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Abstract 

We propose a robust schedule coordination scheme which combines timetable planning with a semi-

flexible departure delayed control strategy in case of disruptions. The flexibility is provided by allowing 

holding for the late incoming bus within a safety control margin (SCM). In this way, the stochastic travel 

time is addressed by the integration of real-time control and slacks at the planning phase. The schedule 

coordination problem then jointly optimises the planning headways and slack times in the timetable subject 

to SCM. Analytical formulations of costs functions are derived for three types of operating modes: 

uncoordinated operation, departure punctual control and departure delayed control. The problem is 

formulated as a stochastic mixed integer programming model and solved by a branch-and-bound algorithm. 

Numerical results provide an insight into the interaction between SCM and slack times, and demonstrate 

that the proposed model leads to cost saving and higher efficiency when SCM is considered. Compared to 

the conventional operating modes, the proposed method also presents advantages in transfer reliability and 

robustness to delay and demand variation. 

Keywords: Schedule coordination; Robust; Stochastic travel time; Holding control; Branch-and-bound 

algorithm. 
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1. Introduction 

Traffic congestion and air pollution are major concerns in urban development. It is widely anticipated 

that the shift from auto to public transport can significantly mitigate these problems. With large capacity 

and ease to penetrate urban networks, bus transit system plays an important role in developing sustainable 

urban transportation systems. A good transit network design involves several hierarchically-related 

procedures including: line planning, timetable generation, vehicle scheduling, and crew schedule (Ceder 

and Wilson, 1986; Ceder, 2007). This paper is concerned with the timetable coordination problem, which 

aims to maximize the number of simultaneous arrivals at a transfer station and minimize the transfer 

waiting time cost to passengers. 

A well-designed timetable can greatly improve transit service reliability by providing users with 

seamless transfers. However, due to the stochastic nature of public transit attributes, such as variable travel 

time, fluctuating demand and changeable weather, vehicles may experience unplanned riding time and as 

such are difficult to adhere to the scheduled arrival time at transfer nodes (Hadas and Ceder, 2010; Wu et 

al., 2015). This results in transfer failure and passengers are forced to wait for the next bus, which may 

lead to late arrival at work. It has been shown that bus passengers value their waiting time twice as much 

as their time on board travelling (Quarmy, 1967), and that they value late arrival four times higher than 

mean travel time (Hollander and Liu, 2008). Therefore, it is important to design robust timetable and 

schedule coordination taking into account the above mentioned uncertainty. 

The present paper explores ways to improve the transfer reliability and schedule coordination by 

integration of strategies currently employed separately at the planning level and the operation level. This is 

done by applying probabilistic approximations of generalized cost to the network with the information 

about delay distribution and demand. We show that when combining operational level controls with 

timetable planning, the results are reduced planned slack time in (and therefore more efficient) timetable, 

and more reliable schedule coordination and transfer success. We derive the analytical formulations for 

three types of operation modes. The relationships developed in this study can be used by policy planners 

and transit agencies to help determine the schedule design for given desired service level. 

2. Literature Review and Contributions of the Present Paper 

   There is a wealth of studies on timetabling and scheduling problems for public transport. Ceder et al. 

(2001) proposed that the timetable generation problem can be considered as maximizing the number of 

simultaneous bus arrivals at transfer nodes, and formulated the problem as a mixed integer linear 

programming (MIP) model. The work is extended by Eranki (2004), where the condition of 

synchronization is relaxed and re-defined as the arrival of vehicles at a transfer station within a small 

window of separation time. Following field observation, Ibarra-Rojas and Rios-Solis (2012, 2015) 

developed a flexible timetable synchronization model for a typical bus network, in which different arrival 

time windows are set for different buses. The objectives of the problem are to maximize the number of 

synchronizations for transferring passengers and avoid bus bunching along the common line. Wong et al. 



3 

 

(2008) presented a MIP model for schedule coordination problem in a railway system with the objective to 

minimize the total interchange waiting time, by adjusting trains’ departure time, ride time and dwell time.  

   The above mentioned models are mostly developed to deal with deterministic scenarios at the planning 

stage. In reality, passenger demand varies over time and at different stops which can lead to variations in 

bus dwell times (Fonzone et al., 2015). There is also uncertainty in bus journey times due to traffic 

incidents, weather effects, etc. To improve the reliability of schedule coordination, there have been studies 

to impose a buffer time in the schedule to absorb the travel time variability and to ensure certain degrees of 

connectivity. Ting and Schonfeld (2005) investigated a schedule coordination problem by jointly 

optimizing the headways and slack times at transfer nodes to minimize the total cost of the transit network. 

Wu et al. (2015) developed a timetabling model with stochastic travel time by adding a slack time. The 

model is formulated to optimize the departure times of all buses from all lines, with the goal of minimizing 

the total waiting time cost for three types of passengers: transferring passengers, boarding passengers and 

through passengers. The authors reported that the model is relatively effective if the ratio of the through-

passengers to transfer passengers is less than a critical value. Parbo et al. (2014) addressed a timetable 

optimization problem to minimize the transfer waiting time while considering passengers’ route choice. 

The problem is formulated as a bi-level programming model, in which the lower level is a transit 

assignment model and the upper level is to minimize the weighted transfer waiting time. There are also 

literatures that investigate the schedule coordination optimization for intermodal transport system. Lee and 

Schonfeld (1991) developed an analytical model that optimizes the slack time for simple systems with 

transfer between one bus route and one rail line at the planning level. Chien and Schonfeld (1998) 

presented a model to jointly optimize the layout of a rail line with feeder bus lines, and the operational 

parameters (e.g., bus headways) in an urban corridor. Later, Chien and Schonfeld (2002) formulated 

another model to optimize the intermodal transit coordination problem considering the stochastic feeder 

vehicle arrivals and deterministic train arrivals. The decision variables are the buses and rail headways and 

slack times on bus routes.  

At the operation stage, there have also been studies which focus on improving the reliability of transit 

coordination through real-time control strategies. Among which, holding strategy is most commonly used. 

The strategy can be applied both for regular stops in a bus corridor and at transfer stations (Ibarra-Rojas et 

al., 2015). The former is used to delay bus movement deliberately when a bus is ahead of the schedule and 

maintain regularity (Daganzo, 2009; Xuan et al., 2011; Dalgado et al., 2012; Eberlein et al., 2001; 

Hickman, 2001; Hernandez et al., 2015); while the latter involves holding the ready-to-depart vehicle to 

wait for the delayed vehicle(s) in order to ensure planned connection. Such models require real-time data 

and accurate prediction of vehicle arrival times.  

Chowdhury and Chien (2001) developed a dynamic vehicle dispatching model at an intermodal transfer 

station by making use of real-time information (e.g., estimated vehicle arrival times and transfer demand) 

provided by advanced public transportation systems. Ting and Schonfeld (2007) proposed a dispatch 

control model to optimize the dispatch decision for a multi-route and multi-hub transit network. Chung and 
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Shalaby (2007) developed a holding simulation model for connection protection for intermodal transfer, 

and applied the model to evaluate the bus system in the city of Brampton, Canada. There are also studies 

addressing the holding strategy at transfer nodes when stochastic disturbances occur (e.g. Yu et al., 2012; 

Dessouky et al., 1999, 2003; Chowdhury and Chien, 2001). To mitigate the uncertainty about simultaneous 

arrivals of different vehicles at a transfer station, Hadas and Ceder (2010) developed a simulation model 

incorporating operational tactics such as hold, skip stop and short-turn, and a dynamic programming was 

developed for increasing the number of direct transfers and minimizing the total travel time. Nesheli and 

Ceder (2014) enhanced the simulation model by introducing the concept of skip-a-segment in addition to 

skip-a-stop.  Recently, Sun and Schonfeld (2016) proposed a vehicle holding method for intermodal freight 

operations by considering decision risks and correlations among vehicle arrivals. 

