
This is a repository copy of Bus bunching along a corridor served by two lines.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/103483/

Version: Accepted Version

Article:

Schmöcker, J-D, Sun, W, Fonzone, A et al. (1 more author) (2016) Bus bunching along a 
corridor served by two lines. Transportation Research Part B: Methodological, 93 (A). pp. 
300-317. ISSN 0191-2615 

https://doi.org/10.1016/j.trb.2016.07.005

© 2016 Elsevier Ltd. Licensed under the Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International 
http://creativecommons.org/licenses/by-nc-nd/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1 

 

Please cite this article in press as:  
SCHMÖCKER, J-D., SUN, W.,  FONZONE, A., and LIU, R. (2016) Bus bunching along a corridor served by 
two lines. Transportation Research Part B, accepted on 14 July 2016. 

 

 

 

BUS BUNCHING ALONG A CORRIDOR SERVED BY TWO LINES 

 
Jan-Dirk SCHMÖCKER1, Wenzhe SUN1, Achille FONZONE2 and Ronghui LIU3 

 
1 Department of Urban Management, Kyoto University, Japan; 

email: {schmoecker, wz.sun} @trans.kuciv.kyoto-u.ac.jp 
 

3 Transport Research Institute, Edinburgh Napier University, U.K.; 
email: a.fonzone@napier.ac.uk 

 
3 Institute for Transport Studies, University of Leeds, U.K.; 

email: r.liu@its.leeds.ac.uk 
 

 
 

ABSTRACT 

Headway fluctuations and “bus bunching” are well known phenomena on many bus routes where an 

initial delay to one service can disturb the whole schedule due to resulting differences in dwell times 

of subsequent buses at stops. This paper deals with the influence of a frequent but so far largely 

neglected characteristic of bus networks on bus bunching, that is the presence of overtaking and 

common lines. A set of discrete state equations is implemented to obtain the departure times of a 

group of buses following the occurrence of an exogenous delay to one bus at a bus stop. Two models 

are distinguished depending on whether overtaking at stops is possible or not. If two buses board 

simultaneously and overtaking is not possible, passengers will board the front bus. If overtaking is 

possible, passengers form equilibrium queues in order to minimise their waiting times. Conditions for 

equilibrium queues among passengers with different choice sets are formulated. With a case study we 

then illustrate that, if overtaking is not allowed, the presence of common lines worsens the service 

regularity along the corridor. Conversely, common lines have positive effects when overtaking is 

possible. We suggest hence that appropriate network design is important to reduce the negative effects 

of delay-prone lines on the overall network performance. 
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1. Introduction 
 

The lack of bus service reliability is a major problem for bus passengers and service operators. A key 

feature of an unreliable service is the irregular arrivals of buses at stops. The effect of two successive 

services of a single line arriving at stops with shorter than designed headways is generally defined bus 

bunching. Bus bunching is undesirable for passengers because it reduces the predictability of bus 

arrival times and leads to increased waiting time at some bus stops, and. Studies have shown that 

passengers value their time waiting at bus stops more than they do to on-board travel time. Hollander 

and Liu (2008) found that the value of service reliability to bus passengers is four times higher than 

that of mean travel time. 

Bus bunching may be caused by the first service being delayed due to unforeseen traffic congestion 

en-route or unplanned high demand at previous stops. A further contributing factor is the differences 

in bus driver behaviour. If for any of these reasons a bus is delayed, the subsequent service then has 

fewer passengers to pick up at that stop and departs earlier than scheduled.  At downstream stops the 

effect is emphasised as the (small) delay to the first vehicle and the (slight) early arrival of the second 

vehicle result in increasingly longer dwell times for the first bus and increasingly shorter dwell times 

for the second bus.  

