

et al. 2013; see also Dyrcz et al. 2004 and Dietrich-Bischoff et al. (2006)). Current statistical80

approaches to assessing sex ratio variance (Krackow et al., 2002) are, however, based on the81

implicit assumption that developmental mortality does not operate, and they consequently82

lack power to detect non-binomiality, unless mortality rates are low.83

Our aim is to show that by introducing a model that represents the biological processes84

that generated the data (sex allocation followed by mortality), we can substantially improve85

our ability to detect underlying biological behaviours. We also demonstrate the advantage of86

using more descriptive statistical approaches such as estimating effect sizes (with measures87
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of confidence), rather than relying on null-hypothesis significance testing, where the small88

dataset sizes mean we often fail to clear an arbitrary significance hurdle (usually α = 0.05)89

even when the data indicate phenomena of interest. We begin by evaluating the performance,90

under developmental mortality, of the statistical methods commonly used to detect non-91

binomial sex ratio variance. We find that the power of these methods is adversely affected by92

developmental mortality. We then develop an alternative approach that explicitly models the93

mortality process. This has much improved power for detecting non-binomial sex allocation,94

particularly when there is high mortality or datasets are small.95

2. Terms and notation96

We define some terms and notation before describing current approaches and their limi-97

tations, and then introduce our new approach for detecting non-binomial sex allocation. A98

summary of the notation is provided in Table 1. The methods developed are general, but99

are likely to most readily be applied to egg-laying organisms such as birds, parasitoid wasps,100

fig wasps and phytoseiid mites (Hardy, 1992; Nagelkerke and Sabelis, 1998; West and Herre,101

1998; West, 2009; Bowers et al., 2013), and this is reflected in the terminology we adopt102

(for a mammalian example see Macdonald and Johnson, 2008). Assume that we have a103

dataset containing data on C different clutches of eggs, all of which were laid in comparable104

environmental conditions. Offspring group size is called clutch size at the time of production105

(egg-laying) and brood size at the time of offspring maturity: brood size is less than clutch106

size when developmental mortality occurs.107

A primary dataset consists of counts of the number of eggs and their sex for each clutch.108

Let Ni denote the number of eggs laid in the ith clutch, and Mi be the number of those109

Ni eggs that are male. A primary dataset is the collection {(Ni,Mi)}
C
i=1. However, for110

most empirical investigations Mi is not observed, as the sex of an offspring cannot be easily111

determined from the eggs: it is usual to wait until the eggs hatch and develop to the point112

at which offspring sex can be discriminated (e.g., Dietrich-Bischoff et al., 2006; Khidr et al.,113

2013). It is also usual that a proportion of the eggs fail to mature, due to some form of114

developmental mortality, and consequently their sex cannot be recorded.115

A secondary dataset consists of counts of ni, the number of offspring that reach maturity116
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(brood size) andmi, the number of those offspring that are male, with the complete secondary117

dataset denoted {(ni,mi)}
C
i=1. Although a small number of experiments have been conducted118

where primary datasets are obtained, either directly from genetic characteristics of eggs119

(Dijkstra, 1986; Hardy et al., 1998; Nagelkerke and Sabelis, 1998; Khidr et al., 2013) or120

through selective statistical procedures (Dyrcz et al., 2004; Kapranas et al., 2011), the vast121

majority of analyses have been conducted using secondary datasets (e.g., Hardy, 1992; West122

and Herre, 1998; Nagelkerke and Sabelis, 1998; Mackauer and Völkl, 2002; Dietrich-Bischoff123

et al., 2006; Kapranas et al., 2008).124

Our null hypothesis about sex allocation, H0, is that there is a sex ratio p (the proportion125

of offspring that are male), and that each egg is male with probability p independently of all126

other eggs in the clutch, i.e., that the distribution of sex ratios is binomial127

Mi ∼ Bin(Ni, p). (1)

The alternative hypothesis, H1, is that the number of males is non-binomially distributed,128

that is, either over- or under-dispersed when compared to the binomial distribution. Note129

that these are hypotheses about primary sex ratios, not secondary sex ratios.130

3. Current approaches for detecting non-binomial sex allocation131

Several methods have been used for the statistical analysis of sex ratio variances (James,132

1975; Green et al., 1982; Nagelkerke and Sabelis, 1998; West and Herre, 1998; Krackow133

et al., 2002). Whilst these methods can work well when applied to primary sex ratio data,134

this is not usually available, and so these methods are instead applied to secondary data,135

effectively treating them as if they were primary data. Not considering or ignoring that136

mortality has occurred thus violates the assumptions behind each approach; this results in137

a lack of statistical power, often leading to incorrect conclusions.138

The first method for detecting departures from the binomial distribution, is a formal139

statistical test derived by E. Meelis (Nagelkerke and Sabelis, 1998), which we refer to as the140

Meelis test (Krackow et al., 2002). The test is a comparison of the estimated variance with141

the variance under the assumption of a binomial distribution, and is derived by calculating142

the distribution (under the null hypothesis) of
∑

m2
i conditional on

∑

mi. A test statistic143
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Symbol Definition

C Number of clutches in the dataset
N Number of eggs laid (primary)
M Number of eggs laid that are male (primary)
n Number of offspring that reach maturity (secondary)
m Number of males that reach maturity (secondary)
D The complete observed dataset, i.e., D = {(ni,mi)}

C
i=1

p Sex ratio† (proportion of eggs that are male)
ψ Dispersion parameter
λ Average clutch size
d Mortality rate

H0, H1 Null and alternative hypotheses
U Test statistic for the Meelis’ test
R Descriptive ratio contrasting observed and expected variance
s2 McCullagh’s dispersion estimator
S Clutch sizes observed in the data, i.e., {k : nj = k for some j}

vk Number of clutches of size k, i.e.,
∑C

i=1 Ini=k

s2k Empirical variance of the number of males in clutches of size k
B01 Bayes factor for comparing H0 with H1

Table 1: Summary of notation used in this article. Letters in bold font indicate vector quantities, indices
(e.g., ni) indicate an instance of that variable, and hats (e.g., p̂) indicate estimates. †Care needs to be taken
with interpretation of p in the multiplicative binomial model as p is no longer the expected sex ratio when
ψ 6= 0.
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U (see supplementary material for details) is defined which can be shown to have a standard144

normal distribution under H0, provided C is sufficiently large. Large negative values of145

U indicate under-dispersion, and large positive values over-dispersion; typically, the test is146

applied by calculating the p-value P(|U | > |uobs|), where P denotes probability, with small147

values taken to indicate departure from the null hypothesis.148

There are several difficulties with applying the Meelis test to the datasets used in empir-149

ical studies of sex-allocation. Firstly, the test assumes that the binomial random variables150

are observed directly, which is not the case when using secondary data (using mi instead of151

Mi). Secondly, the test is derived for use on random variables from a binomial distribution152

with fixed size (ni = n for all i), whereas for real data, the values of ni vary between broods,153

with datasets typically consisting of a range of brood sizes. It is common practice to collect154

all the broods of a certain size (e.g., all mi such that ni = j), then calculate the U -statistic,155

denoted Uj for those broods, before combining them using156

U =

∑

Uj
√

|S|

to give a single statistic U , where S = {k : nj = k for some j} is the collection of clutch157

sizes observed in the dataset. If each Uj ∼ N(0, 1), then U ∼ N(0, 1). However, the Meelis158

test was derived for large sample sizes. In practice, there may only be a small number of159

clutches with ni = j, and so each Uj may not be well approximated by a standard normal160

distribution and hence, U may not have a N(0, 1) distribution either.161

James’ test (James, 1975) is an alternative to the Meelis test that is often used for162

analysing datasets containing small clutches of unequal sizes. It involves calculation of a test163

statistic (Krackow et al., 2002, give details), which is known to be approximately normally164

distributed under the assumption of binomial sex ratios (no mortality). Large positive values165

indicate over-dispersion, and negative values under-dispersion. It is known to be less powerful166

for a single clutch size than the Meelis test (and suffers from the same difficulties as the Meelis167

test), but is included in our analysis for completeness.168

The descriptive ratio R is also used:169

R =

∑

k∈S vks
2
k

∑

k∈S vkkp̂k(1− p̂k)

7



where s2k is the empirical variance of the number of males in clutches of size k, i.e., s2k =170

Var({mi : ni = k}), and vk =
∑C

i=1 Ini=k is the number of clutches which have size k. The171

denominator is the sum of the variances if assuming a binomial distribution, where p̂k is the172

estimated sex ratio for clutches of size k, i.e.,173

p̂k =
1

kvk

C
∑

i=1

miIni=k.

