These tables and figures are part of an author produced version of a paper published in *International Journal of Coal Geology*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/10358

Published paper

http://dx.doi.org/10.1016/j.coal.2009.08.010
Table 1. List of samples from five seam sections of the Parkgate coal bed, United Kingdom.

<table>
<thead>
<tr>
<th>Colliey</th>
<th>National Grid E</th>
<th>National Grid N</th>
<th>Seam section interval</th>
<th>Section thickness (cm)</th>
<th>Lab number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thoresby</td>
<td>468584</td>
<td>370324</td>
<td>Bed A</td>
<td>30</td>
<td>E 249094</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed B</td>
<td>30</td>
<td>E 249095</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed C</td>
<td>30</td>
<td>E 249096</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed D</td>
<td>30</td>
<td>E 249097</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed E</td>
<td>30</td>
<td>E 249098</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed F</td>
<td>30</td>
<td>E 249099</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed G</td>
<td>6</td>
<td>E 249100</td>
</tr>
<tr>
<td>Thoresby</td>
<td>468793</td>
<td>368972</td>
<td>Bed A</td>
<td>30</td>
<td>E 249101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed B</td>
<td>30</td>
<td>E 249102</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed C</td>
<td>30</td>
<td>E 249103</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed D</td>
<td>30</td>
<td>E 249104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed E</td>
<td>30</td>
<td>E 249105</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed F</td>
<td>29</td>
<td>E 249106</td>
</tr>
<tr>
<td>Welbeck</td>
<td>462987</td>
<td>372020</td>
<td>Bed A</td>
<td>30</td>
<td>E 249107</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed B</td>
<td>11</td>
<td>E 249108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed C</td>
<td>12</td>
<td>E 249109</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed D</td>
<td>24</td>
<td>E 249110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed E</td>
<td>3</td>
<td>E 249111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed F</td>
<td>18</td>
<td>E 249112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed G</td>
<td>30</td>
<td>E 249113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed H</td>
<td>10</td>
<td>E 249114</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed J</td>
<td>30</td>
<td>E 249115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed K</td>
<td>24</td>
<td>E 249116</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed M</td>
<td>4</td>
<td>E 249117</td>
</tr>
<tr>
<td>Maltby</td>
<td>456697</td>
<td>395100</td>
<td>Bed A</td>
<td>28</td>
<td>E 249118</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed B</td>
<td>38</td>
<td>E249119</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed C</td>
<td>30</td>
<td>E 249120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed D</td>
<td>34</td>
<td>E 249121</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed E</td>
<td>12</td>
<td>E 249122</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed F</td>
<td>12</td>
<td>E 249123</td>
</tr>
<tr>
<td>Thoresby</td>
<td>461578</td>
<td>374957</td>
<td>Bed A</td>
<td>25</td>
<td>E 249124</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed B</td>
<td>25</td>
<td>E 249125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed C</td>
<td>1</td>
<td>E 249126</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed D</td>
<td>10</td>
<td>E 249127</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed E</td>
<td>39</td>
<td>E 249128</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed F</td>
<td>39</td>
<td>E 249129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed G</td>
<td>1</td>
<td>E 249130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed H</td>
<td>20</td>
<td>E 249131</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bed I</td>
<td>25</td>
<td>E 249132</td>
</tr>
</tbody>
</table>