The bus bunching effect on a single line of service was first described in a seminal work by Newell 

and Potts (1964). They studied an idealised corridor with evenly spaced bus stops, identical travel 

times between stops, and constant passenger loads at bus stops. Given a small delay of the first bus at 

a stop, Newell and Potts provide an analytical formulation of the deviation of bus arrival time to 

schedule for all buses and at all subsequent stops. They show that adjacent buses alternate between 

behind and ahead of schedule, leading to bus bunching. The scale of the bunching effect and the 

stability of the bus system is affected not only by the size of the original delay to the first bus, but also 

by the ratio (referred to as the k value later) between passenger arrival rate and loading rate. They 

show that if ͳȀʹ ൏ ݇ ൏ ͳ, instability occurs. In practice, however, one would expect the passenger 

arrival rate to be much smaller than the loading rate, i.e.  Ͳ ൏ ݇ ൏ ͳȀʹ. In this case, Newell and Potts 

show that the system can recover from the original perturbation and return to schedule.  Potts and 

Tamli (1964) offered some empirical support, based on experimental investigations of bus bunching 

in Adelaide, Australia. They showed that the pairing of buses is in part due to the variations in 

passenger loading time. The analytical expression of Newell and Potts is in terms of the time a bus 

leaves a stop (see full description in Section 3). Chapman and Michel (1978) provided a different 

expression, in the form of the time between the departure of one bus from a stop and the arrival of the 

next. It is a more direct measure for bus pairing, and they used the method to identify the bus stop 

where bunching occurs. Since these earlier papers on bus bunching, much of the research has been to 
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design and test means to control irregularities in bus operations so to reduce the bunching effect. In 

particular holding strategies for headway keeping and/or schedule-adherence have been analysed and 

shown to be successfully applied in literature. The holding objectives are different for low- and high-

frequency services. For low-frequency systems, loosely defined as those that run at a headway of 

10min or longer (Jolliffe and Hutchinson, 2001), holding strategies are implemented through building 

slacks in the schedule at key timing points and holding buses at these points to keep them to schedule 

(e.g. Osuna and Newell, 1971; Newell, 1974; Cats et al, 2012). For high-frequency systems, however, 

the holding strategies aim to maintain regularity in headways (e.g. Eberlein et al., 2001; Hickman, 

2001). Due to the complexity of the problem, most of these early studies involve solving just one 

controlled timing point. Using a simulation approach, Hickman (2001) derived a set of static holding 

solutions, which do not respond to dynamical changes in the actual bus performances on the day. 

Eberlein et al (2001) proposed a model for dynamical bus holding which takes real-time information 

on bus headways into consideration and strives to minimise passenger waiting time.  Liu and Sinha 

(2007) showed a clear correlation between headway regularity and passenger wait time delays. 

Employing real-time bus positioning data, now widely available, Daganzo (2009) explored a more 

systematic approach to the dynamical holding problem. The method is able to consider holding at 

multiple timing points, therefore providing opportunity for returning to schedule for long bus route. In 

addition, the model takes into account random effects in bus travel time, bus dwell time and passenger 

demand, making it resemble more closely to real-life situations.  Daganzo and Pilachowski (2011) 

proposed an adaptive bus control scheme based on a two-way bus-to-bus cooperation, where a bus 

adjusts its speed to both its front and rear headways. They show that the scheme yields significant 

improvements in bus headways and bus travel time. Pilachowski (2009) proposed to use GPS data to 

counteract directly the cause of the bunching by allowing the buses to cooperate with each other and 

to determine their speed based on relative position. Bartholdi and Eisenstein (2012) formalised the 

method as a self-coordinating strategy to equalise bus headway. Recently, Hernández et al. (2015) 

developed an optimal holding strategy, for a common-line corridor where two bus lines serve the 

same sub-set of stops. They showed that the holding strategy significantly reduced the overall waiting 

time of the passengers as well as reduced bus headway variation, compare to a no control scenario. 

Sun and Schmöcker (2016) analysed the effect of different passenger distributions on bus bunching. 

They show that an “ad hoc control strategy” whereby passengers are asked to board a latter bus could 

reduce the bunching effect. Their analysis is though also limited to buses of the same line, i.e. 

ignoring common lines.  

Despite these recent developments, most of the existing studies present an oversimplified model of the 

bus bunching phenomenon, notably with a single line of service (with the exception of the recent 

work of Hernández et al. (2015)), with fixed service frequency, uniformly distributed (in time and 
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space) passenger flows, and no bus overtaking. They neglect important aspects of real-life bus 

systems, such as passenger behaviour, en-route service perturbation, transport operator policies such 

as holding and overtaking, and complex network features such as common lines. Newell and Potts 

(1964), for instance, assume fixed frequency, constant dwell times, equal-distance stops and equal-

travel time between stops, and that buses cannot overtake. In real-life situations, busy urban corridors 

are often served by multiple lines of bus services, with different frequencies and different sequence of 

stops. Traffic congestion causes uncertainty in bus run time, and buses overtake one another at bus 

stops. Passenger demand varies over time and between bus stops, which in turn lead to variation in 

bus dwell times. Boyd (1983) presented empirical evidence which demonstrated the impact of 

variability in bus journey time on bunching. 