The rationale for using R, is that it is the observed variance of the number of males, divided174

by the variance that would occur if the number of males was binomially distributed (Krackow175

et al., 2002). We expect to observe R ≈ 1 if the data are binomially distributed, with R < 1176

for under-dispersed data. McCullagh and Nelder (1989) introduce a further estimator of177

dispersion, which is a sum of ratios rather than a ratio of sums178

s2 =
1

C − 1

C
∑

i=1

(mi − p̂ni)
2

nip̂(1− p̂)
where p̂ =

∑

mi
∑

ni
,

and should be interpreted in the same way as the R statistic.179

The effect of mortality is to make the data appear less under-dispersed (more binomial),180

as mortality has the effect of increasing the variance of the number of males. To see this,181

imagine a species which has perfect precision, with each mother laying the same number of182

male and female eggs every time, so that the sex ratio variance is zero. Stochastic mortality183

would introduce an element of randomness to the sexual composition of the offspring groups,184

such that secondary datasets may even resemble binomial random variables under sufficiently185

high rates of mortality (see Section 5.3).186

3.1. Evaluation of current approaches when developmental mortality occurs187

To illustrate the limitations of current approaches, we simulate synthetic under-dispersed188

primary datasets, and then simulate the mortality process to produce synthetic secondary189

datasets. By applying the approaches described above, and repeating the process numerous190

times, we can examine their performance under varying levels of mortality.191

We simulated sample experimental datasets as follows: for i = 1, . . . , C,192

1. Simulate the clutch size from a Poisson distribution: Ni ∼ Po(λ), where λ is the193

average clutch size.194

8



2. Simulate the number of males in the ith clutch, Mi, from an under-dispersed multi-195

plicative binomial distribution (Section 4).196

3. Simulate the secondary dataset by assuming each of the Ni eggs has probability d of197

not reaching maturity, and count the number of females and males that survive.198

We used a primary dataset on the parasitoid wasp Goniozus legneri (Khidr et al., 2013),199

a species known to produce a strongly under-dispersed primary sex ratio, to estimate pa-200

rameter values for the synthetic data model, and used these estimates fixed throughout the201

simulation study (λ = 10.0, p = 0.00278, and ψ = 0.445, where p and ψ are parameters202

in the multiplicative binomial distribution, which is an under-dispersed distribution - see203

Section 4.1). We varied the size of the simulated experiment C, and the mortality rate d,204

and for each pair of values we simulated 10,000 synthetic datasets, and averaged the test205

statistics found across the replicates. This allows the effectiveness of all the procedures to206

be examined across a range of dataset sizes, C, and mortality rates d.207

The performance of a hypothesis test can be measured by its power for a given significance208

level, where power is the probability of detecting non-binomial sex allocation when it occurs209

(i.e., power = 1− P(Type II error) = P(reject H0 | H1)). Contour plots of the power of the210

Meelis and James tests (at significance level 0.05) as a function of the number of clutches in211

the dataset and the mortality rate show that the test lacks power if the number of clutches212

used is small or if the mortality rate is moderate-to-large (Fig. 1a,b). For example, for a213

dataset containing 50 clutches with a mortality rate of 10% there is only a 35% probability214

of correctly detecting under-dispersion. The power of the test is lower still if lesser degrees215

of under-dispersion are assumed as it becomes harder to detect (we used reasonably large216

under-dispersion of ψ = 0.445).217

Fig. 1c shows the effect of mortality on R. The expected value of R increases towards218

1 as the mortality rate increases, so that species with a high mortality rate will have R219

values consistent with binomial sex allocation, even if their primary sex ratios are under-220

dispersed. Fig. 1d shows the same information for McCullagh’s s2. This can be seen to be221

less affected by mortality and so its use should be preferred to R. The number of clutches222

in the experiment has only a minor effect on the expected value of both statistics. However,223

9



a) Meelis test power

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

b) James' test power

c) R value

50 100 150 200 250

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

d) McCullagh's s 2 value

50 100 150 200 250

Number of clutches in experiment, C

M
or

ta
lit

y 
pr

ob
ab

ili
ty

, d

Figure 1: a) and b) show contour plots of the power of the two-sided Meelis and James tests; c) and d)
are contour plots of the values of descriptive statistics R and McCullagh’s s2, all as a function of C and
d. The values were estimated using 10,000 randomly generated datasets, using parameter values estimated
from data on G. legneri primary sex ratios.
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it strongly affects the variance of the estimate (not shown), and for smaller experiments the224

observed values can vary widely, and so without appropriate confidence intervals for both225

statistics, they have little value.226

There are two (related) reasons for the lack of power in these approaches. The first is that227

mortality increases the variance of the secondary values (ni,mi) compared to the primary228

values (Ni,Mi) making under-dispersion harder to detect. The second is that the tests do229

not take into account the fact that mortality has occurred, and consequently the additional230

variance is incorrectly interpreted as being consistent with binomial sex ratios.231

4. A new test for detecting non-binomial sex allocation232

By explicitly modelling mortality we develop a test that has improved statistical power233

as well as an increased descriptive capability. Our null hypothesis is a binomial model of sex234

allocation, which we compare to two different generalisations of the binomial distribution, the235

multiplicative binomial and the double binomial distributions, both of which can model over-236

and under-dispersion. Our model for the data then consists of a mortality model applied to237

the output of the sex allocation model. We use Bayesian model selection to determine which238

model is best supported by the data. The more intricate computational details are given in239

the supplementary material; here we focus on the broad outline of the approach.240

4.1. A model of secondary data241

We assume we have data on C different broods from comparable environmental condi-242

tions, so that they can be considered to be statistically exchangeable. Note that the unob-243

served primary counts Ni and Mi, and the corresponding secondary values after mortality244

has occurred, ni and mi, must satisfy the inequalities245

Ni ≥ ni, Mi ≥ mi and Ni − ni ≥Mi −mi. (2)

We consider three models for the data, which differ only in the distribution of the sex246

allocation, i.e., the distribution of Mi given Ni. The first is the binomial model, with247

Mi|Ni, p ∼ Bin(Ni, p), which corresponds to the null hypothesis in Section 2. The second is248
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the multiplicative binomial distribution introduced by Altham (1978):249

P(M |N, p, ψ) = c(p, ψ)

(

N

M

)

pM(1− p)N−MeψM(N−M), (3)

where c(p, ψ) is an intractable normalising constant. The two parameters are a probability p,250

and a dispersion parameter ψ. The third, introduced by Efron (1986), is the double binomial251

model252

P(M |N, p, ψ) = c(p, ψ)

(

N

M

)

NNψpM(ψ+1)(1− p)(N−M)(ψ+1)

MMψ(N −M)(N−M)ψ
(4)

where c(p, ψ) is again an intractable normalising constant. Note that when ψ = 0, both the253

multiplicative and double binomial distributions reduce to the binomial distribution. These254

models are the key part of our procedure, corresponding to the alternative hypothesis in255

Section 2, as they both model the three cases of interest:256

(i) binomial sex allocation when ψ = 0257

(ii) under-dispersed sex allocation when ψ > 0258

(iii) over-dispersed sex allocation when ψ < 0.259

Unfortunately neither of these two distributions arises from a simple physical mechanism.260

Familarity does allow an intuition to develop about the meaning of ψ, but our usage here does261

not require any interpretation beyond that given above, and that larger values of ψ indicate262

more under-dispersion than small values etc. Care also needs to be taken with interpretation263

of p, as the expected value ofM is no longer Np for the multiplicative binomial distribution,264

except when ψ = 0, and so p can no longer be considered to be the sex ratio (the expected265

sex ratio, E
(

M
N

)

, can be determined by Monte Carlo integration). We include both models266

as alternatives, as different datasets fit different models better, and this makes the detection267

of under-dispersion more likely.268

We use the same model of mortality in each hypothesis and assume that each egg has269

probability d of dying before maturity, and thus of not being counted in the secondary270

dataset, independently of its sex and the other eggs in the clutch, i.e., we assume mortality271

is binomially distributed:272

ni|Ni, d ∼ Bin(Ni, d). (5)
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The distribution of mi can then be shown, by a label permuting argument, to be273

P(m|M,N, n, d) =

(

M

M−m

)(

N−M

N−n−M+m

)

(

N

N−m

) . (6)

We use two complimentary approaches for detecting departures from binomial sex al-274

location, the first based on estimation of effect size, and the second on hypothesis testing275

(Nakagawa and Cuthill, 2007). The simpler approach is to estimate the effect size, measured276

by the dispersion parameter ψ, by finding its posterior distribution π(ψ|D). This parameter277

indicates whether sex allocation is binomial, over-, or under- dispersed, as well as how strong278

the effect is. Posterior credibility intervals for ψ can be used to assess the precision of the279

estimates and indicate informally whether the data are consistent with H0 (ψ = 0). We280

describe methodology to do this below, the code is provided in the precision R package,281

and applications are described in Section 5.282

While various authors recommend estimation over hypothesis testing (Robert, 2001; Gel-283

man et al., 2003; Nakagawa and Cuthill, 2007), relying solely on estimation of ψ does not284

always provide the clarity required. For example, if the posterior distribution contains some285

support for ψ = 0, but the posterior mode is not close to 0, it can be difficult to judge286

whether or not data are under-dispersed using only the posterior distributions (Section 5.2).287

Instead, we wish to obtain the probability that sex allocation is under-dispersed, i.e., the288

posterior probability that each of the three models M0, M1 and M2 are true conditional289

upon the data: P(M0|D), P(M1|D), and P(M2|D). These probabilities only make sense in a290

Bayesian setting, although note that p-values obtained from classical hypothesis tests, such291

as the Meelis test, are often incorrectly interpreted in this way (Goodman, 2008).292

Bayesian model selection requires calculation of the Bayes factor (Jeffreys, 1939; Kass293

and Raftery, 1995), which is defined as the ratio of the evidence for two different hypotheses294