Most of the existing literatures deal with stochastic travel time aspect of schedule coordination problem 

at either the planning stage or the operation stage, not both. The solutions adopted at the two stages are 

different: adding a slack time in the schedule at the planning stage, while the operation stage relying on 

holding control. However, each has its own drawbacks. Real-time holding control could propagate 

disturbances to the subsequent downstream trips, as such impose adverse impacts to other vehicles and 

lead to bus bunching problems for example. Thus pure dynamic corrective (holding) actions without 

sufficient slack may adversely affect the operation stability. On the other hand, although a well-designed 

schedule plan considering uncertainty at the planning stage can reduce the need to frequently relying on 

control tactics, it is achieved at the expense of increased travel time and cost (with the addition of slack 

times), which reduce the commercial speed of buses and thus reduce the efficiency (Daganzo, 2009). In 

addition, the pre-designed timetable may not be feasible any more once vehicle disruptions arise without 

any dynamic control tactics, since there still exists unexpected lateness that cannot be prevented at the 

planning stage. One of the greatest problems facing transit agencies is maintaining robustness while 

achieving high efficiency (Berrebi, et al., 2015). To the best of the authors’ knowledge, there is so far no 

research on schedule coordination that combines timetable synchronization methods at the planning stage 

with holding strategies at the operation stage, and explores the ‘communication’ between what a planned 

schedule entails and what real-time operations do. The schedule scheme may be more robust against 

uncertainty if we combine the advantages of both levels. The challenge is how to improve robustness and 

service quality without significantly increasing additional operation cost.  

Our study explores this idea. In this paper, we propose an innovative robust schedule coordination 

scheme for a transit network, in which the stochastic travel time aspect of the problem is addressed at both 

the planning stage and the operation stage. The former is by adding a slack time into schedule while the 

latter is through a safety control margin. The concept of safety control margin is defined as follows: if the 

lateness of an incoming bus at a transfer station is not sufficiently compensated by the slack time (which 

had already been built in the planning stage) but the predicted arrival time is before a maximum allowable 

holding time (termed as the safety control margin), the ready-to-depart bus will be held for transfer. The 

safety control margin is set such that the resulting departure tardiness caused by holding can be totally 

absorbed by driver’s schedule recovery effort before it reaches the next transfer station. Essentially, the 
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dynamic characteristics of the flexible control strategy requires operators to make difficult trade-off 

between economic viability of the system and maintaining good service for passengers, and trade-off 

between different groups of passengers (e.g., through passengers and transferring passengers). 

Our main contributions in this paper are therefor as follows: (1) we propose a co-optimisation model of 

timetable generation which combines operational-level control strategies into planning-level schedule 

coordination; (2) we obtain analytical formulations in the forms of integrable functions which feature high 

computational efficiency compared to previous studies with numerical integration for unintegrable 

functions; (3) we derive an analytical formulation to calculate transfer failure rates for a given planning 

and control policy, as a measure of transfer reliability; (4) we compare the performance of three 

operational control strategies in timetable planning: uncoordinated operation, departure punctual control 

and departure delayed control in two typical bus networks; (5) we demonstrate that by including the real-

time control strategy (i.e. the safety control margin setting) in the planning stage of setting the slack times, 

more cost-effective timetables with smaller slack times can be achieved.  As far as we are aware, this is 

the first time the schedule coordination problem is addressed at both the planning and the operation stage. 

The rest of the paper is organized as follows. In Section 3, we introduce the model. In Section 4, the 

solution algorithms are developed. In Section 5, numerical examples are performed. Finally, we conclude 

in Section 6. 

3. Modelling Approach  

3.1 Problem description 

Transfer node Departure terminal 
of line 

Departure terminal 
of line 

0s
1s

m
lk

Time

 

Fig.1 A diagrammatic illustration of the interchange process between two transit lines. 

 

   In this section, we revisit the schedule coordination problem and introduce the rational behind our 

proposed model. The modelled bus network consists of a set of lines and nodes. The nodes are shared by 

multiple bus lines for passenger interchange, commonly termed as transfer nodes. (We consider the 

terminals and transfer stations in the network only, and ignore the intermediate bus stops between 
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consecutive transfer stations.) The transferring process of passengers between two lines is shown in a time-

space diagram in Fig.1. In a deterministic scenario, the optimal departure time of line k  and line l is 

scheduled at time 0s . However, the travel time of buses can be unpredictable due to many external factors, 

such as traffic condition. In case of delay, the vehicle of line k may reach transfer node m at a later time 1s . 

If vehicle of line l  departs on time at 0s , then the transfer passengers will miss the scheduled connection 

and have to wait for the next bus. In order to improve the reliability of schedule coordination, a slack time 

is usually built in the timetable as an effective strategy to absorb such travel time uncertainty (Randolph, 

2001; Wu et al., 2015). In reality, however, there may still be delayed arrival that goes beyond the slack 

time.  

To solve this problem, we propose a robust schedule coordination method that combines the operational 

strategies intro timetable planning. At the planning stage, a slack time is added onto the schedule to ensure 

higher probability of scheduled transfer; while at the operation stage, a dynamic holding time is applied to 

realize a connection in case of delays beyond the slack time. Our schedule coordination method optimizes 

the planning headways and slack times in the timetable, subjective to a given holding control specification, 

with an overall objective to minimize monetary cost and transfer failure. 

As soon as the transfer is realized, the holding bus can depart even if it is before a maximum allowable 

holding time. This maximum allowable holding time is termed as safety control margin (SCM). Such a 

system aims to inject flexibility by providing ‘additional’ time for connection protection, which can be 

used in a real-time holding framework to allow deviation from scheduled departure time within a time 

window. 

The SCM is set so that the resulting tardiness or loss time can be ‘absorbed’ before the next transfer 

node. Here, we highlight that the value of SCM should be set to ensure full schedule recovery. In other 

words, the driver will manage to maintain/recover the schedule at the next transfer node. In practice, 

schedule recovery effort can be made section by section along the bus route with the information of 

schedule deviation provided by the intermediate bus stops or time points. Since there are a number of 

sections between contiguous transfers, the distance is generally long enough to realize full schedule 

recovery. To this end, we suggest that the value of SCM should be not greater than a predetermined 

threshold in view of traffic safety requirement (e.g., valid speed limit). While the valid speed limits vary 

period by period, engineering experience shows that the variable speed limit is closely related to the traffic 

conditions (Lu, 2003). Therefore, in practice, the threshold can be tuned or given by rule-of-thumb in 

specified periods of time and be flexibly adjusted based on real situations. 

To illustrate the concept of SCM, we consider a scenario whereby a ready-to-depart bus (let’s call it Bus 

B) is waiting for a connecting bus (Bus A) which is behind the schedule. If Bus A is predicted to arrive 

within the SCM (for example within 30 seconds after the slack time), then Bus B will be held for transfer 

connection and depart as soon as the transfer process finishes. Otherwise, bus B will depart on time. Once 

the holding strategy is adopted, a schedule recovery effort is injected into the bus B, such that bus B driver 



7 

 

should devote his/her effort to catch up the scheduled arrival time within limited bus stops along the route 

and before the next transfer node. For example, if the bus is held for 30s, and the maximal recovery time 

for one bus stop is 10 seconds, then only the passengers of the next two stops downstream will be affected, 

and the extra waiting time for passengers in the first stop and the second stop is 20 seconds and 10 seconds, 

respectively. Such schedule recovery effort is widely adopted in the context of advanced public transport 

systems (APTS) (e.g. Yan et al., 2012; Lin and Bertini, 2004; Chen et al., 2005; Ji et al., 2014). However, 

to simplify the model, in this study we use a continuum approach to develop a closed-form expression to 

capture such interaction; we describe the approach in the model formulation section. Such a scheme, which 

we call semi-flexible control to underline the fact that the holding strategy is only used within SCM, is 

analogous to a hard time window. This tactic requires the APTS to predict the accurate and reliable arrival 

time of the connecting bus and convey that to the ready-to-depart bus, which is attainable in cases where 

buses are isolated through dedicated lanes or exclusive right of ways. In the cases of normal lanes, 

prediction errors may exist in disseminated arrival times since buses are exposed to the general traffic. 

However, since the prediction arrival time can be updated continuously in a real-time manner with the 

vehicle positioning data, higher accuracy can be expected when the bus position is approaching to the 

transfer point. For the bus predicted to arrive within SCM, its position is generally quite close to the 

transfer point upon making the dispatch-or-not decision, thus the prediction error at that instance is small 

enough to be negligible.  

 Although imposing the slack time and holding strategy into schedule improves the robustness of 

coordination and benefits the transferring passengers, it increases the through-passengers’ on-board 

waiting time and bus companies’ operating cost. Therefore, the problem involves a trade-off pertained to 

economic viability of the system versus maintenance of good service for passengers (i.e., extra operating 

cost versus reduced waiting time cost), as well as trade-offs among various types of waiting time 

components (i.e., on-board passengers and transferring passengers). This paper develops a stochastic 

programming model for robust coordination schedule scheme with stochastic travel time (RCSS-STT). In 

the model, the headways of bus routes and slack times at transfer nodes are jointly optimized with a given 

SCM to minimize the network-wide total cost, including the user cost and operating cost.   