Another significant simplification in the existing studies is the assumption of random arrivals of 

passengers to bus stops, and the uniform passenger demand distribution over time and space. Bowman 

and Turnquist (1981) argue that passengers will, to some extent coordinate their arrivals to coincide 

with the scheduled service in an attempt to reduce their wait time, and that more reliable service 

would encourage such arrival behaviour. Using a passenger choice behaviour model, they 

demonstrate that passengers are more sensitive to schedule reliability than to service frequency. 

Nagatani (2001) shows a strong relationship between bus delay and the passenger number on bus, and 

proposed skipping a bus stop as a way of keeping to schedule. Liu and Sinha (2007) collected data on 

bus travel time, dwell time, and passenger boarding and alighting along a commuter bus route in the 

City of York, in England. They found that the passenger demand (both boarding and alighting) varies 

significantly by bus stops and over time. Sorratini et al (2008) show that the variability in passenger 

flow distribution has the most significant impact on bus reliability measures, as compared to that due 

to traffic congestion, overall passenger demand increases, or boarding rate.   

 

Exploring the effect of non-uniform arrivals at stops on bus bunching, Fonzone et al (2015) developed 

a probabilistic reliability-based passenger arrival model in which passengers consider the scheduled as 

well as possible early or delayed bus departures in determining their arrival time and aim to minimize 

their expected wait time.  They implement this probabilistic passenger arrival model with a standard 

bus propagation model (i.e. a single bus line, no holding or headway equalizing strategies), and show 

that a mismatch between the operators’ perception of service demand and actual demand can lead to 

bus bunching, even without exogenous bus delay.    

 

In this paper, we analyse bus bunching in a corridor with common lines. We focus on the effect of 

network layout, and more specifically that of the bus stop designs in the presence of common lines, on 

the absorption or propagation of an initial bus delay down the corridor. We consider the bus corridor 
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served by two or more bus lines and investigate the spreading of bunching effect. The spreading can 

occur for two reasons in such a common line scenario.  Firstly, if a large number of passengers 

interchange between lines at a certain point in the network and if a fully loaded vehicle arrives (for 

example after a special event or after re-opening of a line), this can lead to a sudden increase in 

demand for the line to which many passengers are transferring. Secondly, passengers’ route choice 

may consider hyperpaths, i.e. sets of attractive lines, and if a specific line is delayed they choose an 

alternative option from their attractive set. Hence, irregular headways on one line can lead to large 

demand for the other lines. 

Furthermore, we consider overtaking of buses at bus stops. We show that the Newell and Potts’ model 

holds only when no bus overtaking is taken place and when no more than one bus can be at a stop at 

the same time. We formulate analytically the state equations for bus departure times on a corridor 

with common lines and allowing for bus overtaking at stops.   

Section 2 of the paper sets out the basic model notations and illustrates the common line scenario to 

be considered. Section 3 presents the original Newell and Potts formulation of bus bunching and 

highlights its limitation with a numerical illustration. Section 4 describes the formulation and the state 

equations to the new bus propagation model in the presence of common lines, but where overtaking is 

not possible. Section 5 then considers the case where overtaking is allowed and a different and more 

complex passenger behaviour model considering queueing equilibria is developed. A number of 

evaluation measures are proposed in Section 6, and the performance of the new model are illustrated 

through case studies in Section 7. Finally, Section 8 draws conclusions of the study and discusses the 

implications on bus network design.   

 

2. Notation and basic assumptions 
 

2.1. Notation 

  The following notation will be used throughout the paper and explained in subsequent sections 

further as required. In parts we divert from those used in Newell and Potts (1964) in order to 

accommodate additional variables with intuitive notation as much as possible. 