(or models)295

B01 =
π(D|H1)

π(D|H0)
. (7)

Values of B01 greater than 1 indicate evidence in favour of H1 (over H0) and values less than296

1 indicate evidence for H0 (over H1). Jeffreys (1939) suggested interpretation of the strength297

of evidence in favour of a hypothesis according to the magnitude of the Bayes factor is shown298
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B01 range P(H1|D) range Interpretation

1–3 0.5-0.75 Barely worth mentioning
3–10 0.75 - 0.91 Substantial
10–30 0.91-0.97 Strong
30–100 0.97- 0.99 Very strong
> 100 0.99-1 Decisive

Table 2: Jeffreys’ suggested interpretation of the Bayes factor for strength of evidence in favour of H1 over
H0. Values of 1/B01 = B10 give the strength of evidence for H0 over H1. Also shown are the corresponding
ranges of the posterior probability for H1 given the data, in the case where we assign equal prior probability
to both hypotheses.

in Table 2. The Bayes factor Bij = P(D|Hj)/P(D|Hi) can also be interpreted by noting that299

it is the ratio between the posterior and prior odds in favour of Hj over Hi300

P(Hj|D)

P(Hi|D)
= Bij

πj
πi

where πj is the prior probability of Hj. Table 2 contains the posterior probabilities of H1301

being true for various Bayes factor ranges when we assume the hypotheses are equally likely302

a priori.303

Bayes factors provide a powerful alternative to frequentist hypothesis tests, and have304

several advantages over classical methods. The first is that they provide a way to evaluate305

the evidence in favour of a hypothesis, in contrast to the classical approach which only306

rejects or accepts the null hypothesis for a particular error rate. This is particularly useful307

in datasets where the effect size or the sample size are small, or where the mortality rate308

is high, as we can quantify the strength of the evidence for under-dispersion in the data,309

even if there is not enough evidence to formally reject the null hypothesis. For instance, for310

analysis of data on Goniozus thailandensis (Section 5.2), the Meelis test finds p > 0.05 and311

thus concludes that there is no evidence to reject the null hypothesis, whereas the Bayesian312

approach reports that the posterior probability of the double binomial model being the313

true model is 0.79, with the probability of the binomial model being true only 0.14. When314

combined with the posterior distribution of ψ, which is concentrated on values greater than315

0, this strongly suggests that this species produces under-dispersed sex ratios, a message316

that is lost if we only report the decision from the Meelis test.317
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4.2. Parameter estimation318

We now describe how to find the posterior distribution of the parameters θ = (ψ, p, d, λ)319

given the data D = {(ni,mi)}
C
i=1, which we denote π(θ|D). This distribution represents our320

beliefs about the parameters after training the model to take the observed experimental data321

into account. The posterior distribution cannot be found analytically, and so we use Markov322

Chain Monte Carlo (MCMC) methods (e.g., Gilks et al., 1996) to obtain an approximation.323

We describe the case where only the n and m values, the number of eggs that reached324

maturity, have been recorded. The simpler situation where Ni is observed is a special case325

and follows immediately.326

We introduce prior distributions for all unknowns. We assume the number of eggs laid327

in each clutch follows a Poisson distribution with mean λ328

Ni ∼ Po(λ) for i = 1, . . . , C (8)

and for the fixed parameters we assume that329

p ∼ U [0, 1] ψ ∼ N(0, σ2)

λ ∼ Γ(a, b) d ∼ Beta(a′, b′).
(9)

The distribution of p, λ and d are conjugate to the likelihood, allowing a Gibbs sampler330

to be used. Informative prior distributions are usually available for λ and d, as scientists331

often have information about mortality rates and average clutch sizes for the species of332

interest, although simulation suggests that the quantities of interest (the Bayes factor and333

the posterior of ψ), are robust to the choice of priors for λ and d. The key parameter is the334

dispersion parameter ψ, which we assign a zero mean normal distribution, so that under-335

and over-dispersion are equally likely a priori. We use an uninformative prior distribution336

for p, so that the posterior distribution is determined solely by the data.337

To sample from the posterior distribution π(θ|D), we use a Metropolis-Hastings within338

Gibbs sampler (Metropolis et al., 1953; Geman and Geman, 1984). We introduce vectors of339

unobserved Ni and Mi values, denoted N and M, as auxiliary variables, and sample across340

the chain π(θ,N,M|D), which is a (4 + 2C) dimensional Markov chain. The distribution341

of interest, π(ψ|D), is then found by taking the marginal distribution of ψ. Details of the342
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MCMC algorithm used are provided in the supplementary material, and the algorithm is343

implemented in the accompanying precision R package for each of the three models.344

4.3. Bayes factor estimation345

To calculate the Bayes factors (Equation 7) we must first calculate the evidence for each346

model347

π(n,m) =

∫

π(n,m|θ)π(θ)dθ,

where n and m are the vectors of the observed ni and mi values, which is analytically348

intractable for the models considered. We use the approach described in Chib (1995) and349

Chib and Jeliazkov (2001) to estimate the evidence for each model, which relies upon the350

identity351

π(n,m) =
π(n,m|θ∗)π(θ∗)

π(θ∗|n,m)
. (10)

Calculation of both the numerator and denominator is challenging, but can be done with352

additional samples from an MCMC sampler. The derivation and details of the algorithm353

are technical, and are presented in the supplementary material. An implementation of these354

algorithms is available as the precision R package, available on github. The next section355

demonstrates the power of our approach.356

5. Results357

We illustrate our approach using data on four species of wasp: The strength of evi-358

dence for under-dispersion from secondary sex ratio data in these species varies from weak359

(Colpoclypeus florus) to overwhelming (Metapycus luteolus), and the mortality rate varies360

from low (Goniozus legneri) to high (C. florus). We also present the results from a simula-361

tion study which conclusively demonstrates the increased power of our approach.362

The Bayesian approach requires prior distributions for all unknown parameters. Simula-363

tion studies have shown that the model and data are strongly informative about p and ψ,364

so that any information in the prior distribution is overwhelmed by the information in the365

data. In all our analyses we give p an uninformative prior distribution uniform on [0, 1] and366

ψ a vague prior distribution for both the double and multiplicative binomial models:367

p ∼ U [0, 1], ψ ∼ N(0, 1). (11)
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The prior for ψ can be justified by examining the degree of under-dispersion for various368

levels of ψ. If M ∼ DoubleBinom(n = 10, p = 0.1, ψ), then P(M = 1) = 0.38 if ψ = 0 (the369

binomial case), whereas for ψ = 3, P(M = 1) = 0.85, indicating strong under-dispersion.370

The Bayes factors are robust to the choice of priors for λ, d and p (the parameters shared371

across models), but unsurprisingly, are sensitive to the prior for ψ. More diffuse priors for ψ372

tend to reduce the evidence for under-dispersion due to an Occam’s razor type effect, but for373

realistic priors for ψ, the conclusion does not usually change significantly (see supplementary374

material). Fortunately, the posterior distribution for ψ is robust to the choice of prior for ψ,375

and so this can also be used to indicate whether the data are under-dispersed.376

The data typically contain only limited information about the parameters λ and d, but377

with the two posterior distributions strongly correlated, as large average clutch size and high378

mortality, or small average clutch size and lower mortality rate, leads to similar datasets.379

Prior information about λ and d is often available, which we can use to choose prior distri-380

butions for these two parameters on a species by species basis. Experimentation has shown381

that the Bayes factor and the posterior distribution of p and ψ (the primary parameter of382

interest) are robust to these choices.383

5.1. Goniozus legneri: Large dataset, low mortality384

We begin by considering data on G. legneri, a gregarious parasitoid wasp in which off-385

spring groups are produced by single mothers and sex ratios are female biased due to local386

mate competition. Khidr et al. (2013) provide both a primary dataset, consisting of pre-387

mortality counts on 47 clutches obtained using DNA microsatellite markers to identify the388

sex of eggs, and a secondary dataset containing post-mortality counts of male and female389

adults in 113 clutches. Both the Meelis and James tests lead to rejection of the null hypothe-390

sis of binomial sex allocation (Table 3) with p-values of 0.0041 and 0.0027 respectively for the391

secondary data. Furthermore, we find R = 0.572, which when combined with the negative392

value of U in the two tests (U = −2.38 and U = −1.98 for Meelis and James respectively),393

lead us to conclude, in common with previous studies (Hardy et al., 1998; Khidr et al., 2013),394

that G. legneri has under-dispersed sex ratios.395

Khidr et al. (2013) reported that the proportion of offspring that died before maturity was396

7.6%, which agrees with previous G. legneri mortality estimates (5-12%, Hardy et al., 1998).397
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Species

G. legneri G. thailandensis C. florus M. luteolus

Proceedure Instance Primary Secondary Secondary Primary Secondary Primary Secondary
Value Value Value Value Value Value Value

James U -1.98 -3.00 -2.01 -0.89 2.7 -6.7 -7.8
p 0.047 0.0027 0.045 0.37 0.0068 1.5× 10−11 7.0× 10−15

Meelis U -2.38 -2.87 -0.73 -3.24 -0.97 -7.9 −7.4
p 0.017 0.0041 0.46 0.0012 0.33 2.6× 10−15 1.3× 10−13