3.2 Assumptions and notations 

   In the following section, the fundamental elements of RCSS-STT are described, and the system cost 

components are derived. To facilitate the model development, some assumptions are made and presented 

as follows: 

(A1) Passenger demand and bus travel time information is given as an input, which is assumed to be 

available from historical data. 

(A2) The line headways in the network are usually large (generally longer than 10 min) in the planning 

stage, and the SCM is relatively small compared to headway. 
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(A3) Bus (delay) arrival times of different lines are statistically independent with given continuous 

distributions, and the parameters can be gathered from historic data. 

(A4) There is no capacity limitation on buses so that they can satisfy all demands. 

(A5) The maximal recovery time for each bus stop is an equal constant for simplicity. 

(A6) The transfer time between buses is assumed to be zero, which is reasonable because the minimum 

transfer time for passengers can be simply added into the travel time as input. 

 (A7) The SCM value is set to ensure the full schedule recovery, as explained in Section 3.1, and is subject 

to an upper bound.  

Before formulating RCSS-STT, we first define the following notations in Table 1. 

Table 1 List of primary symbols, definitions and units 

Symbol Definition Unit 

Indices and Sets  

k , l  Indexes of lines in the bus network — 

m  Indexes of transfer nodes — 

L  Set of connection lines at a transfer node — 

Model parameters  

kB  The unit vehicle operating cost for line k , for simplicity we assume BBk    $/veh/min 

w  Passenger unit waiting time value $/pax/min 

mk  The parameter of delayed arrival time distribution for line k connecting to transfer 
node m  

1/min 

  The unit monetary incentive to the drivers per holding action $ 

wt  An arrival time window under schedule-dependent arrival behaviour min 

  Discount factor of the waiting time under schedule-dependent arrival behaviour — 

Auxiliary variables  

kQ  The boarding demand on line k  pax/min 

mkQ  The through passenger demand at transfer station m on line k  pax/min 

l
kq  The transfer passenger flow from line l L to line k  pax/min 

k
lq  The transfer passenger flow from line k to line l L  pax/min 

mkq  The passengers on the link immediate downstream of station m on line k  which 
experienced extra delay from holding control 

pax/min 

kR  The total transfer demand to line k  pax/min 

H  The safety control margin min 

oC  The vehicle operating cost $/min 
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wC  The passenger waiting time cost $/min 

tC  The total transfer waiting time cost for uncoordinated operation $/min 

cC  The missed connection cost $/min 

fC  The delayed connection cost $/min 

sC  
The induced tardiness cost, as the result of introducing slack time (and SCM) in 
the planned timetable 

$/min 

rC  The monetary incentives for schedule recovery effort $/min 

dC  The extra waiting time cost for downstream passengers $/min 

C  The network-wide total cost $/min 

Decision variables  

mks  The slack time on line k  at transfer node m  min 

kh  The headway of line k  min 

 

Delay d

Time

1 2 4 5

1 Scheduled departure time in previous station

Scheduled arrival time (SAT)

Scheduled departure time (SDT)

Maximum allowable time

Slack time

Safety control 
margin (SCM)

3

ĂĂ

5

4

3

2

Actual delayed arrival time (T)

 

Fig.2 Definition of concepts. 

 

We consider a schedule-based transit system in which buses either depart on schedule or after the 

schedule if they arrive late to the checkpoint. In this system, the lateness of bus arrival times follows a 

known probability distribution. As Fig.2 shows, let SAT be the scheduled arrival time for a bus on a feeder 

line, T the actual (random) delayed arrival time for the line, and SDT the scheduled departure time. If a 

vehicle arrives at a transfer node earlier, it has to wait until SDT .  

The delay arrival distribution is associated with bus arrival time distribution and SAT setting. According 

to field observations conducted by Guenthner and Hamat (1988) and Strathman and Hopper (1993), bus 
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arrival time at a designated stop follows a right-skewed unimodal distribution and can be approximated by 

a known theoretical distribution, such as a lognormal or gamma distribution. Moreover, in the practice of 

timetable planning, the SAT is often decided by rule-of-thumb, commonly set as 85-percentile observed 

arrival time to achieve a reliable timetable (Muller and Furth, 2000), in which 85% of  buses will arrive 

early (before SAT) and depart on time as illustrated by the dark (green) shaded area in Fig.2. Therefore, 

given the right-skewed unimodal pattern of bus arrival time distribution and high percentile value (85%) of 

SAT, the delay arrival distribution beyond SAT must be a monotonically decreasing function, as shown by 

dashed curve at the edge of the light (yellow) shaded area in Fig.2. For analytical tractability, it is 

reasonable to approximate the delay distribution with an exponential distribution that is a monotonically 

decreasing function. This is consistent with Randolph (2001) and Bookbinder and Desilets (1992). 

Thus the delay time d T SAT   follows the exponential distribution given below: 

                                            ( ) ( ) tp T SAT t p d t e                                                             (1) 

and the probability density function of the delay time is as follows: 

                                                           tetf  )(                                                                             (2)                                     

where t is the general delay, which can be partially absorbed by the slack time;  is the parameter of the 

exponential distribution, and 1/  and 21/   are the mean delay and the variation, respectively. 

The distribution parameter Ȝ can be calibrated or estimated from historical data collected from the 

automatic vehicle location system (Yan et al., 2012; Wu et al., 2015). By an exponential delay arrival 

assumption, we avoid arrival time distributions such as normal distributions with both negative and 

positive infinity. Meanwhile, we can obtain analytical formulations in the forms of integrable functions 

with high computational efficiency. It should be noted that delayT SAT must be truncated since infinite 

arrival time seldom exists in the real world (Wu et al., 2013; 2014). Therefore, truncated exponential 

distribution is more suitable. However, the truncated exponential distribution brings the difficulties in 

analytical derivation. For the sake of simplicity, non-truncated exponential distribution is assumed in this 

paper. The models with truncated distribution will be explored in our future works. 

Lemma1. At the planning level, the same scheduled departure time (SDT) for different bus lines sharing a 

transfer station ensures the maximum transfer probability. 

Proof. If the connecting bus lines have the same SDT, i.e., 1 2
dep dept t , the transferring passengers in the 

buses of both lines arriving in the scheduled slack time can make a successful connection to each other. 

Otherwise, if the SDT of bus line 1 is earlier than that of bus line 2, i.e, 1 2
dep dept t , the transferring 

passengers in the bus of line 2 arriving between the SDT of two bus lines, i.e, 1 2( , )dep dept t t will miss 

connections and have to wait for the next bus of line 1. 

Q.E.D 
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    Lemma1 is similar to the rationale of exploring the maximum encounter probability as discussed by 

Hadas and Ceder (2010), which focuses on exploring maximum overlapping of time-space trajectories. 

However, in our study, this condition is enhanced by the same SDT, which ensures maximum overlapping 

of time-space trajectories as well as maximum transfer probability. 

3.3 Operation modes and systematic cost components 

In this paper, we analyse three operation modes: (a) uncoordinated operation; (b) departure punctual 

control (DPC); and (c) departure delayed control (DDC). In the uncoordinated operation, vehicles arrive 

at transfer nodes based on their independently scheduled headway (Ting and Schonfeld, 2005). Under DPC, 

all buses in the system are operated under no-holding policy, i.e., vehicles are not allowed to leave after the 

SDT. Different to DPC, our proposed DDC policy operates in a semi-flexible way whereby vehicles are 

allowed to hold for late incoming connection buses. Both DPC and DDC are coordinated operations, for 

which we explore simultaneously optimized headways of different lines and slack times at transfer nodes. 

Note that DPC is a special case of DDC where the allowed holding time is zero. For simplicity, the 

bidirectional headways in a bus route are set equal for vehicle turnaround periodically without internal 

disruption.   

Since DPC and DDC are coordinated modes, the line headways should be synchronized so as to reduce 

transfer waiting time. Given that the bus lines should have the same SDT in a transfer node as discussed in 

Lemma 1, the line headways should be set as common or inter-ratio so that the schedule can be operated 

periodically. However, to simplify the model, only common headway is considered in this paper. Inter-

ratio scenario will be investigated in the future work.  

For transit networks, the systematic costs are typically determined during the planning phase and include: 

operating cost oC , passenger waiting cost wC , and passenger transfer waiting cost tC . Note that in-vehicle 

waiting time cost is not included in the overall model throughout the paper since it is not related to the 

decision variables. 

For coordinated operations, there is an addition cost associated with the introduction of the slack time, 

and SCM for DDC mode, which we term it as the induced tardiness cost sC .  Furthermore, we separate the 

transfer waiting cost into two components: missed connection cost cC , and delayed connection cost fC .  