Let  

l bus line with l=0,1,…,L; 

m(l)  bus number of line l with m(l)=0, 1, 2,…, M(l) 

n(l)  bus stop number of line l with n(l)=0, 1, 2,…, N(l) 

hl  headway of line l  
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  The above set of variables defines the basic service characteristics. We ignore alighting and capacity 

issues and focus on the effects of boarding demand on delay propagation. Given this restriction, in the 

following we introduce variables required to derive the bus trajectories. To simplify the notation we 

omit the line dependency of stops whenever possible, i.e. a bus m(l) serves stops n (not n(l)), even 

though clearly a bus serves only stops of its own line.  

 
The following variables all have unit [sec]; and the times are measured from the departure of the first 

bus from terminal ܽሺሻǡ  time at which bus m of line l arrives at stop n  ݀ሺሻǡ  time at which bus m of line l leaves at stop n  ݓሺሻǡ  dwell time of bus m of line l at stop n  ݒሺሻǡ  travel time of bus m of line l between stops n-1 and n  ߩሺሻǡ  “exogenous” delay to bus m of line l at the nth stop  οࣦǡሺሻǡ  passenger arrival period over which demand for bus m(l) at stop n accumulates 

assuming that passengers consider boarding line set ࣦ that includes line l (l is used 

instead of ࣦ   as first subscript when the passenger considers a single line only)  ࣦߦǡሺሻǡ departure time of a bus of set ࣦ from stop n immediate before bus ݉ሺ݈ሻ  

 

Further, we define: ࣦ  Set of lines considered for boarding by passengers at stop n  ȳǡ ȳ Set of all ࣦ  (set of sets of lines) and set of ࣦ that include line l ܾ passenger loading rate of buses of line l [pas/sec] ݇ሺሻǡ Ratio between passenger arrival and loading for bus m of line l at stop n ࣦݍ  passenger arrival rate at stop n for passengers with line set ࣦ  [pas/sec]  ݍ  total passenger arrival rate at stop n  [pas/sec]  ݕොሺሻǡ cumulative number of passengers that have boarded bus m of line l at stop n when it 

departs  

 
In addition we require following time depending variables: ݍොሺሻǡሺݐሻ passenger arrival rate at stop n intending to take line l at time t [pas/sec]  ࣦݕǡሺݐሻ cumulative number of passengers with choice set ࣦ  that have arrived at stop n at time 

t since departure of a previous bus from lࣦ  ࣦݖǡሺݐሻ number of passengers with choice set ࣦ  at stop n at time t  ݖƸሺሻǡሺݐሻ number of passengers who are waiting to board bus m(l) at stop n at time t  
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2.2. Exogenous, initial delays triggering bunching  

 

We assume that bus travel time between stops are constant and equal so that ݒሺሻ simplifies to ݒ. Introducing stochastic travel times on links where ݒሺሻ might be drawn from a (time-dependent) 

observed travel time distribution for a link does not constitute a modelling issue, nor does it alter the 

problem discussed in this paper. Instead, we assume that buses are subject to random delays at stops 

plus delays incurred by dwell times due to the bunching problem. The random exogenous part of the 

delays at stops is denoted by ߩሺሻǤ  As we assume an uncontrolled bus service, any ߩሺሻ  ് Ͳ 

triggers subsequent bunching effects. We note that the difference between assuming random link 

travel times and delays at stops is that in the latter passengers arriving at the stop during the delay 

period can board the bus whereas in the former they cannot.  

 

2.3. Illustration of common lines  

 

To illustrate the common line issue in connection with bus bunching, let’s consider Figure 1. There 

are two lines originating from possibly two different terminals. After some stops the buses travel on a 

common corridor. Such a situation is frequently encountered where buses depart from suburbs and 

then travel on an arterial street in the city centre. To illustrate the network design issue, two types of 

stops are distinguished on the common corridor. At Stops 1 and 2 the buses board passengers at 

nearby but different stop locations so that passengers have to decide for a specific bus at the point of 

arrival. Such bus stop designs are common in practice. For example, the stop for the blue line is 

located before a road-crossing whereas the stop for the red line is located after the crossing. Another 

type of bus stops, as for the case of Stop 3 in Fig. 1, there is only one stopping point for both lines so 

that passengers form a single queue and board whichever bus arrives first and such bus stops can also 

be frequently found in practice. We assume that the buses travel together for a certain section before 

they might split again. This means that only a proportion of passengers, i.e. those travelling up to stop 

n will be able to take advantage of the same stop being served by both lines.  
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Figure 1. Illustration of two bus lines with some common line stops 