R 0.44 0.57 0.68 0.13 0.75 0.093 0.44
s2 0.57 0.61 0.74 0.51 1.18 0.20 0.58

BF double:binomial 45.1 213.6 5.65 3830 0.27 1.1× 1029 9.8× 1023

multiplicative:binomial 9430 31.3 0.54 0.36 0.36 7.0× 105 2.0× 106

double:multiplicative 0.0048 6.8 10.5 10600 0.74 1.6× 1023 5.0× 1017

Posterior binomial 0.00010 0.004 0.14 0.00026 0.61 0.000 0.000
probability multiplicative 0.995 0.127 0.074 0.000094 0.22 0.000 0.000

double 0.0048 0.869 0.74 0.9996 0.16 1.000 1.000

Table 3: Analysis of four wasp datasets: G. legneri primary (C = 47) and secondary (C = 113) datasets (Khidr et al., 2013); G. thailandensis

secondary dataset (C = 60) (Witethom and Gordh, 1994); C. florus primary (C = 55) and secondary datasets (C = 53) (Dijkstra, 1986; Hardy et al.,
1998); M. luteolus primary (C = 127) and secondary (C = 371) datasets (Kapranas et al., 2011). All values estimated using 106 MCMC iterations.
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Figure 2: Posterior distributions from the analysis of G. legneri secondary data (Khidr et al., 2013), obtained
using 5× 105 MCMC iterations. For each parameter, the prior and posterior distribution are shown for the
three alternative models of sex allocation. Note that the binomial model does not have a dispersion parameter
(ψ) and that the interpretation of p and ψ is different in each model.

We incorporate this information into the analysis through the use of prior distributions398

d ∼ Beta(2, 23) λ ∼ Gamma(12, 1).

The prior mean for d is thus 2/(23 + 2) = 8%, with values in the range 0-20% all supported399

a priori (Figure 2). The prior for λ was based on an observed secondary clutch size of 11,400

and the mortality rate of 7.6%, suggesting a prior mean for λ of approximately 12. The401

Gamma(12, 1) prior distribution has a prior mean of 12/1, and supports prior λ values in a402

range between 11 and 14 (Figure 2).403

Figure 2 shows the posterior distributions of the four parameters for the secondary404

dataset. Interest lies primarily in the dispersion parameter ψ, with ψ > 0 indicating under-405

dispersion and ψ < 0 over-dispersion. We cannot estimate ψ precisely as there is a finite406

quantity of data, but the posterior distributions show the range of ψ values we believe could407

feasibly have led to the observed data. The posterior distribution for ψ for both the double408
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and multiplicative models, suggests that only positive values of ψ are consistent with the409

data. Equi-tailed 95% credibility intervals for ψ are [0.047, 0.248] for the multiplicative bi-410

nomial model, and [0.196, 1.28] for the double binomial model, neither of which overlap with411

0, leading us to conclude that G. legneri has under-dispersed sex allocation.412

The Bayes factor (BF) estimates for G. legneri are reported in Table 3. We find that413

the double binomial model is best supported, with a BF of 213.6 in favour of the double414

binomial over the binomial model, which Jeffreys’ scale interprets as decisive evidence. There415

is also very strong evidence in favour of the multiplicative model over the binomial (BF =416

31.3), and substantial evidence to suggest the double binomial is better supported than the417

multiplicative binomial model (BF = 6.8). If we are prepared to assign all three models equal418

prior probability, then the posterior probability that the binomial model is the true model419

is 0.004, compared to 0.869 for the double binomial model, and 0.127 for the multiplicative420

binomial model.421

For this dataset, the signal from the data is strong (C = 113 is a reasonably large sample422

size), and consequently all the procedures give unambiguous conclusions. However, it is423

informative to note the difference between the two approaches: the Meelis test strongly424

rejects H0, but does not indicate the size of the effect (the R value does indicate the size of425

the effect, but is unreliable without a measure of uncertainty). The p-value does not give the426

probability that H0 is true and should not be interpreted as such. Meanwhile, the Bayesian427

procedure estimates the probability that H0 is true, and the posterior distribution for ψ gives428

the effect size after having accounted for mortality, along with a measure of the uncertainty429

in the estimate of ψ. For G. legneri, Khidr et al. (2013) also provide a primary dataset which430

we can analyse without modelling mortality (Table 3). The conclusion is the same as for431

the secondary data, again with strong evidence of under-dispersion. One difference between432

the primary and secondary analyses is that for the primary data, the multiplicative binomial433

model is preferred, whereas for the secondary data, the double binomial model is preferred.434

We believe this is due to differences between the shape of the two distributions. Figure 3435

shows the posterior predictive distribution for the number of male eggs laid (in a clutch of 10436

eggs) for the six different scenarios (three models on both the primary and secondary data).437

We can see that for a given sex allocation model, the posterior predictions for the primary438

20



0 1 2 3 4 5

Primary,  binomial

Number of male eggs

F
re

qu
en

cy

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 1 2 3 4 5

Primary, double binomial

Number of male eggs

F
re

qu
en

cy

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 1 2 3 4 5

Primary, multiplicative binomial

Number of male eggs

F
re

qu
en

cy

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 1 2 3 4 5

Secondary,  binomial

Number of male eggs

F
re

qu
en

cy

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 1 2 3 4 5

Secondary,  double binomial

Number of male eggs

F
re

qu
en

cy

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 1 2 3 4 5

Secondary, multiplicative binomial

Number of male eggs

F
re

qu
en

cy

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 3: Posterior predictive distributions of the number of male eggs (pre-mortality) in a clutch of 10 eggs
for the six different scenarios, namely the primary and secondary data for the three different models of sex
allocation. The multiplicative binomial distribution gives the best fit to the primary data, and the double
binomial distribution best fits the secondary data.

and secondary data are similar, and that the double and multiplicative distributions both439

give more concentrated (more precise) predictions than the binomial model. We can also440

see the difference between the shape of the double and multiplicative distributions, with the441

multiplicative distribution predicting more clutches with no males than the double binomial.442

The switch between preferred model for the secondary and primary datasets does not change443

our conclusion that there is strong evidence of under-dispersion.444

Finally, note that the data and model are strongly informative about p and ψ, with the445

posterior and prior values being markedly different, whereas the posterior value for λ and d446

are close to the prior distribution. Experimentation (see the supplementary material) has447

shown that the posterior distributions of λ and d are sensitive to their prior distribution,448

but that the posterior of p and ψ are not sensitive to these choices.449

5.2. Goniozus thailandensis: small dataset, medium mortality450

Now we consider a dataset on the parasitoid species Goniozus thailandensis collected by451

Witethom and Gordh (1994). This species has a broadly similar biology to G. legneri and has452

previously been analysed for sex ratio variance by Hardy et al. (1998). The developmental453
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Figure 4: The marginal posterior distribution for ψ for the double binomial model for all four species. The
results were obtained using 5 × 105 MCMC iterations. The posterior distributions for p, d and λ are not
shown.

mortality rate, 22%, is higher than for G. legneri and the dataset is small, thus presenting a454

more challenging, and possibly more typical, case for analysis. Classical analysis of these data455

was inconclusive: the Meelis test gave U = −0.73 with a p-value of 0.23 and R = 0.68, which456

suggests under-dispersion, but with insufficient evidence to reject H0 at the 5% significance457

level. In Section 3 we demonstrated that the Meelis test will lack power on this dataset,458

as there are only C = 60 observations and the probability of developmental mortality is459

moderate. This leaves us uncertain as to whether this result is due to the limited sample size,460

the relatively high mortality rate or to sex allocation actually being binomially distributed.461

The Meelis test only informs us that we cannot reject the null hypothesis due to insufficient462

evidence; it does not allow us to say that the species has binomially distributed sex allocation.463

Carrying out the Bayesian analysis, using the prior distributions464

d ∼ Beta(5, 20) λ ∼ Gamma(9, 1),
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(consistent with the observed average clutch size and the mortality rate of 22%) we find the465

posterior distribution for ψ shown in the bottom left panel of Figure 4 and the Bayes factors466

given in Table 3. The Bayes factors suggest that there is substantial evidence in favour of467

the double binomial model over the other two models, and the posterior for ψ shows that468

under-dispersion is the best explanation of the data (the equi-tailed 95% credibility interval469

for ψ is [0.0415, 1.61]). The posterior distribution does contain a small amount of support470

for a zero or negative value of ψ (binomiality, or over-dispersion), showing that while this471

can not conclusively be ruled out, it is unlikely. Assuming equal prior probability for each472

model, there is a posterior probability of 0.79 that the double binomial model is the true473

model, and 0.14 that the binomial model (H0) is true. While this is not conclusive evidence,474

it has allowed us to state that the data suggest under-dispersion over binomial sex allocation475

with posterior odds of more than 5 to 1. The posterior for ψ allows us to see the range of476

possible under-dispersion strengths that are consistent with the data. In comparison, the477

classical approach only allows us to conclude that there is insignificant evidence to reject H0.478

5.3. Colpoclypeus florus: medium dataset, high mortality479

Primary and secondary data on Colpoclypeus florus are available from a study by Dijkstra480

(1986) analysed by Hardy et al. (1998). C. florus is a gregarious parasitoid with female biased481

sex ratios and is the only known member of its genus. The mortality rate was reported482

to be 57%, which when combined with the average clutch size of 7.4 motivated the prior483

distributions484

d ∼ Beta(11, 10) λ ∼ Gamma(16, 1).