Table 2 lists the cost components for the different operation modes. In the following sections, we derive 

the analytical formulations for each cost component, for the three different operation modes. The objective 

of bus scheduling is to minimize the systematic network-wide total cost. 

Table 2. Characteristics and key cost components for different operation modes 

Operation mode Characteristics Components for total cost C  

Slack 

time 

Headway 

coordination 

SCM 
oC  wC  tC  sC  

fC  cC  
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Uncoordinated    √ √ √    

DPC √ √  √ √  √ √ √ 

DDC √ √ √ √ √  √ √ √ 

 

 

3.4 Cost formulations for uncoordinated operation 

Following Ting and Schonfeld (2005), the total operating cost is the summation of product of required 

fleet size kk hT and the unit vehicle operating cost for each link k , as: 

                                                             k k
o

k k

B T
C

h
                                                                          (3) 

When the headway is relatively short, passengers arrive at bus stops randomly (i.e. schedule-blind), 

Osuna and Newell (1972) show that their expected waiting time }{wEk can be given as: 

)
}{

}{
1}({

2

1
}{

2
k

k
kk hE

hVar
hEwE                                                      (4) 

where }{ khE is the expected headway and can be approximated by the target headway, i.e., kk hhE }{ . 

}{ khVar is the variance of headways. 

When the headway becomes longer, passengers tend to coordinate their arrivals with the published 

departure times. According to Moccia and Laporte (2016) and Tirachini et al (2010), as the headway 

exceeds a critical value (12 min), passengers will follow timetables and arrive at stops wt minutes before 

the service time. The expected waiting time saved by such passenger behaviour still has a cost but is 

discounted by a factor  less than one, and is expressed as follows: 
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1
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2
k

k
kwk hE

hVar
hEtwE                                             (5) 

Zhao et al. (2006) verified by simulations that the variance of headway can be approximated by the 

variance of delay as:  

}{2}{ kk dVarhVar                                                              (6) 

where { }kVar d represents the variance of  delays measured at checkpoints for line k . 

On this basis, the expected waiting time can be estimated from the headways and the variance of link 

delays. The total waiting time is associated with the demand and the individual expected waiting time. 

Thus, the total waiting time serving a total boarding demand kQ can be approximated by substituting (5) 

and (6) into (4) as follows: 
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Assuming that the delayed arrival time is exponentially distributed (Eq.(2)), the variance of exponential 

distribution is 2

1

k
, then the total waiting time becomes: 
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                                                         (8) 

Eqs. (3) and (8) apply also to coordinated operations.  

The transfer time, incurred by passengers transferring from one route to another, depends on the 

coordination status between routes. For uncoordinated operations, the vehicles from different routes 

encounter at the transfer station randomly, thus the average transfer waiting time can be estimated from 

inter-arrival times at transfer stops, i.e., the mean and variance of headways, which can also be obtained by 

Osuna and Newell (1972) in Eq. (4). Consequently, based on exponential distribution, the formula for total 

transfer cost is calculated as the product of the average transfer waiting time and the total number of 

transfer passengers and expressed as follows:                         
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                                                                 (9)          

 where l
k k

l L

R q


 is the total transfer passengers from connecting lines to line k . 

In summary, the network-wide total cost for uncoordinated operation in the system is the summation of 

operating cost, waiting time cost and transfer waiting cost, and that is, 
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 According to the first order condition, the optimal headway of route k can be derived 

from 0kdhdC , and is given as below:  
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                                                               (11) 

3.5 Cost formulations for DPC operation  

Compared to the uncoordinated mode, the system cost for DPC operation contains three different 

components: the induced tardiness cost, the missed connection cost and delayed connection cost (see Table 

2).  We provide the analytical formulations for each below. 

3.5.1 Induced tardiness cost sC  
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    The tardiness cost includes the induced cost for through (non-transfer) passengers already on board and 

the extra operating cost of adding the slack time. The tardiness cost is formulated as follows: 

                                             ( )s w mk mk
m k k

B
C Q s

h
                                                                    (12) 

     In this case, the affected passengers are those on board the holding bus for departure. For simplicity, we 

assume that the waiting time value is identical for both inside and outside the vehicle. This assumption 

holds throughout the paper. 

3.5.2 Missed connection cost at transfer stations cC  

When a passenger on line k  misses a connection to line l , he/she has to wait ( )l ml mlh d s  . 

Following Vansteenwegen and Qudheusden (2007), since in most cases ml mld s  is relatively small 

compared to lh  for large headways, the delay term ( ml mld s ) can be ignored. Therefore, we can further 

assume that if a transfer passenger misses a connection, he/she has to wait for the duration of one headway. 

This is reasonable for a relatively large headway (A2). The missed connection cost might be slightly 

overestimated when the designed headway is small. However, small headway is undesirable and 

uneconomical for schedule coordination, this will be examined in the numerical example in Section 5. 

By assumption (A3), the joint probabilities of arrivals may be obtained by simply multiplying the 

probabilities obtained separately from the delay distributions of different bus lines. The possible conditions 

are given as follows: 

a) The feeder vehicle on line k arrives at node m  late while its connecting vehicle on line l is not late, i.e. 

mkmk sd  and mlml sd  .  

    The corresponding probability is:  
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    (1 )mk mk ml ml

a
mk mk ml ml
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                                                                                   (13) 

where mkd and mld denote the delay time (beyond SAT) of the feeder vehicle on line k  and the connecting 

vehicle on line l at transfer node m , respectively. 

b) Both vehicles are late, but the feeder vehicle on line k arrives after vehicle on line l  

     The corresponding probability is:      

                  
( )

    ( ) ( ) ( )

b
mk mk ml ml mk mk ml ml

mk mk ml ml mk mk ml ml
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     The probability ( )mk mk ml mlp d s d s   should be calculated according to the relationship between 

the slack time of line k and that of its connecting line l , which is shown in the following piecewise 

function, see detailed derivation in Appendix 2: 
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The overall probability for missed connection is then:  
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The total missed connection costs are also calculated with the following piecewise function: 
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3.5.3 Delayed connection cost at transfer station fC  

In contrast to missed connection, transfer passengers can make a successful connection but have to wait 

for relatively shorter time. Delayed connection cost of transfer passengers from the feeder vehicle on 

line k to connecting vehicle on line l at transfer station m should account for the following three possible 

conditions: 

Case A: Both vehicles are not late, no matter whether the connecting bus on line l arrives after or before the 

feeder bus on line k  

Case B: The feeder vehicle on line k arrives early while the connecting vehicle on line l is late 

Case C: Both vehicles are late, but the connecting vehicle in line l arrives after the feeder vehicle in line k  

    The waiting time and respective conditions for each case are shown in Table 3. 
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Table 3. Different cases for delayed connection 

Scenarios Cost notations Waiting time Conditions 

Case A 1
fC  mk mks d  0 mk mkd s  , 0 ml mld s   

Case B 2
fC  ml ml mk mkd s s d    0 mk mkd s  , ml ml ls d h   

Case C 3
fC  ml ml mk mkd s s d    mk mk mk ml mls d s s d    , ml ml ls d h   

Then the total delayed connection cost of transfer passengers is the summation of all possible 

conditions, see detailed derivation in Appendix 3. 

1 2 3
f f f fC C C C    
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3.6 Cost formulations for DDC operations 

DDC operations allow bus holding at the operation stage to enable connections, subject to a maximum 

holding time SCM. The length of SCM is denoted as H . The derivations of the cost components for DDC 

follow those for DPC, with additional consideration on both the positive and negative impacts of SCM. 

3.6.1 Induced tardiness cost sC  

    In this case, induced tardiness time cost should consider the impact of holding strategy compared to 

DPC. The induced tardiness cost component in DPC should be modified considering the expected holding 

time. In addition, extra control cost, extra waiting time cost for downstream passengers should also be 

included. 

     Modifying Eq. (12) gives the following tardiness cost for DDC as: 

                                   ( )( ( ))s w mk mk mk r d
m k k

B
C Q s E H C C

h
                                         (19) 

where ( )mkE H is the expected holding time for line k at transfer node m with a given SCM value H ; rC  

and dC  denote the extra control cost and the extra waiting time cost for downstream passengers, 

respectively. The expression of ( )mkE H is presented as follows, for detailed derivation see Appendix 4. 
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Note in the above formulas that lines i , l and k share the same transfer node m . 

Now we derive the formulations of rC  and dC  below.  