 
It is reasonable to assume that the passenger arrival pattern is independent of the bus stop layout. To 

describe the effect of common line stops we distinguish the set of lines ࣦ different passenger groups 

might be considering in their choice set. Let ࣦ denote the set of passenger arrival rates at stop n for 

passengers considering to board a line among set ࣦ. For n lines serving the stop we have 2n-1 choice 

sets. In Figure 1 we hence need to distinguish three passenger group arrival rates so that  ࣦ 

becomes a vector of ൫ݍሼௗሽ ǡ ሼ௨ሽǡݍ  .ሼௗǡ௨ሽ൯ݍ

 

Let ݍ further denote the total passenger arrival rate at stop n. We then obtain for non-common line 

stops, such as Stops 1 and 2 in Figure 1, that passengers have to decide for a particular line upon 

arrival at the stop and therefore obtain  ݍ ൌ ሼௗሽݍ  ሼௗǡ௨ሽݍ ሼ௨ሽǡ andݍ ൌ Ͳ . In case no 

schedule is available and all lines serve the same downstream stops it might be assumed that 

passengers at non-common line stops will split in inverse proportion to the line headway hl so that the 

loads on all buses are evenly distributed, i.e.  

ሼሽݍ  ൌ ݍ ଵȀσ ଵȀᇲᇲאಽ .          (1) 

In this paper we follow this assumption though we note that other distributions might also be 

reasonably assumed. For example, in an uncongested situation, it is not unreasonable to assume that 

all passengers might always go to the stop served by the more frequent service.  

 

2.4. Boarding demand for buses  

 

The total boarding demand for a single bus m of line l at stop n is obtained by (2)  

ොሺሻǡݕ  ൌ σ  ஐא௧ᇲାοࣦǡሺሻ௧ᇲࣦݐሻ݀ݐሺࣦݍ        (2)  

 

Stop 1 Stop 2 Stop 3 Stop n
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where ݐԢ denotes the time from where passengers at the stop could not (or do not) board the previous 

bus at the same stop anymore. Ignoring capacity constraints and assuming uncontrolled boarding, i.e. 

that passengers who arrive during the dwell time can still board the front bus one would hence 

generally expect that ݐԢ equals the departure time of the previous bus from the stop.  In contrast to 

Fonzone (2015) we consider frequent services for which time-independent arrival rates can be 

assumed so that (2) simplifies to  

ොሺሻǡݕ  ൌ σ ஐאοࣦǡሺሻࣦࣦݍ          (3)  

 

We note that in case of a common lines stop the period οࣦǡሺሻ reduces for each bus: Consider that 

two lines serve the stop, for both lines οࣦǡሺሻ reduces on average from ݄ଵ and ݄ ଶ respectively to the 

combined line frequency of 
ଵభ  ଵమ ൌ భమభାమ.  

 

LEMMA 1: The total amount of passengers boarding over a time period T remains the same 

regardless whether the bus stop is designed as a common line stop or not:  

Proof: 

In case the stop is not a common lines stop ݍሼଵǡଶሽ ൌ Ͳ and we expect ݍሼሽ݄ passengers per 

vehicle so that the total number of passengers boarding over a period T is: ൫ݍሼଵሽ݄ଵ൯ ቀ்భቁ ൫ݍሼଶሽ݄ଶ൯ ቀ்మቁ ൌ ൫ݍሼଵሽ  ሼଶሽ൯ܶݍ ൌ  .ܶݍ

 

In case the stop is a common lines stop we expect instead on average for both lines l a passenger 

load of ൫ݍሼሽ݄൯  భమభାమ  ሼଵǡଶሽ and hence the total number of passengers boarding over a periodݍ

T is also: ൫ݍሼଵሽ݄ଵ൯ ቀ்భቁ  ൫ݍሼଶሽ݄ଶ൯ ቀ்మቁ  ቀ భమభାమ ሼଵǡଶሽቁݍ ቀ்భ  ்మቁ ൌ ൫ݍሼଵሽ  ሼଶሽݍ ݍሼଵǡଶሽ൯ܶ ൌ  ܶݍ

This completes the proof of Lemma 1. ڧ 

 