The results of the analysis of this data are shown in Table 3. These illustrate the tendency485

of mortality to make data appear less under-dispersed, possibly even over-dispersed. The486

primary data clearly show that the species has under-dispersed sex allocation, with the487

Meelis test and Bayes factors agreeing that there is very strong evidence in favour of under-488

dispersion. Whereas for the secondary data, the Meelis test fails to reject the null hypothesis,489

and the Bayes factors suggest that the binomial model is the best supported (posterior490

probability of 0.61, compared to 0.16+0.22=0.38 for the two non-binomial models). The 95%491

credibility interval for ψ is [−0.063, 0.019] for the multiplicative model, and [−0.65, 0.24] for492
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the double binomial model, both of which contain 0, showing that the data could be either493

under- or over-dispersed. The marginal posterior for ψ in Figure 4, shows how the primary494

data strongly suggest under-dispersion, but that the secondary data (after mortality) suggest495

over-dispersion, although there is still some support for under-dispersion. While the Meelis496

test can only lead us to conclude that there is no evidence to reject the hypothesis of binomial497

sex allocation, the Bayesian test can quantify that evidence and give a posterior probability498

that indicates that the hypothesis of binomial sex ratios is approximately twice as likely as499

the hypothesis of non-binomial sex allocation.500

5.4. Metaphycus luteolus: large dataset, high mortality501

A large secondary dataset on M. luteolus was presented in Kapranas et al. (2011). This502

species is a facultatively gregarious parasitoid which lays eggs inside hosts. Developing503

offspring may compete within the host, be attacked by the host immune responses, or die of504

other causes, and the overall mortality rate is approximately 40%. The secondary sex ratio505

is female biased. Using prior distributions506

d ∼ Beta(6, 10) λ ∼ Gamma(4, 1)

we obtained the results presented in Table 3 and Figure 4. Due to the large sample sizes,507

and the effect size, all procedures give overwhelming evidence that the data are under-508

dispersed. By selecting only those clutches that did not experience any mortality, we can509

obtain an approximation of a primary dataset (this approach is discussed in Khidr et al.,510

2013). Analysis of this dataset again demonstrates the tendency of mortality to make data511

appear less under-dispersed.512

5.5. Simulation study513

We now show that by modelling mortality, we have increased our ability to detect under-514

dispersion. We analyse the performance of the Meelis test and the Bayes factor approach,515

using a simulation study in which we apply both procedures to synthetic datasets. The516

computational expense of the Bayesian approach (typically it takes 2-5 hours of computer517

time to analyse a single dataset), limited the study to 100 synthetic datasets, but this is518

sufficient to conclusively demonstrate an improved ability to find evidence against H0, i.e.,519

statistical power.520
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Figure 5: Results of the simulation study. Each point represents the p-value and Bayes factor (BF) for a
simulated dataset. The shaded regions indicate p-value or Bayes factor ranges for which we would conclude
there was either no, or weak evidence against H0. The horizontal regions (with ‘forwardslash’ shading)
indicates the Bayes factor is either less than 10 (threshold for strong evidence against H0), or less than 3
(threshold for substantial evidence). The vertical regions (‘backslash’ shading) indicate p-values of less than
0.01 or 0.05. Note that the x-axis is reversed.

The synthetic datasets were simulated to each contain 50 clutches using a mortality rate521

of 30%, moderate values of C and d The model defined by Equations (3), (5) and (8), with522

λ = 10, p = 0.1, and ψ = 0.3, was used to simulate the datasets, giving a moderate level of523

under-dispersion comparable to G. legneri.524

The results of the simulation study are summarised in Figure 5 and Table 4. For each525

dataset we have plotted the logarithm of the estimated Bayes factor between the multiplica-526

tive and binomial models, against the logarithm of the p-value from the Meelis test. The527

shading shows regions in which one or both of the procedures failed to detect strong evidence528

of under-dispersion, either because the p-value is greater than 0.05 (or 0.01), and/or because529

the Bayes factor is less than 3 (or 10). Table 4 summarises each procedure by the percentage530

of datasets which led to Bayes factors or p-values in a specified range.531
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Strength of
evidence:

insubstantial substantial strong very strong decisive

Meelis p-
value range:

> 0.1 0.05– 0.1 0.01–0.05 0.001– 0.01 < 0.001

% in range: 33 20 39 7 1

BF range: 0 – 3 3 – 10 10–30 30-100 > 100
% in range: 5 13 15 15 52

Table 4: Simulation study results: 100 synthetic datasets, all with moderate levels of under-dispersion (ψ =
0.3 in the multiplicative model) and mortality (30%), were analysed and grouped into categories indicating
various levels of strength of evidence against H0. The Bayesian approach can be seen to substantially
outperform the Meelis test.

These results clearly demonstrate the improved power of the Bayesian procedure. For532

example, in more than half of the simulated datasets, the Meelis test returned a p-value533

greater than 0.05, which would indicate that there was insufficient evidence to reject the534

null hypothesis of binomial sex allocation. In contrast, 95% of the datasets provided at least535

substantial evidence against binomial sex ratios according to the Bayesian approach, and536

over half (52%) of the datasets provided decisive evidence (BF > 100). Furthermore, Figure537

5 illustrates that every time the Bayesian test failed to detect under-dispersion, the Meelis538

test also failed, whereas there were 36 datasets where the Bayesian test indicated strong539

evidence (BF > 10) against H0, but where the Meelis test failed (at the 5% level).540

In order to confirm that this increased power is not due to a corresponding increase in541

the type I error rate (i.e., falsely rejecting H0), a second simulation study was performed542

analysing synthetic datasets generated from the binomial model. For 200 simulated datasets,543

the Meelis test rejected H0 (at α = 0.05) in 3% of cases (i.e., it had approximately the544

assumed error rate). The Bayes factor gave P(H0|D) ≤ 0.05 (i.e., strong evidence against545

H0) in 6% of cases, showing that the increased power of the Bayesian approach is not due546

to an inflated type I error. The posterior distributions for ψ (available in the supplementary547

information), ruled out ψ = 0 in only one of the 200 simulated datasets.548

6. Conclusions549

We have shown that the current approaches used to detect under- or over-dispersion in550

sex allocation lack power when the sample size is small or the mortality rate is moderate to551
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large. Both are common situations in empirical studies. For example, the Meelis test will552

usually fail to reject the null hypothesis under these conditions even when sex allocation553

is strongly non-binomial. We have introduced a new approach to detecting under- or over-554

dispersion that has much greater power for detecting departures from binomial allocation.555

The approach gains its power by explicitly modelling mortality, so that the test takes into556

account that the patterns in the data have occurred through a combination of sex allocation557

and mortality. The method can be extended further to include non-binomial distributions558

of mortality (e.g., Hardy et al., 1998; Kapranas et al., 2011). Furthermore, using a Bayesian559

approach to model selection and parameter estimation increases our descriptive ability: the560

posterior distribution of the dispersion parameter ψ allows both the size of the effect and561

the range of possible effects that are consistent with the data to be identified. Using Bayes562

factors allows us to give the posterior probability that the data derive from a species that563

has binomially distributed sex allocation, as opposed to p-values, which although commonly564

interpreted as probabilities, should not be (Goodman, 2008). In situations where the evidence565

is conclusively in favour of one hypothesis, our test generates the same conclusion as current566

approaches (but with improved descriptive ability). However, when the evidence is weaker,567

the additional information provided by the Bayesian approach can allow us to make useful568

inferences, even if these cannot be conclusive.569

7. Coda570

The software implementing this approach has been written in R (R Development Core571

Team, 2008) and is freely available (https://github.com/rich-d-wilkinson/precision)572

as the precision R package on github. Details of how to use and install the package are573

given in the package vignette and in the supplementary material. There are many possible574

extensions to this approach, primarily through changes and improvements to the model. For575

example, the binomial mortality model is relatively simple and other more complex models576

(such as over-dispersion) are possible. These extensions are straightforward to make within577

the Bayesian testing framework.578

The data used in this paper are all available within the precision R package (see the579

package vignette). These datasets, as well as additional data on the sexual compositions580
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of offspring groups, are available from several previous publications. Secondary sex ratio581

datasets can be found in Morgan and Cook (1994); Hardy and Cook (1995); Nagelkerke582

and Sabelis (1998); Mackauer and Völkl (2002); Kapranas et al. (2008, 2009) and Khidr583

et al. (2013). Primary sex ratios are more difficult to evaluate, but datasets are available in584

Dijkstra (1986); Avilés et al. (2000), and Khidr et al. (2013).585
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Supplementary information for Detecting

non-binomial sex allocation when developmental

mortality operates

Richard D. Wilkinson, Apostolos Kapranas, Ian C.W. Hardy

1 Simulation studies

A second simulation study was performed to check that the increased power of the Bayesian
approach was not due to biased estimates causing the test to have a high type I error
rate, i.e., falsely rejecting the null hypothesis when it is true more commonly than the
frequentist tests. Using λ = 10, C = 100, and d = 0.3, we generated 200 datasets from
the binomial sex-allocation model, choosing the sex-ratio parameter p to be uniform in
[0.05, 0.3]. For each dataset we applied the existing tests and the Bayesian approach
described in the main paper.