 Extra control cost rC   

     If the schedule recovery is needed, this will result in an increased capital cost and additional labour cost 

for drivers. However, we can disregard possible infrastructure investment such as global-positioning 

systems and wireless communication technology, which are actually a very small fraction of the long-term 

transit operation costs (Qiu et al., 2014), and this technology is readily available in the context of APTS 

mentioned earlier. Thus, the operating costs can be reasonably considered to be the normal operation cost 

plus the addition control cost for drivers. The additional labour cost is calculated as the product of the 

occurrence probability of holding and unit financial incentive. 

      We assume that the holding time can be fully covered by drivers’ schedule recovery effort under SCM 

as discussed previously. We consider fixed payment scheme for the extra control cost, in which drivers 

would receive the revenue as long as recovery efforts have been devoted, whatever the holding time is. The 

reasons are twofold: (1) it is more convenient for practical implementation; (2) although the holding time 

is varied, it can be expected that the average holding time and thus the revenue for drivers in the same line 

would be roughly identical in a period.  

      Therefore, the labour cost paid to the drivers for making the recovery effort can be calculated as 

follows:  

                                                            mk
r

m k k

P
C

h
                                                                   (21)                           

where
1

kh
represents the departure frequency on line k ; mkP is the occurrence probability of holding on line 

k  at transfer node m ; mk

k

P

h
can be interpreted as the holding occurrence frequency.  

The condition of holding for line k at transfer station m is that there is at least one late incoming bus and 

its predicted arrival time is within the SCM range H. The probability of such holding deployment is   
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From Eq. (22), the holding probability mkP is shown to be a monotonically decreasing function of slack 

time mis and thus average slack time mis . If no slack time is set at the planning level, i.e., 0mis , then the 

holding probability becomes


 


kii

miH

mk eP ,1


. 

 Extra waiting time cost for downstream passengers dC  

Compared to DPC, once holding is implemented, DDC will increase waiting time of passengers further 

down the route. Under no schedule recovery, the additional waiting time for individual passenger would be 

equal to the holding time (Ting and Schonfeld, 2007). However, with the effect of schedule recovery, the 

additional waiting time caused by holding will be gradually diminished along the downstream route and 

eventually eliminated before the next transfer point.  

Since the holding time may be different at each individual control deployment, it is natural to model the 

additional waiting time in an aggregated way during a time period as the expected additional waiting time. 

Here, we adopt the continuum approach to approximate such cost component to investigate the impact of 

holding on downstream waiting cost. As noted by Daganzo (2004), the main purpose of this type of 

approach is to obtain reasonable solutions with as little information as possible. By using continuum 

approach, we can easily investigate the impact of the number of downstream waiting passengers on the 

optimization performance.  

mkq
m 1mA

 

Fig.3 Virtual boarding demand along the link between consecutive nodes 

  An example is shown in Fig.3, a bus heading to transfer node 1m  is held at transfer node m . The 

resulting tardiness from the bus holding at  m  can be covered by the driver’s schedule recovery effort by 

location A. For simplicity, we assume that the total number of impacted waiting passengers on specified 

link is mkq , and they are distributed homogeneously along the line from the respective transfer node ( m ) 

to the downstream location Awhere the holding delay is recovered (shown as the dash line segment in Fig. 

3). In a real bus network, mkq can be estimated by the boarding demand of the intermediate bus stops that 

are affected by schedule recovery, which represents the adverse impact of DDC and is given exogenously 

but does not exist for DPC. Since we only model terminals and transfer stations in our bus network, this 

virtual demand between nodes is not explicitly represented by our modelled OD demand.  The expression 

for the extra waiting time cost for downstream passengers is presented as follows (See detailed deviation in 

Appendix 5): 

                                                  
1
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2d w mk mk

m k

C q E H                                                             (23) 
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     Eq. (23) is a closed-form approximation that is a representative of uniform distributed demand. The 

only information we need is the number of total impacted downstream passengers, and that is sufficient to 

capture the impact of holding policy.  

     Substituting Eqs. (21) and (23) into Eq. (19), we get the induced tardiness cost for DDC as: 
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3.6.2 Missed connection cost at transfer stations cC  

    The formulations for missed connection cost with a given SCM follow those for DPC policy, and are 

also computed accounting for the following possible conditions: 

a) The feeder vehicle on line k arrives late while the connecting vehicle on line l is not late 

    By a modification of Eq. (13) to consider a given SCM of length H , we have the following 

corresponding probability  
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b) Both vehicles are late, but the feeder vehicle in line k  arrives after the predetermined maximum holding 

time H and the vehicle in line l  not 

    The corresponding probability is:  
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c) Both vehicles are late and beyond the predetermined maximum duration of time H , but the feeder 

vehicle in line k  arrives after vehicle in line l , that is  
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    ( ) ( ) ( )

c
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                                (27)            

   where ( )mk mk ml mlp d s d s    is given by Eq.(15). 

Therefore, the total missed connection costs are also calculated with the following piecewise conditions: 
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where )()( HsHs
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3.6.3 Delayed connection cost at transfer stations fC  

     Under DDC, the formulation of delayed connection cost is the same as the DPC case represented by Eq. 

(18). This is because the formulas are not related to SCM in all possible conditions as listed in those of 

under DPC. 

4. RCSS-STT optimization formulations  

4.1 A stochastic optimization model with given SCM 

     The main purpose in this study is to investigate the sensitivity of system performance under various 

SCM. Our proposed robust coordination schedule scheme with stochastic travel time (RCSS-STT) 

optimization problem is to find the best decision variables kh (headways) and mks  (slack times) that 

balance the trade-offs between the operating cost and user cost with a given SCM. For practical application 

convenience, we optimize headways as integer values for all operation modes. Although setting SCM to be 

multiples of 30 seconds (e.g., 0.5, 1, 1.5, 2 minute) may be favourable by operators since it is easier to 

handle, we test a series of discrete values of SCM with interval of 0.1 min to analyse the sensitivity. The 

number of variables varies with the size and topology of the bus network, which we will see in the 

numerical examples. As a result, the RCSS-STT is formulated as mixed-integer nonlinear programming 

(MINLP) models: 

                                                    ( )
,min ( )DPC DDC

k mkC h s                                                              (29) 

 subject to  

                                                     hhk  , k                                                                                     (30) 

                                        min max
k k kh h h  , k                                                            (31) 

                                          kh  , k                                                                  (32) 

                                               0mks  , mk,                                                                        (33) 

                                                      1 2, , , iH H H H , Ii ,,2,1                                             (34) 

The objection function (29) minimizes the system total cost. Eq. (30) ensures that the headways of 

different lines are the same, where h is the common headway. Eq. (31) ensures that the headway should 

exceed a minimum acceptable headway and not exceed a maximum allowable headway. Eq. (32) ensures 

that headways are integer values. Eq. (33) ensures that the slack times should be positive values. Finally, 
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Eq. (34) assumes that the SCM takes one of the given discrete values. The model for DDC is equivalent to 

that for DPC operation when the SCM is set to be zero. 

4.2 An enhanced optimization model for determining SCM 

    The above model can be enhanced by simultaneously optimizing the value of SCM, headways and slack 

times. To this end, H is treated as a decision variable in the objective function. The enhanced optimization 

model is presented as follows:  

),,(min HshC mkk
DDC                                                                    (35) 

subject to conditions (30) to (33), plus (36) below 

                      max0 HH                                                                                   (36) 

    Constraint (36) states that the SCM must be non-negative and may not exceed a maximum maxH . This 

upper bound maxH can be fine-tuned or estimated by rule-of-thumb from practical traffic safety 

requirement, as discussed in the problem description section (Section 3.1).  

4.3 Solution method 

The branch-and-bound algorithm is one of the most successful exact approaches to solve combinatorial 

optimization problems, both for linear and nonlinear programming models. It has been used to solve the 

dial-a-ride problem (Liu et al., 2015; Braekers et al., 2014), train timetabling problem (Zhou et al., 2007), 

and ship routing problem (Meng et al., 2015). For small- and medium-sized problem, we can use branch-

and-bound method to obtain feasible solutions. For large-scale problem, however, branch-and-bound 

methods can be extended with a number of strategies added to improve their performance (e.g., Meng et al., 

2015; Liu et al., 2015; Braekers et al., 2014). The procedures of branch-and-bound algorithm are briefly 

described below. 

A problem with an integer variable is first being solved with the integer variable considered continuous 

(the first sub-problem). After this, the program generates sub-problems where the domain of the variable 

(still continuous) is being restricted. This is called branching. Then it solves these sub-problems. This 

process continues until the variable is fixed to an integer value. The advantage of this approach (when 

compared with explicit enumeration) lies in the fact that not all the sub-problems have to be solved (Zhou 

et al., 2007).  