Table 2. Statistics for chemical analyses of 38 samples of the Parkgate coal on a dry, whole-coal basis.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Median</th>
<th>Average</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>weight %</td>
<td>0.96</td>
<td>1.66</td>
<td>1.92</td>
</tr>
<tr>
<td>Al</td>
<td>weight %</td>
<td>0.65</td>
<td>1.15</td>
<td>1.42</td>
</tr>
<tr>
<td>Ca</td>
<td>weight %</td>
<td>0.17</td>
<td>0.22</td>
<td>0.18</td>
</tr>
<tr>
<td>Mg</td>
<td>weight %</td>
<td>0.038</td>
<td>0.054</td>
<td>0.06</td>
</tr>
<tr>
<td>Na</td>
<td>weight %</td>
<td>0.21</td>
<td>0.2</td>
<td>0.07</td>
</tr>
<tr>
<td>K</td>
<td>weight %</td>
<td>0.072</td>
<td>0.186</td>
<td>0.31</td>
</tr>
<tr>
<td>Fe</td>
<td>weight %</td>
<td>0.682</td>
<td>1.055</td>
<td>0.99</td>
</tr>
<tr>
<td>Ti</td>
<td>weight %</td>
<td>0.03</td>
<td>0.049</td>
<td>0.07</td>
</tr>
<tr>
<td>P</td>
<td>weight %</td>
<td>0.0006</td>
<td>0.0025</td>
<td>0.004</td>
</tr>
<tr>
<td>S</td>
<td>weight %</td>
<td>1.76</td>
<td>2.13</td>
<td>1.12</td>
</tr>
<tr>
<td>525 degree C Ash</td>
<td>%</td>
<td>6.05</td>
<td>8.79</td>
<td>8.14</td>
</tr>
<tr>
<td>Remnant Moisture</td>
<td>%</td>
<td>1.72</td>
<td>1.75</td>
<td>0.44</td>
</tr>
<tr>
<td>As</td>
<td>ppm</td>
<td>11.6</td>
<td>31.3</td>
<td>45</td>
</tr>
<tr>
<td>Ba</td>
<td>ppm</td>
<td>84.0</td>
<td>100</td>
<td>63</td>
</tr>
<tr>
<td>Be</td>
<td>ppm</td>
<td>1.45</td>
<td>1.65</td>
<td>0.82</td>
</tr>
<tr>
<td>Bi</td>
<td>ppm</td>
<td>0.09</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>Cd</td>
<td>ppm</td>
<td>0.04</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>Cl</td>
<td>ppm</td>
<td>5850</td>
<td>6120</td>
<td>1810</td>
</tr>
<tr>
<td>Co</td>
<td>ppm</td>
<td>2.35</td>
<td>3.38</td>
<td>2.3</td>
</tr>
<tr>
<td>Cr</td>
<td>ppm</td>
<td>8.90</td>
<td>14.8</td>
<td>18</td>
</tr>
<tr>
<td>Cs</td>
<td>ppm</td>
<td>0.280</td>
<td>0.79</td>
<td>1.23</td>
</tr>
<tr>
<td>Cu</td>
<td>ppm</td>
<td>30.0</td>
<td>39.0</td>
<td>28</td>
</tr>
<tr>
<td>Ga</td>
<td>ppm</td>
<td>2.01</td>
<td>3.26</td>
<td>3.1</td>
</tr>
<tr>
<td>Ge</td>
<td>ppm</td>
<td>5.52</td>
<td>9.31</td>
<td>10.4</td>
</tr>
<tr>
<td>Hg</td>
<td>ppm</td>
<td>0.087</td>
<td>0.174</td>
<td>0.21</td>
</tr>
<tr>
<td>Li</td>
<td>ppm</td>
<td>10.0</td>
<td>29.1</td>
<td>62</td>
</tr>
<tr>
<td>Mn</td>
<td>ppm</td>
<td>24.4</td>
<td>30.1</td>
<td>23</td>
</tr>
<tr>
<td>Mo</td>
<td>ppm</td>
<td>2.81</td>
<td>3.39</td>
<td>2.7</td>
</tr>
<tr>
<td>Nb</td>
<td>ppm</td>
<td>0.780</td>
<td>1.17</td>
<td>1.3</td>
</tr>
<tr>
<td>Ni</td>
<td>ppm</td>
<td>24.1</td>
<td>40.0</td>
<td>51</td>
</tr>
<tr>
<td>Pb</td>
<td>ppm</td>
<td>12.8</td>
<td>23.5</td>
<td>23</td>
</tr>
<tr>
<td>Rb</td>
<td>ppm</td>
<td>3.70</td>
<td>9.8</td>
<td>16</td>
</tr>
<tr>
<td>Sb</td>
<td>ppm</td>
<td>1.69</td>
<td>2.29</td>
<td>1.8</td>
</tr>
<tr>
<td>Sc</td>
<td>ppm</td>
<td>2.14</td>
<td>3.15</td>
<td>3.0</td>
</tr>
<tr>
<td>Se</td>
<td>ppm</td>
<td>1.45</td>
<td>2.33</td>
<td>2.1</td>
</tr>
<tr>
<td>Sn</td>
<td>ppm</td>
<td>1.07</td>
<td>1.45</td>
<td>1.1</td>
</tr>
<tr>
<td>Sr</td>
<td>ppm</td>
<td>35.0</td>
<td>46.0</td>
<td>35</td>
</tr>
<tr>
<td>Te</td>
<td>ppm</td>
<td>0.07</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>Tl</td>
<td>ppm</td>
<td>0.33</td>
<td>0.73</td>
<td>1.0</td>
</tr>
<tr>
<td>U</td>
<td>ppm</td>
<td>0.78</td>
<td>1.09</td>
<td>0.8</td>
</tr>
<tr>
<td>V</td>
<td>ppm</td>
<td>25.1</td>
<td>35.0</td>
<td>27</td>
</tr>
<tr>
<td>Y</td>
<td>ppm</td>
<td>4.60</td>
<td>5.84</td>
<td>4.5</td>
</tr>
<tr>
<td>Zn</td>
<td>ppm</td>
<td>7.61</td>
<td>8.44</td>
<td>3.4</td>
</tr>
</tbody>
</table>
Table 3. Correlation coefficients from centred logratio values and regression values on raw values for K at 95% confidence level for Parkgate coal samples. Calculated organic concentrations in ppm for the Eggborough coal (Spears, 2002) are also shown. [r = correlation coefficient, intercept = regression value on element axis in ppm, lower limit = lower limit of intercept at 95% confidence level, percent = intercept expressed as percentage of median elemental value]