The posterior distributions obtained in each case are shown in Figure S1. In only one
of the 200 datasets did the posterior suggest ψ = 0 was not consistent with the data,
a result that can easily occur by chance with small datasets and high mortality. The
Meelis and James tests also rejected H0 in this case. The Bayes factor analysis gave
P(H0|D) ≤ 0.05 (i.e., strong evidence against the binomial model) in only 6% of cases,
whereas the Meelis and James tests both rejected H0 in 3% of cases. These results suggest
that the significance level of both these tests is approximately as claimed, and that the
Bayesian approach does not gain its power through having a substantially higher type I
error rate.

One weakness of our approach is that only a few datasets gave strong evidence in favour
of H0. This is because the binomial model is a special case of the two alternative models.
Note that the frequentist tests are, by definition, incapable of providing evidence in favour
of H0, so the limitation of the Bayesian approach is not a weakness in comparison.

1.1 Prior sensitivity

To test the sensitivity of our results to the choice of prior distributions, we conducted a
small simulation study. Using the G. legneri data, we repeated the analysis from Section
5.1 of the main paper using the prior distribution ψ ∼ N(0, σ2) with σ2 taking values
0.5, 1, 2, and 10. Larger values of ψ can be ruled out a priori, as discussed in the main
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Figure S1: The posterior distributions for ψ in the double binomial model for each of the
200 simulated datasets. Note that only one of these curves (red dashed) conclusively rules
out ψ = 0, the true value. The plots for the multiplicative binomial model are similar
(not shown).
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σ2 0.5 1 2 10
BF 253 214 162 79

Table S1: Bayes factor estimates for comparing the double binomial and binomial models
when analysing the G. legneri data using a N(0, σ2) prior distribution for ψ.
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Figure S2: The posterior distributions for the double binomial model when analysing the
G. legneri secondary data using a ψ ∼ N(0, σ2) prior distribution σ2 = 0.5, 1, 2, 10.

paper. The posterior distributions for p and ψ for the double binomial model are shown
in Figure S2. Note that the posterior distributions are largely unchanged. As expected,
the Bayes factor for comparing the double binomial and binomial model do change as
the prior distribution changes (Table S1). As the prior for ψ becomes more diffuse, the
BF reduces, as is expected (Bernardo and Smith, 2000). Even when using an unrealistic
N(0, 10) prior distribution for ψ, the Bayes factor still indicates very strong evidence for
the double binomial model over the binomial model.

2 Algorithmic details

Here we provide the technical detail on how to estimate the posterior distributions and
the Bayes factors.

2.1 Estimating the posterior distributions

To sample from the posterior distribution of interest π(ψ|D), we use a Metropolis-Hastings
within Gibbs sampler (Metropolis et al., 1953; Geman and Geman, 1984). We introduce
the missing Ni and Mi values, denoted N and M as auxiliary variables, and sample from
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the distribution π(ψ, p, λ, d,N,M|D), which admits π(ψ|D) as a marginal distribution.
For the priors in Equation (9), the full conditional distributions of λ and d can be found,
with

π(λ|p, ψ, d,N,M, D) = Γ
(

λ; a+
∑

Ni, C + b
)

and
π(d|p, ψ, λ,N,M, D) = Beta

(

d; a′ +
∑

(Ni − ni), b
′ +

∑

ni
)

allowing a Gibbs update step to be used for these parameters. For the model in which sex
allocation is binomial (ψ = 0), there is also a Gibbs sampler for p with

π(p|ψ, λ, d,N,M, D) = Beta
(

p;α+
∑

Mi, β +
∑

(Ni −Mi)
)

if p ∼ Beta(α, β) a priori (if α = β = 1 then p ∼ U [0, 1]).

In the case where ψ 6= 0, we need to use a Metropolis-Hastings update for both p and
ψ. We use a symmetric Gaussian random walk on both parameters, working on the logit
scale of p to avoid difficulties with finite prior support regions:

ψ′ = ψ + σψZ, logit(p′) = logit(p) + σpZ
′

where Z and Z ′ are independent N(0, 1) random variables. As both proposals are
symmetric, they cancel from the Metropolis-Hastings acceptance rate, giving acceptance
probability

π(p′, ψ′|λ, d,N,M, n,m)

π(p, ψ|λ, d,N,M, n,m)
=
π(N,M, n,m|λ, d, p′, ψ′)

π(N,M, n,m|λ, d, p, ψ, )
π(p′, ψ′|λ, d)
π(p, ψ|λ, d)

=
π(M |N, p′, ψ′)

π(M |N, p, ψ)

π(p′)π(ψ′)

π(p)π(ψ)
(S1)

with π(M |N, p, ψ) given by Equation (3). We have found that using σψ = 0.2 and σp = 0.3
provides a good compromise between mixing and acceptance rate.

To update the N and M values, we update each (Ni,Mi) pair separately. We use the
relationship

π(Ni,Mi|ni,mi, λ, p, ψ, d) ∝ π(ni|Ni, di)π(mi|Mi, Ni, ni, d)π(Mi|Ni, p, ψ)

· π(Ni|λ)IMi≥mi, Ni≥ni
IMi−mi≤Ni−ni

where each expression in this equation has been calculated previously or is part of the
model definition. We use the prior distribution of n and m, conditioned to satisfy the
three inequalities in Equation (2), as an independence sampler proposal for (Ni,Mi).

q((NiMi), (N
′
iM

′
i)) = π(M ′

i |N ′
i , p, ψ, )π(N ′

i |λ)IM ′

i
≥mi, N

′

i
≥ni

IM ′

i
−mi≤N

′

i
−ni

which we can simulate from using the rejection algorithm. It is more efficient to reject
infeasible values of N and M at the proposal stage rather than in the MCMC acceptance,
as it leads to higher MCMC acceptance rates and thus quicker mixing. This gives the
Metropolis-Hastings acceptance probability

α((NiMi), (N
′
iM

′
i)) = min

(

1,
π(mi|M ′

i , N
′
i , ni)

π(mi|Mi, Ni, ni)

π(ni|N ′
i , d)

π(ni|Ni, d)

)

.

The Markov chain sampler then alternates between updating the four parameters and
updating each of the C pairs (Mi, Ni).
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2.2 Bayes factor estimation

We use the approach described in Chib (1995) and Chib and Jeliazkov (2001) to estimate
the Bayes factors. This relies upon the identity

π(n,m) =
π(n,m|θ∗)π(θ∗)

π(θ∗|n,m)
. (S2)

to estimate the evidence for each model. This holds for all θ∗, but works best when θ∗ has
large posterior support, such as when θ∗ = arg max π(θ|n,m). To evaluate the likelihood
contribution, we note that

π(n,m|θ) =
∑

N,M

π(n,m|N,M, θ)π(N,M|θ). (S3)

and that

π(n,m|N,M, θ)π(N,M|θ) =
C
∏

j=1

π(nj|Nj, θ)π(mj|Mj, Nj, nj)π(Mj|Nj, θ)π(Nj|θ).

Estimating Equation (S3) using Monte Carlo integration does not work well, due to the
extreme variance of the resulting estimator, and so instead we directly calculate each
summand, evaluating the Mi sum over the range allowed by the inequalities in Equation
(2), and truncating the sum with respect to Ni when each term drops below a value of
10−6, ensuring good accuracy in the estimate.

Estimation of the denominator in Equation (S2) is more difficult, and we need a slightly
different approach for the two models. For the binomial model, we note that

π(θ|n,m) =
∑

N,M

π(θ|N,M,n,m)π(N,M|n,m) (S4)

which we can estimate using

1

B

B
∑

i=1

π(θ∗|N(i),M(i),n,m) (S5)

where N(i),M(i) ∼ π(N,M|n,m), i = 1, . . . , B, are simulated random vectors from the
posterior distribution π(θ,N,M|n,m). The summands are explicitly available for the
binomial model:

π(p, λ,d | N,M,n,m) = Beta(p;α+
C
∑

i=1

Mi, β +
C
∑

i=1

(Ni −Mi))×

Γ(λ; a+
C
∑

i=1

Ni, C + b)Beta(d; a′ +
C
∑

i=1

(Ni − ni), b
′ +

C
∑

i=1

ni). (S6)

Estimating the denominator for the multiplicative and double binomial models is more
difficult, as the summand in Equation (S5) cannot be explicitly calculated. We instead
split the parameter θ = (λ, p, ψ, d) into two blocks θ = (θ1, θ2) where θ1 = (p, ψ) and
θ2 = (λ, d) and use the identity

π(θ∗
1, θ

∗
2|n,m) = π(θ∗

1|n,m)π(θ∗
2|n,m, θ∗

1).
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The second term on the right is the easier to evaluate, as

π(λ∗, d∗|n,m, p∗, ψ∗) =
∑

N,M

π(λ∗, d∗|N,M,n,m, p∗, ψ∗)π(N,M|n,m, p∗, ψ∗)

and

π(λ, d|N,M,n,m, p∗, ψ∗) = Γ(λ; α+
C
∑

i=1

Ni, C + β)×

Beta(d; a+
C
∑

i=1

(Ni − ni), b+
C
∑

i=1

ni)

as before. We can simulate N(i),M(i) ∼ π(N,M|n,m, p∗, ψ∗) using a Gibbs sampler with
p and ψ fixed and use a Monte Carlo estimate of the sum.