In this paper, we use BNB202 function to solve MINLP problem. The boundary conditions of optimized 

headways are chosen from [1, 60 min].  

4.4 An additional performance indicator: Transfer failure rate 

                                            
2 BNB20 is a Matlab-based package developed by Koert Kuipers in University of Groningen 
 (Source:http://uk.mathworks.com/matlabcentral/fileexchange/95-bnb) 
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As with costs, transfer failure rate is a key evaluation indicator on transfer reliability and service quality. 

Similar to Wu et al. (2015), we define transfer failure as the case where (at least) one passenger misses the 

planned connecting bus even if the passenger can transfer to the following bus. The generalized analytical 

formulation for transfer failure rate, represented as the missed connection probability, can be extracted 

from the missed connection cost component in Eq. (28), which is summarized as follows: 
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                     (37)                         

where mklTFR denotes the transfer failure rate at transfer node m from line k to line l , 0H   and 0H   

present DPC and DDC scenarios, respectively. 

A network-wide average transfer failure rate can be obtained by the mean of transfer failure rates of 

transfer node m and line k in the bus network, i.e., 

                                      Avg 1
mkl

m k l

TFR TFR
Num

                                           (38) 

where Num  is the number of transfer route combinations. 

5. Numerical Examples 

     In this section, we compare the performances of the three operation modes (i.e., uncoordinated 

operation, DPC and DDC) through numerical analysis. We conduct experiments on two hypothetical bus 

networks, as shown in Fig.4. The topology of the two networks is described as follows: 

Network 1: A bus network with 2 transfer nodes and 3 bus lines.  

Network 2: A bus network with 3 transfer nodes and 3 bus lines. 

   The two networks represent two distinct and classical bus network structures: a) a trunk-and-feeder 

(network 1 of Fig. 4a); and b) a looped structure (network 2 in Fig. 4b). In the hierarchical trunk-and-

feeder network 1, the main ‘trunk’ route runs between nodes 3 and 4 and links to major destinations, while 

the two branches from nodes 5 and 6 act as feeder services to collect and re-route passengers in the 

network. Passengers may need to make more than one transfer to get to their destination, for example, 

between node 5 and node 6. There is no junction between the feeder lines (line 2 and line 3), thus the 

transfer volumes are zero, i.e. 02
3

3
2  qq . On the other hand, in the triangular loop structure of network 

2, all lines interact with each other providing direct access for passengers to their destinations with no 

more than one transfer. The two spatial designs represent two alternative generic structures with different 

connectivity or mobility featuring indirect transfer (network 1) and direct transfer (network 2) between 

lines respectively.  
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(b) Bus network 2 

Fig.4 The test bus networks. The symbols are illustrated in the inserted box.  

The OD demand matrix for network 1 is symmetrical (Table 4) and that for network 2 is asymmetrical 

(Table 5). The bus networks and OD demands are both adapted from Ting and Schonfeld (2005), while the 

route travel time and delay distribution parameters are re-defined here. The passenger route choice is 

assumed to be based on the shortest path. With this assumption, the boarding demand ( kQ ), the through 

demand ( mkQ ), and the transfer demand ( l
kq , ,

k
lq and kR ) can be uniquely derived. Note that the 

bidirectional headways of a line are identical in order to prevent internal disruption as mentioned 

previously. 
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The other default settings for both networks are:  

(1) The values for the model parameters are fixed at: B =0.667$/veh/min, w =0.2$/pax/min,  =$1, 

wt =4 min,  =0.33;  

(2) The base delay parameter 12minmk   is fixed for all transfer stations and on all lines;  

(3) The default SCM value is H=1min. 

(4) The default demand for the two networks are as those listed in Tables 4 and 5; we introduce a 

demand multiplier n  in the sensitivity analysis on the demand, where the base OD demand has a 

ratio 1n  .  

(5) The downstream passengers who are affected by the holding are assumed to be in proportion to the 

demand multiplier as 3mkq n pax/min.  

These default settings remain the same in all sensitivity tests, except where they are the subject of a test. 

For the uncoordinated scenario, the optimal headways as calculated according to Eq. (11) and taken the 

resulted integer values. 

Table 4. A symmetric O/D demand matrix for Network 1 (pax/min) 

 Destination 

Origin 1 2 3 4 5 6 

1 0.0 0.8 0.8 0.6 0.2 0.8 

2 0.8 0.0 0.6 0.7 0.4 0.5 

3 0.8 0.6 0.0 0.4 0.6 0.0 

4 0.6 0.7 0.4 0.0 0.0 0.8 

5 0.2 0.4 0.6 0.0 0.0 0.0 

6 0.8 0.5 0.0 0.8 0.0 0.0 

 

Table 5. An asymmetric O/D demand matrix for Network 2 (pax/min) 

 Destination 

Origin 1 2 3 4 5 6 7 8 9 

1 0.00 0.50 0.30 0.30 0.50 0.20 0.40 0.30 0.20 

2 0.50 0.00 0.40 0.40 0.00 0.30 0.30 0.30 0.00 

3 0.30 0.25 0.00 0.20 0.20 0.30 0.15 0.15 0.25 

4 0.30 0.20 0.20 0.00 0.20 0.10 0.10 0.00 0.10 

5 0.50 0.40 0.40 0.40 0.00 0.30 0.30 0.30 0.00 

6 0.20 0.20 0.30 0.10 0.10 0.00 0.00 0.10 0.20 

7 0.40 0.50 0.30 0.30 0.30 0.00 0.00 0.40 0.30 

8 0.15 0.25 0.15 0.00 0.05 0.05 0.15 0.00 0.05 

9 0.15 0.15 0.25 0.05 0.00 0.15 0.05 0.05 0.00 



25 

 

The base RCSS-STT optimisation problem (29) are solved for the network 2 at the reduced demand (at a 

fraction n=0.1, i.e., 1/10 of the base demand), and the results are presented by Table 6. The results include 

optimized headways and slack times, and corresponding cost components and thus the total cost. One can 

see that the total transfer waiting time cost ( cC + fC ) of coordinated operation are significantly lower than 

that of uncoordinated operation ( tC ), suggesting that the schedule coordination are effective in eliminating 

the user transfer costs. In this regard, DDC performs better than DPC, indicating the potential (further) 

improvement made by the SCM scheme. The DPC and DDC operations results in longer common 

headways than the averaged headway in the uncoordinated operation, leading to higher waiting time costs 

( wC ) under the coordinated operations than those without coordination. 

Table 6. Optimized results of network 2 for reduced demand (n=0.1) scenario 

Variables (min) Uncoordinated DPC 
DDC 
(H=1) 

Cost  
($/min) 

Uncoordinated DPC 
DDC 
(H=1) 

kh (note 1) (31, 23, 49) 59 58 C  25.97 23.61 23.42 

mks (note 

2) 

11s  — (1.83, 1.66) (1.30, 1.42) oC  9.09 5.57 5.47 

12s  — (1.93, 1.82) (1.22, 1.24) wC  14.66 17.21 17.31 

21s  — (1.76, 1.89) (0.91, 1.05) tC  2.22 — — 

23s  — (1.76, 1.50) (1.24, 0.93) sC  — 0.47 0.43 

32s  — (1.56, 1.81) (0.64, 0.96) cC  — 0.20 0.12 

33s  — (1.44, 1.75) (0.55, 0.84) fC  — 0.16 0.09 

TFR (%) — 6.46 3.92 — 

Note 1: For uncoordinated operation, the three values in () are the optimal headways for the three lines of the 

network. 

Note 2: The two values in () represent the slack times for the two different directions of the line.   

 

The optimization model of (35) is constraint by an upper bound maxH . We examine the effectiveness of 

this model for different values of maxH . Interestingly, Fig. 5 shows that the optimal H  is zero at low 

maxH bound, but jumps to the upper bound when the maxH   values are high. The boundary where the 

jump happens varies with network and demand level. This suggests that for the optimal DDC system of 

(35) to be beneficial, it requires a certain minimum level of SCM; and that it is always better to set the 

maximum allowed SCM.  
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(a)                                                                                        (b) 

Fig.5 Optimal value of SCM with different demand and maxH for: (a) network 1; (b) network 2 

In the following, we conduct sensitivity analysis to verify the effectiveness of the optimal design 

resulted from the proposed RCSS-STT method of (29) from the following aspects: 

(a) Influence of SCM (the H  value)  

(b) Influence of total demand ( n );  

(c) Influence of arrival mean delay ( 1 ).  