The period, οࣦǡሺሻ, over which passengers for set ࣦ accumulate will depend on the departure of 

a previous bus from the set ࣦ as well as the arrival and (expected) departure of the next bus from this 

set. In case of a bunched service various definitions are possible, depending on bus stop layout, 

operational policy as well as passenger behaviour. In particular, one might make different 

assumptions on the behaviour of passengers arriving while two buses are at the same time at the stop 

as will be discussed later in this paper.  
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2.5. Demand ratio kln  
 
The boarding time per passenger is primarily depending on doors and ticketing system. Sun et al 

(2014) report that the loading time per passenger further depends on the interaction between boarding 

and alighting passengers. In the following we omit this issue and instead make the simplifying 

assumption that all buses are identical, i.e. have the same boarding rate per passenger, so that we can 

assume a fixed ܾm(l) and omit the subscript m(l). In line with Newell and Potts at non-common line 

stops (or at common line stops with ࣦݍ ൌ Ͳ for all line sets ࣦ that include several lines) we can hence 

derive a bus independent “static” and dimensionless demand ratio ݇ that can be used to obtain dwell 

time of buses: 

  ݇ ൌ          (4) 

Clearly to avoid queues at bus stops building up over the analysis period we require 

 

  Ͳ   ݇  ൏ ͳ      (5) 

In case of common line stops with passengers utilising different line sets ݍሼࣦሽ that include the same 

line l, the use of a bus independent demand ratio ignores the fact that different arrival periods οࣦǡሺሻ 

need to be considered to obtain the dwell time at stops. Instead considering the dynamics of line 

choice for passengers depending on their choice set ࣦ is required to obtain boarding demand for buses 

and with it dwell time. 

 

3. Limitations of the Newell and Potts (1964) approach 

  

We start by reviewing the Newell and Potts (1964) model as one of the most cited papers and seminal 

works on the bunching problem for the single line problem. Their approach is based on the 

assumption that Loading time = Arrival period x Arrival rate1. With the above-introduced notation 

utilising the ratio ݇  they derive:  

ሺሻǡݓ  ൌ οǡሺሻǡ݇      (6) 

Where, since common lines are not considered, arrival periods ο are defined as: 

 οǡሺሻǡൌ ݀ሺሻǡ െ ݀ିଵሺሻǡ     (7) 

                                                           
1
 See also Figure 2 in Newell and Potts (1964). Readers of both papers might note that Newell and Potts call 

“arrival time” what we refer here as “arrival period”. 
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The implicit assumption is that passengers keep boarding a bus until it departs. In other words, the 

issue that passengers might prefer to board a bus that arrived later (but might already be in sight or 

even already at the bus stop) is not considered. This assumption is however difficult to defend if 

overtaking is allowed and a bus arriving later might in fact leave the bus stop earlier. This is the basis 

for the model presented in Section 5.  Further note that: 

ሺሻǡݓ  ൌ ݀ሺሻǡ െ ݀ሺሻǡିଵ െ  (8)    ݒ

With this (6) can now be used to solve the cyclic problem between obtaining οǡሺሻ and ݀ ሺሻ. That 

is, if (7) and (8) are inserted into (6) one can derive: 

 ݀ሺሻǡ ൌ ௩ାௗሺሻǡషభିௗషభሺሻǡଵି      (9) 

With this formulation Newell and Potts then derive their elegant, analytically tractable formulation of ݀ሺሻ given that ݇  reduces to a constant k and that the first bus m=1 on line l is delayed at stop n=1 

by ߩଵሺሻଵ as following: 

݀ሺሻǡ ൌ  ሺ݉  ݊݇ሻ݄  ݒ݊  ଵሺሻଵߩ ሺାିଵሻǨሺିଵሻǨሺିଵሻǨ ቂ ିଵቃିଵ ቂ ଵଵିቃିଵ
             (10) 

Based on this, it follows that if ݇  ͲǤͷ the bunching effect increases, whereas for ݇ ൏ ͲǤͷ the system 

can recover from perturbations. In addition to the assumptions common with our subsequent approach, 

a number of restrictions need to be noted though on which this expression of bus departure times is 

built: a) the formulation (9) and the resulting equation (10) do not consider issues such as overtaking; 

b) if buses are bunched and more than one bus is at the platform, arrival period and loading time 

estimation is not true; c) the result given in (10) does not hold if several delays occur.  Points a) and b) 

lead to the problems that are illustrated in the following figure even assuming only mild bunching 

conditions. Applying (10) for a headway of ݄ ൌ ͷm�n, a travel time between stops of ݒ ൌ ʹm�n, an 

initial delay of ߩଵሺሻଵ ൌ ͳm�n and a constant ݇ value of 0.2, Fig. 2 shows that it takes just two bus 

stops before bus 2 catches bus 1.  Afterwards, according to the Newell and Potts model, the 

trajectories of bus 2 reverse in time, which is clearly not realistic. 
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Figure 2. Trajectories of two buses according to Newell and Potts (1964) 