The term π(θ∗
1|n,m) ≡ π(p∗, ψ∗|n,m) is more difficult to evaluate (Chib and Jeliazkov,

2001). Our approach relies on the fact that the subkernel of the Markov Chain on θ1

satisfies the detailed balance equations. Consider sampling from π(θ1|n,m,N,M, θ2)
using the Metropolis-Hastings algorithm with proposal q(θ1, θ

′
1), and acceptance rate

r(θ1, θ
′
1) = min

(

1,
q(θ′

1, θ1)π(θ′
1|n,m,N,M, θ2)

q(θ1, θ′
1)π(θ1|n,m,N,M, θ2)

)

,

which is given by Equation (S1). The subkernel of this Markov chain is

p(θ1, θ
′
1) = q(θ1, θ

′
1)r(θ1, θ

′
1).

By rearranging the detailed balance equation, we find the identity

π(θ∗
1|n,m) =

E(p(θ1, θ
∗
1))

E(r(θ∗
1, θ1))

(S7)

where q and r will potentially depend upon N,M and θ2 (suppressed in the notation).
The expectation in the numerator is with respect to the distribution π(θ1, θ2,N,M|n,m),
from which we have generated samples using the full Markov chain. The expectation in
the denominator is with respect to π(θ2,N,M|n,m, θ∗

1)q(θ∗
1, θ1) which we can sample from

by simulating from π(λ, d,N,M|n,m, p∗, ψ∗) using a Gibbs sampler, and then generating
(p, ψ) values by simulating from q(θ∗

1, θ1) for each realisation from the first chain. We can
then estimate both terms in Equation (S7) using the Monte Carlo sum approximation to
the integral.

3 Meelis test details

Suppose X1, . . . , XC are independent identically distributed Bin(n, p) random variables.
Nagelkerke and Sabelis (1998) showed that the test statistic U, defined by

U =

∑C
i=1 X

2
i − f√
V
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where

f =
v(v(n− 1) + n(C − 1))

Cn− 1

v =
C
∑

i=1

Xi

x(j) = x(x− 1) . . . (x− j + 1)

V =
v(4)(n− 1)(Cn(n− 1) − (4n− 6))

(Cn− 1)(3)
+

4v(3)(n− 1)(2)

(Cn− 1)(2)

+
2v(2)(n− 1)

Cn− 1
− v2(v − 1)2(n− 1)2

(Cn− 1)2

follows a standard normal distribution provided that C is sufficiently large, and that n is
not very small (unless C is large).

4 R package

4.1 Installation

The easiest way to install is to use devtools to install directly from github.

devtools::install_github('rich-d-wilkinson/precision')

Alternatively, download the package from https://github.com/rich-d-wilkinson/precision
and install manually.

4.2 Data

All of the datasets used in the paper are included in the R package.

library(precision)

data(package='precision')$results[,c('Item')]

## [1] "CflorusPrimary" "CflorusSecondary"

## [3] "GlegneriPrimary" "GlegneriSecondary"

## [5] "GthailandensisSecondary" "MluteolusPrimary"

## [7] "MluteolusSecondary" "hyper (CflorusSecondary)"

## [9] "hyper (GlegneriSecondary)" "hyper (GthailandensisSecondary)"

## [11] "hyper (MluteolusSecondary)"

For example, the C. florus secondary dataset is

7
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data(CflorusSecondary)

tail(CflorusSecondary)

## n m

## [48,] 15 6

## [49,] 19 4

## [50,] 21 3

## [51,] 22 7

## [52,] 23 10

## [53,] 24 5

To use your own dataset, specify a C × 2 matrix, with the first column containing the
clutch size, and the second the number of males. It is necessary to label your columns as
n and m.

my_data <- matrix(c(3,2,4,3,5,1,6,2,7,1,7,1), nc=2, byrow=TRUE)

colnames(my_data) <- c('n', 'm')

my_data

4.3 Standard Analyses

The pre-existing analysis methods are all built into the R functions Meelis.test and
James.test. For example,

(meelis.out <- Meelis.test(CflorusSecondary, TwoSided = TRUE))

## $vals

## clutch size no. clutches p hat binom var obs var R

## [1,] 1 8 0.0000000 0.0000000 0.0000000 NaN

## [2,] 2 6 0.4166667 0.4861111 0.1666667 0.3428571

## [3,] 3 3 0.3333333 0.6666667 1.0000000 1.5000000

## [4,] 4 5 0.2000000 0.6400000 0.2000000 0.3125000

## [5,] 5 6 0.3000000 1.0500000 0.3000000 0.2857143

## [6,] 6 2 0.4166667 1.4583333 0.5000000 0.3428571

## [7,] 7 2 0.1428571 0.8571429 0.0000000 0.0000000

## [8,] 8 2 0.2500000 1.5000000 2.0000000 1.3333333

## [9,] 9 4 0.5833333 2.1875000 2.2500000 1.0285714

## [10,] 10 2 0.2500000 1.8750000 0.5000000 0.2666667

## [11,] 12 3 0.4722222 2.9907407 5.3333333 1.7832817

## [12,] 13 1 0.3076923 2.7692308 0.0000000 NA

## [13,] 14 1 0.7142857 2.8571429 0.0000000 NA

## [14,] 15 3 0.2666667 2.9333333 7.0000000 2.3863636

## [15,] 19 1 0.2105263 3.1578947 0.0000000 NA

## [16,] 21 1 0.1428571 2.5714286 0.0000000 NA

## [17,] 22 1 0.3181818 4.7727273 0.0000000 NA
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## [18,] 23 1 0.4347826 5.6521739 0.0000000 NA

## [19,] 24 1 0.2083333 3.9583333 0.0000000 NA

## M V U p value

## [1,] 0.000000 0.0000000 NaN NaN

## [2,] 6.818182 1.5426997 -1.4638501 0.07161745

## [3,] 4.500000 1.6071429 0.3944053 0.65335909

## [4,] 5.894737 2.5028516 -1.1976540 0.11552588

## [5,] 18.931034 9.5124851 -1.2745587 0.10123273

## [6,] 14.090909 4.6280992 -0.5070926 0.30604494

## [7,] 2.923077 0.9940828 -0.9258201 0.17726974

## [8,] 9.600000 4.3323077 0.1921765 0.57619803

## [9,] 117.000000 27.7219251 0.0000000 0.50000000

## [10,] 14.473684 6.8437347 -0.5633235 0.28660732

## [11,] 102.485714 35.7355102 0.7551601 0.77492354

## [12,] 16.000000 0.0000000 NaN NaN

## [13,] 100.000000 0.0000000 NaN NaN

## [14,] 54.000000 33.4883721 1.3824294 0.91658006

## [15,] 16.000000 0.0000000 NaN NaN

## [16,] 9.000000 0.0000000 NaN NaN

## [17,] 49.000000 0.0000000 NaN NaN

## [18,] 100.000000 0.0000000 NaN NaN

## [19,] 25.000000 0.0000000 NaN NaN

##

## $R.av

## [1] 0.7532786

##

## $s2

## [1] 1.181833

##

## $U.av

## [1] -0.9672868

##

## $p.av

## [1] 0.3334007

##

## $exp.table

##

## 0 1 2 3 4 5 6 7 10

## 1 8 0 0 0 0 0 0 0 0

## 2 1 5 0 0 0 0 0 0 0

## 3 1 1 1 0 0 0 0 0 0

## 4 1 4 0 0 0 0 0 0 0

## 5 0 3 3 0 0 0 0 0 0

## 6 0 0 1 1 0 0 0 0 0

## 7 0 2 0 0 0 0 0 0 0

## 8 0 1 0 1 0 0 0 0 0

## 9 0 0 0 0 2 0 1 1 0

## 10 0 0 1 1 0 0 0 0 0
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## 12 0 0 0 1 0 0 0 2 0

## 13 0 0 0 0 1 0 0 0 0

## 14 0 0 0 0 0 0 0 0 1

## 15 0 1 0 0 0 1 1 0 0

## 19 0 0 0 0 1 0 0 0 0

## 21 0 0 0 1 0 0 0 0 0

## 22 0 0 0 0 0 0 0 1 0

## 23 0 0 0 0 0 0 0 0 1

## 24 0 0 0 0 0 1 0 0 0

(james.out <- James.test(CflorusSecondary, TwoSided = TRUE))

## $U

## [1] 2.70893

##

## $p.val

## [1] 0.006750059

##

## $exp.table

##

## 0 1 2 3 4 5 6 7 10

## 1 8 0 0 0 0 0 0 0 0

## 2 1 5 0 0 0 0 0 0 0

## 3 1 1 1 0 0 0 0 0 0

## 4 1 4 0 0 0 0 0 0 0

## 5 0 3 3 0 0 0 0 0 0

## 6 0 0 1 1 0 0 0 0 0

## 7 0 2 0 0 0 0 0 0 0

## 8 0 1 0 1 0 0 0 0 0

## 9 0 0 0 0 2 0 1 1 0

## 10 0 0 1 1 0 0 0 0 0

## 12 0 0 0 1 0 0 0 2 0

## 13 0 0 0 0 1 0 0 0 0

## 14 0 0 0 0 0 0 0 0 1

## 15 0 1 0 0 0 1 1 0 0

## 19 0 0 0 0 1 0 0 0 0

## 21 0 0 0 1 0 0 0 0 0

## 22 0 0 0 0 0 0 0 1 0

## 23 0 0 0 0 0 0 0 0 1

## 24 0 0 0 0 0 1 0 0 0

From this we can see the test statistics for the Meelis and James’ tests, as well as the
corresponding p-values. The value of R and McCullagh’s s2 are included in the output
from Meelis.test.
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4.4 Bayesian analysis

The Bayesian analysis consists of two parts. The first is finding the posterior distributions
of the parameters. The second optional stage is to go on to estimate the Bayes factors.
These calculations require us to run an MCMC sampler, which can be computationally
intensive depending on how long it is run for. The longer it is run, the more accurate the
calculations are likely to be.