The detailed output of the analytical model includes headways and slack times allocated to each transfer 

node. From this we can derive performance measures such as user cost and operating cost, and the average 

slack time that represents the schedule efficiency.  

5.1 Influence of SCM  

We examine the impact of different level of SCM on the resulted optimal slack time. We apply the 

RCSS-STT method to both networks at the base demand (as defined in Tables 4 and 5) and a reduced 

demand (n=0.1). Several different SCM levels (the H values) are tested, and the boundary is set 

as 3max H min.  

 

                                             (a)                                                                             (b) 

Fig.6 Optimal average slack time with varying levels of SCM for: (a) network 1; (b) network 2.   

Fig.6 shows the resulted average optimal slack times as the H value increases. We summarise the key 

observations from the results and discuss their implications below: 
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(a) Under the same H value, the average slack time for the reduced demand is generally larger than 

those for the base demand scenario. This is as expected, since at low demand, the service frequency 

is low and thus longer slack time is required to mitigate the travel time randomness and thus reduce 

transfer costs.  

(b) With DPC operation (H=0), the optimal slack times at the base demand are zero for both networks. 

The result implies that it is uneconomical to impose slack time under DPC at the high demand levels. 

At low demand (n=0.1 case), however, a significant level of slack time is required.  

(c) With DDC operations (H>0), there is a general trend in that the slack times decrease with increasing 

H values. This represents a trade-off between slack time (added at the planning stage) and a SCM 

(allowed at the operation stage). The larger H value, the smaller slack time is required.  

(d) The slack times of different demand levels tend to converge as the value of SCM increases. When H 

is greater than 2 min, the slack times do not change much. The reasons are twofold. First, the delay 

arrival is exponentially distributed, underlying that the lower probability of vehicle arrival is desired 

for later time, hence marginal increase of SCM contributes less to compensate the cost reduction 

with smaller slack time. Second, the H value in DDC is only a maximum holding time and buses 

can depart earlier than H.  

The above results, especially (b) – (d), show the complex relationships between slack time planning and 

operational SCM, and the inherent trade-off between different cost components in the system. For example, 

when SCM is small, the decrease in transfer waiting cost is not sufficient to overweight the additional 

economic incentives rC  (Eq. (21)) with a fixed payment scheme. Eq. (22) shows that the holding 

occurrence probability mkP is a monotonically decreasing function of average slack time mis . Accordingly, 

the greatest benefits of optimization is achieved when, due to the increased slack times, reduced holding 

probability mkP and consequently the reduced additional economic incentives rC ensues. 

Following from the above discussion, we examine the effect of introducing SCM on total system cost 

and on individual cost components. Fig.7 shows the effect of SCM on the total costs C . The dashed lines 

point to a boundary in the H values below which the DDC costs are higher than that of DPC, while above 

this H threshold, it is cheaper to operation DDC. We postulate that with small SCM, the reduction in 

transfer waiting time cost is insufficient to compensate the increment of induced tardiness cost (Eq. (24)). 

As H increases, transfer costs reduces and eventually the benefits (of reduced transfer costs) outweigh the 

costs. For network 1, this threshold is at H=0.7min for the base demand levels, whilst for network 2, the 

value is 1.8min for the base demand.  

We note that the above thresholds SCM correspond to the thresholds for the non-zero optimal H values 

shown in Fig. 5. This again reinforces the message that for DDC operations to be beneficial over DPC, a 

minimum level of SCM is required. The above result implies that, in practice, transit agencies can deal 

with random travel disruptions while maintaining lower cost by incorporating SCM without requiring 

substantial slack time (and therefore more efficient).  
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(a)                                                                               (b) 

Fig.7 Optimal total cost C ($/min) vs different SCM levels: (a) network 1; (b) network 2. 

It is worth noting that the total cost is composed of costs on the operation side (i.e., the operating cost 

oC and tardiness cost sC when introducing SCM), and costs to the passengers (including the transfer wait 

time costs cC  and fC for common headway scenarios). We examine below the impact of SCM from the 

point of view of the transfer passengers.  

 

               (a)                                                                                  (b) 

Fig.8 Transfer waiting time costs fcF CCC  ($/min) of RCSS-STT performance for various SCM for 

both networks: (a) network 1; (b) network 2. 

Fig.8 presents the results of one of the key performance indicators of the RCSC-STT results: the 

combined transfer waiting time costs fcF CCC  . It is clear that FC  decrease consistently as the SCM 

increases. This is as expected since such semi-flexible holding control strategy contributes to mitigating 

the travel time randomness and thus significantly reduce the possibility of miss connection.  

Compared to the results on total costs (Fig.7), one can extrapolate that although adding slack times and 

SCM both reduce the transfer waiting time cost, the former contributes more to the adverse impact on 

some cost components (e.g. induced tardiness cost) at smaller H values. As shorter slack times are required 

when SCM gets larger (Fig.6), such negative effect will finally diminish as the slack time decreases and 

thus the total cost is reduced.  
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(a)                                                                                  (b) 

Fig.9 Average transfer failure rate vs different SCM: (a) network 1; (b) network 2 

Fig.9 shows the effect of DPC and DDC operations on transfer failure rates. It can be seen that the 

transfer failure rate decreases with increasing H value, demonstrating again the benefit of DDC operations 

with large H range over the DPC operation, from the users’ perspective. The significant reduction in 

transfer failure rate at the base demand in network 2 (Fig. 9b) between H=0 and H>0 is linked closely to 

the optimal slack times for the different scenarios (Fig. 6). As shown in Fig.6, it is uneconomical to insert 

slack time for DPC (H=0) for the base demand cases, while adding slack times will be needed with DDC 

(H>0), transfer failure rate will decrease considerably with imposed slack time. 

Furthermore, the average transfer failure rates for the reduced demand scenario (n=0.1) are generally 

lower than those of for the base demand scenario, especially for DPC (H=0). Hence, in terms of transfer 

reliability, the potential benefit of schedule coordination is higher when the demand is relatively low for 

both DPC and DDC. However, as shown in Fig. 9, the gap between them is gradually narrowing as H 

increases. When H reaches a critical value (e.g., 1.8 min for both networks), the differences are negligible. 

This implies that the relative advantage of transfer failure rate based on low demand becomes less with 

increasing H under DDC policy, which also indicates that DDC is more robust to demand variation than 

DPC.  

5.2 Influence of total demand 

The results in Section 5.1 imply that the operation performances of the schedule coordination depend on 

the demand level, and that small SCM is undesirable in reducing total cost. We analyse here the effect of 

passenger demand on DPC operation vs that on DDC operation with a reasonable level of SCM, at H=1 

min. 

Fig.10 presents the optimal average slack times and headways with varying demand levels. It is as 

expected that the optimal common headways decrease with increasing demand. This is similar to that of 

uncoordinated operations (Eq. (11)). It is interesting to see that in all cases with demand ratio greater than 

0.2, the optimized headways for both DPC and DDC reduce to 12 min or less. This suggests that 

passengers will switch from “schedule-dependent” to “schedule-blind” when the demand reaches a certain 

level.  
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(a)                                                                             (b) 

Fig.10 Optimal common headways vs different demand ratio for: (a) network 1; (b) network 2 

   To illustrate the trade-off of schedule coordination between the transfer and the boarding passengers, 

Fig.11 shows the waiting time cost of boarding passengers at various demand ratios for coordinated and 

uncoordinated operation. Due to the possible distinctive passenger behaviour under different demand, the 

effect of demand on waiting time costs for different operation modes are more complex. It can be seen that 

the waiting time costs of uncoordinated operation can be either larger or less than those of coordinated 

operation depending on the demand level: it is higher when the demand ratio is between 0.2 and 0.7 for 

both networks. This is because the passenger behaviour of uncoordinated and coordinated operations are 

different in this range of demand: schedule-independent for uncoordinated operation while schedule-

dependent for coordinated operation. In other words, the passenger behaviour of the three operation modes 

are identical outside this range. This gives us an insight that for the same passengers’ arrival pattern, the 

schedule coordination (with DPC and DDC) has a negative impact on boarding passengers, at the expense 

of reduced transfer costs for transfer passengers. The reason is that the uncoordinated operation optimize 

the headways independently, however, DPC and DDC focus only on the transfer nodes, and headways 

have to be synchronised to reduce transfer waiting time cost, at the expense of boarding passengers.  

 

(a)                                                                              (b) 

Fig.11 Waiting-time cost wC vs different demand ratio: (a) network 1; (b) network 2 
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(a)                                                                             (b) 

Fig.12 Operators’ cost )( so CC  at different demand levels for: (a) network 1; (b) network 2  

     We examine further the cost implications of schedule coordination from the point of view of the 

operators. Fig. 12 presents the operating cost oC and induced tardiness cost sC for various demand ratios. 