 
Giving the assumptions discussed in Section 2.3 and our objective to consider common lines, we 

modify (7) into:  οࣦǡሺሻǡ ൌ ݀ሺሻǡ െ  ǡሺሻǡ          (11)ࣦߦ

where we introduce ࣦߦǡሺሻǡ  as shorthand for the previous departure from stop ݊ from a bus of set ࣦ 

prior to bus ݉ ሺ݈ሻ arrives at the stop.  

ǡሺሻǡࣦߦ ؠ maxᇲ൫ᇲࣦא൯ ቄ݀ᇲ൫ᇲ൯ǡቚ݀ᇲ൫ᇲ൯ǡ  ܽሺሻቅ ሺ݈ᇱሻǡ݉  ݈ᇱ א ࣦ   (12) 

The passenger arrival period for a bus m of line l is hence shortened as the time period that has passed 

since the departure of a previous bus from any line in ࣦ and the departure of the current bus. We 

observe though that an equivalent formulation to (10) cannot be derived if we use (11) instead of (7).  

In summary, we suggest the contribution of the Newell and Potts (1964) model is to illustrate the 

theoretical tendency of ݇ to increase bunching. In particular Newell and Potts show that ݇ ൌ ͲǤͷ is a 

threshold. For smaller ݇ self-recovery can be expected, but for larger ݇ it can not. However, the model 

is not suitable to predict arrival times of a series of buses at stops. Our objective is to address these 

points and to take into account an arrival period definition that considers common lines. In the 

following we therefore propose an alternative formulation that considers these points. We avoid a 

simulation approach, but the limitation of our study is that in contrast to Newell and Potts we are not 

able to derive a formulation equivalent to (10). Instead we develop a recursive analytical formulation 

of ݀ሺሻ.  

Proposition 1: Increasing the sequence of common line stops reduces the maximum delay of the first 

delayed bus for a constant ݇. 
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Proof: See the Appendix.  

Due to the dynamic interactive behaviours between passengers’ line choices at the common line stops, 

a more general relationship between common line stop and passenger delays than in Proposition 1 

cannot be formulated analytically. Instead, we examine in Section 6 numerically the effect of common 

line stops and show a general trend in delay reduction when common lines are considered.  

 

4. Bus propagation model in case of no overtaking (assuming only one bus at a time 
can load passengers) 

 

Generally, based on (4) and (6), dwell times at a stop under consideration of common lines can be 

obtained by: 

ሺሻǡݓ   ൌ ଵ σ  ஐא௧ᇲାοࣦǡሺሻ௧ᇲࣦݐሻ݀ݐሺࣦݍ       (13) 

The treatment of common lines is considered in the definition of the integration interval of (13). With 

our previously introduced definition of οࣦǡሺሻ this can also be expressed as: 

ሺሻǡݓ ൌ ଵ σ  ஐאௗሺሻǡకࣦǡሺሻǡࣦݐሻ݀ݐሺࣦݍ       (14) 

As noted before, the implicit assumption of (14) is that if two buses are at the same stop, passengers 

board the front bus until this departs. This is a typical situation for stops where bus bays are only large 

enough for one bus to board passengers. In that case passengers will know that the first bus will also 

arrive earlier at subsequent stops and therefore have no motivation to board the second bus 

(considering travel time only). With (14) and utilising our assumption of uniform passenger arrivals 

we then derive (15) where dwell time appears on both the right and left hand side of the equation but 

which can be easily solved for  ݓሺሻǡ. 