<table>
<thead>
<tr>
<th>Element</th>
<th>(r)</th>
<th>Intercept ppm</th>
<th>Lower limit ppm</th>
<th>Median ppm</th>
<th>Percent</th>
<th>Organic composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.94</td>
<td>0.1</td>
<td>0.08</td>
<td>0.19</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>Ba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Bi</td>
<td>0.89</td>
<td>0.07</td>
<td>0.05</td>
<td>0.12</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.94</td>
<td>4.5</td>
<td>2.24</td>
<td>14.8</td>
<td>30</td>
<td>17</td>
</tr>
<tr>
<td>Cs</td>
<td>0.99</td>
<td>0.05</td>
<td>0.004</td>
<td>0.79</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.86</td>
<td>24.3</td>
<td>19</td>
<td>38.9</td>
<td>62</td>
<td>22</td>
</tr>
<tr>
<td>Ga</td>
<td>0.93</td>
<td>1.5</td>
<td>1.05</td>
<td>3.26</td>
<td>46</td>
<td>2.8</td>
</tr>
<tr>
<td>Ge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.6</td>
</tr>
<tr>
<td>Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>0.9</td>
<td>-4.9</td>
<td>-15</td>
<td>29.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>0.83</td>
<td>0.5</td>
<td>0.22</td>
<td>1.17</td>
<td>53</td>
<td>0.7</td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>0.99</td>
<td>0.39</td>
<td>0.068</td>
<td>9.8</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Sb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>0.88</td>
<td>1.5</td>
<td>0.97</td>
<td>3.15</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Se</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>0.84</td>
<td>0.86</td>
<td>0.62</td>
<td>1.45</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>Sr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Te</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>0.91</td>
<td>0.3</td>
<td>-0.16</td>
<td>1.86</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Ti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>0.86</td>
<td>0.67</td>
<td>0.5</td>
<td>1.08</td>
<td>62</td>
<td>0</td>
</tr>
<tr>
<td>V</td>
<td>0.79</td>
<td>22</td>
<td>15</td>
<td>35</td>
<td>62</td>
<td>60</td>
</tr>
<tr>
<td>Y</td>
<td>0.9</td>
<td>3.4</td>
<td>2.6</td>
<td>5.84</td>
<td>58</td>
<td>3.3</td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td>3.4</td>
<td>2.6</td>
<td>5.84</td>
<td>58</td>
<td>10</td>
</tr>
</tbody>
</table>
Table 4. Calculated trace element concentrations (in ppm) in pyrite for 1) the Parkgate coal (this study), 2) the Harworth coal (Spears et al., 1999b), 3) the Eggborough coal (Spears, 2002, and Spears et al., 2007) and 4) observed concentrations in pyrite from coals in the Yorkshire-Nottinghamshire coalfield in the work of White et al. (1989).

<table>
<thead>
<tr>
<th>Element</th>
<th>Parkgate</th>
<th>Harworth</th>
<th>Eggborough</th>
<th>East Midlands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hg</td>
<td>7.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tl</td>
<td>40</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Pb</td>
<td>875</td>
<td>390</td>
<td>406</td>
<td>322</td>
</tr>
<tr>
<td>As</td>
<td>1440</td>
<td>1346</td>
<td>1070</td>
<td>1029</td>
</tr>
<tr>
<td>Se</td>
<td>78</td>
<td>38</td>
<td>27</td>
<td>97</td>
</tr>
<tr>
<td>Mo</td>
<td>96</td>
<td>128</td>
<td>98</td>
<td>107</td>
</tr>
<tr>
<td>Cd</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>1870</td>
<td>525</td>
<td>337</td>
<td>309</td>
</tr>
<tr>
<td>Sb</td>
<td>53</td>
<td>26</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>97</td>
<td>564</td>
<td>455</td>
<td>21</td>
</tr>
<tr>
<td>Co</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td>885</td>
<td></td>
<td>315</td>
</tr>
</tbody>
</table>
Figure 1. Location of the Yorkshire-Nottinghamshire coalfield in the United Kingdom. Collieries from which samples were collected are Maltby (M), Thoresby (T), and Welbeck (W).
Figure 2. Parkgate seam section, Thoresby colliery. (Nat grid ref E461578, N374957).
Figure 3. Correlation plots of raw data (dry, whole-coal) with correlation coefficients from centred logratio values for closely associated elements in the Parkgate coal.
Figure 4. Correlation plots for raw Hg versus As, Tl, Cd and Se in the Parkgate coal samples and the correlation coefficients for the centred logratio value.