Since induced tardiness cost is only included in DPC and DDC and represents the extra cost for schedule 

coordination, we compare the extra total cost (i.e., so CC  ) of coordinated operation with the operating 

cost oC of uncoordinated operation. While the total operators’ cost for coordinated operations vs those for 

uncoordinated operations vary depending on the demand level, a common result for both networks is that 

the former is lower than that of latter one when the demand is relatively low, for instance when the demand 

ratio is 0.1. This suggests that coordinated operations may work better in low demand scenarios in that no 

increase of operators’ cost is required. 

5.3 Influence of arrival mean delay 

 In this section, we investigate the impact of the mean delay ( 1 ) on the slacks in the schedule. In 

practice, there are two slack times, one for the up and one for the down direction of the line at the transfer 

node. For simplicity and clarity, we take the average of the two, i.e., 2)( 111111
  sss , since the delay 

distribution parameter are assumed to be the same for both the up and down directions of a line. The 

sensitivity results are presented in Fig. 13 for the reduced demand scenario (i.e., n=0.1) for both networks, 

for a range of delay values ,2.0,1.01  min. Notice that a 21  min is used in all the other 

sensitivity analysis. 

Fig.13 shows the effect of mean delay on the averaged (over the up- and down-directions) optimal slack 

time. One can observe that the slack time required initially increases with mean delay, but decreases when 

the mean delay is over certain threshold. With coordinated operations, over this delay threshold, the slack 

times drop to zero, which means that it is no longer beneficial to impose any slacks when the delay is 

beyond a critical value. Given our assumption that the delay arrival time is exponentially distributed, its 

variance 21   also increases with the mean delay 1 . Therefore, the above results suggest that slack 

time is undesirable when arrival time uncertainties are high.       
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(a)                                                                              (b) 

Fig.13 The averaged optimal slack time for various mean delays: (a) network 1; (b) network 2 

Note also from Fig. 13 that the critical delay values for DDC operations are much bigger than those for 

DPC operations. This suggests that DDC is more robust to delay uncertainty. Evidently, this result with 

DDC operations is an improvement over that under no holding policy in Ting and Schonfeld (2005), who 

concluded in their study that: “slack time is most feasible and desirable when arrival uncertainties are low”. 

Therefore, our analysis suggests that relatively higher uncertain arrivals can be allowed for by introducing 

the SCM, which provides a possible way for delay management in public transport. 

6. Concluding Remarks 

This paper presents a novel schedule coordination model that couples planned slack time with real-time 

holding strategies, in which the variation in travel time due to stochastic disturbance is sufficiently 

compensated at both the planning and the operation stages. The findings are specific to two hypothetical 

transit networks that represent two alternative classical structures with different connectivity. The 

presented features with SCM in both networks have many commonalities with respect to the principal 

performance measures such as total cost, user cost, transfer reliability, and robustness to demand and delay, 

as well as the trends of slack times, verifying the effectiveness of SCM in schedule coordination. A 

summary of key findings is listed below: 

1. Compared to DPC which relies only on adding a slack time in the planned timetable to account for 

historic delay, DDC can cope with random travel disruptions better and maintain lower cost from both user 

(see the results on passenger transfer waiting cost in Fig.8) and overall system costs (see the results on total 

cost in Fig.7) perspectives by suitably incorporating SCM. This is achieved without requiring substantial 

slack time, and thus obtaining a more cost-effective and efficient timetable. 

2. From the user perspective, with DDC, both the passengers’ transfer waiting time cost (Fig. 8) and 

transfer failure rate (Fig. 9) decreases considerably with the increase of SCM compared to DPC (Fig.8).  

3. From the perspective of transfer failure rate and effective (non-zero) slack time, we demonstrate that 

the DDC is more robust to demand variation (Fig.9) and delay uncertainty (Fig.13) compared to DPC. 
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4. The passenger behaviour for both coordinated and uncoordinated operations may switch between 

‘schedule-independent’ and ‘schedule-dependent’ with varied demand levels, while low demand scenarios 

are preferable for coordinated operation in that no increase of operators’ cost is required (Fig.12). 

This paper proposed an analytical framework to explore the potential of SCM setting in schedule 

coordination. Further research is required to explore more detailed design issues, such as jointly optimizing 

a set of non-common SCM for different transfer nodes in a more complex large-scale hybrid network, 

multiple vehicle types for different routes, and considering fleet size limitation. A limitation in this current 

paper is that the synchronization is only scheduled-based, i.e., with the same scheduled departure time 

(SDT) in a transfer node to ensure the maximum encounter probability. This is most suitable for the typical 

network whereby the sublines are not overlapped as illustrated in our example. However, this assumption 

might lead to bus bunching for the special networks in which many sublines share a common route 

segment as discussed in Ibarra-Rojas and Rios-Solis (2012). Investigating a new effective control solution 

to account for this situation maybe another future works. Furthermore, our current solution is based on the 

assumption that the forecasted delayed arrival time that beyond slacks is deterministic. A more generalized 

scenario considering uncertain forecasted delayed arrival should be explored in further work. 
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Appendix 1. Proof of pdf of the difference of two independent exponential random variables  

     Assuming that 1x , 2x are independent continuous variables, their density probability functions are  

)( 11 xf and )( 22 xf , respectively, according to the convolution theorem, then we have 
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Appendix 2. Derivation of equation (15) 
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I. when mlmk ss    
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      Consequently, the probability )( mlmlmkmk sdsdp   is calculated with the following piecewise 

conditions: 
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     Note that the objective of using piecewise function is to make 0x holds (See the pdf in Appendix 1). 

This completes the derivation of Eq. (15).                                           
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Appendix 3 Derivation of Eq. (18) 

a) Both vehicles are not late, no matter whether the connecting bus on line l arrives after or before the 

feeder bus on line k , the waiting time is mkmk dsw  . Integration allows us to calculate the cost for 

waiting:
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b) The feeder vehicle on line k arrives early while the connecting vehicle on line l is late. The waiting time 

is mkmkmlml dssdw  . Integration allows us to calculate the cost for waiting: 
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c) Both vehicles are late, but the connecting vehicle in line l arrives after the feeder vehicle in line k , that is  

    mlmlmkmk sdsd  . Then the waiting time is mkmkmlml dssdw  . Integration allows us to 

calculate the cost for waiting: 
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 Then the total delayed connection cost of transfer passengers is the summation of all possible 

conditions:               
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     This completes the derivation of Eq. (18).   

 

Appendix 4 Derivation of Eq. (20) 

By assumption (A3), the expected holding time for the bus on line k waiting for at least one delayed bus 

(e.g., a bus on line i at transfer node m ) can be computed as follows:                                                                        
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    maybe interpreted as the probability density 

function of the holding time for being connected by at least one bus conditional to waiting a bus on 

line i ( i k ), the former corresponds to the case when all buses are delayed, while the latter corresponds 

to the case when only one bus are delayed. 

 where )(tfmi denotes a shifted exponential distribution as follows, which is equivalent to Eq.(2) by 

considering the slack time 

                                               )()( mimi st
mimi etf   , mist   

Then )( ttp l   and )0(  lml tsp are given with the above distribution as follows:  

)()()( mlmlmllml st

t l
st

mll edtettp                                 

                         
0 ( )( 0) 1mi l ml ml ml

ml

t s s
ml l ml ls

p s t e dt e    


                                    

 The corresponding expected holding time with respective to the two cases are therefore 
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 Then we have 
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Minimize )(HEmki over all lines i ( i k ) gives the expected holding time for the bus on line k  

waiting for at least one delayed bus 
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This completes the derivation of Eq. (20).            

 

Appendix 5 Derivation of Eq. (23) 

Proof. Assuming that mkq is the expected total impacted number of boarding passengers on specified link. 

The boarding demands are distributed homogeneously along the line from the respective transfer node to 

the downstream location that the holding delay just totally be recovered. Therefore, we can assume the 

demand of segment differential to be nqmk , and by assumption (A5), the recovery time in each segment 

differential to be . Then we have nHEmk )( .  
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     The additional waiting time for sequential segment differential is as follows: 

     )(HEmk , )(HEmk ,…, )1()(  nHEmk       

Then the total extra waiting time for downstream passengers is the summation of individual extra 

waiting time of sequential segment differential, i.e.       
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     Thus, the respective cost is calculated as     
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This completes the derivation of Eq. (23).        
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