The calculations all require the specification of prior distributions. The family of distri-
butions used for each parameter is hard coded into the package, but the user is free to
choose the hyper-parameters that define the mean and variance of the distribution. The
priors used are

p ∼ Beta(ap, bp)

ψ ∼ N(µ, σ2)

λ ∼ Gamma(α, β)

d ∼ Beta(ad, bd).

We specify all of these through a list.

hyper<-list()

The elements of the list must use the naming convention used below. A reasonable
default choice of prior for p and ψ (see paper for the rationale) is to use p ∼ U [0, 1] and
ψ ∼ N(0, 1), which we can set as follows:

hyper$a.p <- 1

hyper$b.p <- 1

hyper$mu.psi <- 0

hyper$sd.psi <- 1

For C. florus, previous work has reported a mortality rate of 57% and an average clutch
size of 7.4. Some experimentation with the values, and recalling that the mean of a
Gamma(α, β) distribution is α/β and the variance is α/β2, led us to use

hyper$a.m <- 11

hyper$b.m <- 10

hyper$alpha.lambda <- 16

hyper$beta.lambda <- 1

It is a good idea to plot the prior distributions, to check that they agree with prior beliefs.
This can be done as follows:

plot.prior(hyper=hyper, show=TRUE, family="multbinom")
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4.4.1 Posteriors

To calculate the posterior distribution, we have to run an MCMC sampler for a larger
number of iterations. The longer we run the sampler, the better the posterior estimates
will be. We would suggest a minimum of 105 iterations to get a reasonable estimate of
the posteriors, and that 106 iterations should be more than sufficient. If Bayes factors are
to be estimated, we would err towards the higher end of that range. The run time will
depend upon both the number of MCMC iterations used, and the number of clutches in
the dataset (as the MCMC algorithm samples the unobserved primary counts). To do 106

iterations with the C. florus dataset, you should expect to wait about an hour, depending
on processor speed, for each set of MCMC results.
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nbatch <- 10^6

Binomial Model The proceedure for fitting each of the three models (binomial, multi-
plicative binomial, and double binomial) is the same, and each can be done independently
(on different cores if possible). To begin with, we choose a start point for the MCMC
chain. The chains mix well and so a random value chosen from the prior works well here.
It is necessary to label the parameters in the parameter matrix

b.theta0 <-c("lambda"=10, "p"=0.1, "mort"=0.5)

To run the code, we then just call the MCMCWithinGibbs function. Note that you can
specify whether to keep the imputed missing primary values (the N and M values).

b.mcmc.out <- MCMCWithinGibbs(theta0=b.theta0, data=CflorusSecondary, hyper=hyper,

nbatch=nbatch, family="binomial", keepNM=TRUE)

Finally, it can often be a good idea to thin the MCMC output (by only keeping every
10th value for example) and to discard an initial ‘burn-in’ period.

b.mcmc.out.t <- ThinChain(b.mcmc.out, thinby=10, burnin=10^5)

The trace plots are useful to ensure that the chains have converged, and that they are
mixing well.

plot.trace(chain=b.mcmc.out.t$chain, show=T, family="binomial")
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These all look fine, and so we can plot the posteriors and draw conclusions:
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plot.posterior(chain=b.mcmc.out.t$chain, hyper=hyper, show=T, family="binomial")
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Multiplicative and Double Binomial Models The process for fitting the other
models is very similar. However, now we are forced to use Metropolis-Hastings as well as a
Gibbs sampler, and so we need to specify the Metropolis-Hastings random walk step size.

m.step.size<-c('p.logit'=0.3, 'psi'=0.2)

Note again that it is necessary to name the elements in this vector to avoid ambiguity.
The rest of the code is the same as for the binomial model:

m.theta0 <-c('lambda'=10, 'p'=0.1,'psi'=0, 'mort'=0.1)

m.mcmc.out <- MCMCWithinGibbs( theta0=m.theta0, data=GlegneriSecondary,

hyper=hyper, nbatch=nbatch,

family="multbinom", step.size=m.step.size,

keepNM=TRUE)

m.mcmc.out.t <- ThinChain(m.mcmc.out, thinby=10, burnin=10^5)

plot.posterior(chain=m.mcmc.out.t$chain, hyper=hyper, show=T, family="multbinom")
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#plot.trace(chain=m.mcmc.out.t$chain, show=T, family="multbinom")

d.step.size<-c('p.logit'=0.3, 'psi'=0.2)

d.theta0 <-c('lambda'=10, 'p'=0.1,'psi'=0, 'mort'=0.1)

d.mcmc.out <- MCMCWithinGibbs( theta0=d.theta0, data=GlegneriSecondary,

hyper=hyper, nbatch=nbatch, family="doublebinom", step.size=d.step.size,

keepNM=TRUE)

d.mcmc.out.t <- ThinChain(d.mcmc.full, thinby=1, burnin=10^4)
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plot.posterior(chain=d.mcmc.out.t$chain, hyper=hyper, show=TRUE,

family="doublebinom")
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#plot.trace(chain=d.mcmc.out.t$chain, show=TRUE, family="doublebinom")

4.4.2 Bayes factors

The posterior distributions give most of the information about how much under-dispersion
there is in the data. However, often we will want to also calculate the Bayes factor to
see how strongly the data support one model over the others. To do this, we have to
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run additional MCMC chains fixing some of the parameters (and so this step is also
computationally costly).

b.log.evidence <- CalculateEvidence(mcmc.out=b.mcmc.out.t, data=GlegneriSecondary,

hyper=hyper, family="binomial")

m.log.evidence <- CalculateEvidence(mcmc.out=m.mcmc.out.t, data=GlegneriSecondary,

hyper=hyper, family="multbinom" nbatch=nbatch, step.size=m.step.size)

d.log.evidence <- CalculateEvidence(mcmc.out=d.mcmc.out.t, data=GlegneriSecondary,

hyper=hyper, family="doublebinom", sd=FALSE, nbatch=nbatch,

step.size=d.step.size)

Finally, we can put all the information together in a nice format as follows:

log.evidence <- c(b.log.evidence, m.log.evidence, d.log.evidence)

BF<-CalcBF(log.evidence)

chib.out <- list(BF=BF$BF, probH0 = BF$probH0 ,

ProbPosPsi = c(

"multbinom"=sum((m.mcmc.out.t$chain[,"psi"]>0))/length(m.mcmc.out.t$chain[,"psi"]),

"doublebinom"=sum((d.mcmc.out.t$chain[,"psi"]>0))/length(d.mcmc.out.t$chain[,"psi"])),

log.BF=log(BF$BF), log.evidence=log.evidence,

R= c("R"=meelis.out$R.av),

s2 = c(meelis.out$s2),

meelis = c("U"=meelis.out$U.av, "p"=meelis.out$p.av, "conclusion"=ifelse(meelis.out$p.av<

james = c("U"=james.out$U, "p"=james.out$p.val,

"conclusion" = ifelse(james.out$p.val<0.05, "RejectH0", "AcceptH0") ) )

print(chib.out)

## $BF

## mb db dm

## 0.3620485 0.2687031 0.7421744

##

## $probH0

## binomial multbinom doublebinom

## 0.6132142 0.2220133 0.1647726

##

## $ProbPosPsi

## multbinom doublebinom

## 0.075386 0.089588

##

## $log.BF

## mb db dm

## -1.015977 -1.314148 -0.298171

##

## $log.evidence

## [1] -307.7081 -308.7241 -309.0222

##

## $R
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## R

## 0.7532786

##

## $s2

## [1] 1.181833

##

## $meelis

## U p conclusion

## "-0.967286848797403" "0.333400656210468" "AcceptH0"

##

## $james

## U p conclusion

## "2.70892995669601" "0.00675005884011858" "RejectH0"

From this we can read off the Bayes factors (which show that the binomial model is slightly
favoured here), the posterior probabilities of each model, the posterior probability that
ψ is positive (which is only 0.075 and 0.090 for the multiplicative and double binomial
models respectively), as well as the other descriptive statistics previously used.
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