ሺሻǡݓ ൌ ଵ σ  ஐאௗሺሻǡకࣦǡሺሻǡࣦݐሻ݀ݐሺࣦݍ ൌ ଵ σ  ஐאሺሻǡା௪ሺሻǡకࣦǡሺሻǡࣦݐࣦ݀ݍ  ൌଵ σ ൫ܽሺሻǡࣦݍ  ሺሻǡݓ െ ஐאǡሺሻǡ൯ࣦࣦߦ        (15) 

Note that (15) does not hold if the assumption of passenger uniform arrival is not valid or if boarding 

rates are not constant, i.e. if buses board passengers slower when the bus is crowded. In this case, one 

will have to revert to a “time-step based simulation” to solve the cyclic relationship between the 

arrival rate and the departure time as in Fonzone et al (2015). 
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The formulation of (15) is then key to obtain our dynamic state equations that describe the 

propagation of buses through the network without consideration of overtaking at stops. This is shown 

below in Algorithm 1.  

Algorithm 1: Bus trajectories without overtaking 

Initialisation  

Set ܽ ሺሻǡଵ  ݉ሺ݈ሻǡ ݈    the arrival times of all buses of line l at stop 1  

Set οࣦǡଵሺሻǡ  ݊ሺ݈ሻǡ ݈     the waiting times for the first bus at all stops on line l  

For each stop ݊ in increasing order  

 Sort buses according to their arrival times at the stop 

For each bus ݉ ࣦ in order of increasing arrival times, obtain ࣦߦǡሺሻǡ with (12). Then 

ሺሻݓ ൌ ቐ ଵ σ ஐאࣦࣦݍ οࣦǡଵሺሻǡ ݉ ൌ ͳଵ σ ൫ܽሺሻǡࣦݍ  ሺሻǡݓ െ ஐאǡሺሻǡ൯ࣦࣦߦ  ݉  ͳ   (16) 

݀ሺሻ ൌ ܽሺሻǡ  max൛ࣦߦǡሺሻǡ  ǡߝ ሺሻǡൟݓ  ሺሻǡ    (17) ܽሺሻǡାଵߩ ൌ ݀ሺሻǡ   ሺሻǡ       (18)ݒ

 
 

In the initialisation, the arrivals of the buses at the first stops are predetermined. One might interpret 

them as the time the bus leaves the terminal. Furthermore, we assume that the waiting times for the 

first bus of each line are known and given. Thus, assuming that the service is initially undisturbed and 

hence οࣦǡଵሺሻǡൌ ݄ for all lines and stops, we can obtain the same dwell time for the first bus at all 

stops in the corridor, using the first part of eq. (16).  The second part of (16) gives the state equation 

for calculating the dwell times of subsequent buses. 

Dealing with stops in increasing sequence ensures that the departure times of all buses at previous 

stops have been obtained. In line with Figure 1 we assume that all buses serve all stops. This is mainly 

in order to allow simplification of notation as otherwise one would need n(l). If the assumption does 

not hold, one can set the arrival rate (and hence dwell time) for that stop to zero, so that this is not a 

restricting assumption. 

Eq. (17) includes a max operator in order to ensure that buses depart in the same order as they arrived 

at the bus stop, i.e. no overtaking at bus stops is allowed. We further add a small time ߝ (a few 

seconds) to the departure time of bus m in case it could depart earlier or at the same time as the bus 
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loading in front. This is in order to prevent exactly equal arrival times of two buses (and for better 

illustration of the bus trajectories shown later). As noted, delays are assumed to occur at stops and are 

hence added to the departure time in (17). If instead/additionally random link travel times are assumed 

these can be added to (18). Note that in that case random overtaking between stops might occur, this 

remains in line with model assumptions presented in this section: As long as passengers cannot expect 

the latter bus to overtake a bus queuing at the stop in front, passengers will prefer the front one 

(ignoring capacity problems).  

 

5. Bus propagation model with overtaking at stops  
 

5.1. Larger bus bays and resulting passenger grouping 

Let us now consider the case of bus bays being large enough for two buses to board passengers at the 

same time and/or generally overtaking between buses being possible. In that case we consider that, if 

possible, passengers at the stop form equally long queues for the two buses that are boarding 

passengers at the same time. This appears reasonable as it will mean equal waiting times for all 

passengers and minimises the waiting time for the last passenger at the stop. The equilibrium 

assumption on bus bay layout and passenger behaviour also means that the assumption of no 

overtaking is not reasonable anymore as the second bus at the stop might board fewer passengers and 

therefore can leave the stop earlier. Therefore in (16) the max operator can be omitted so that 

obtaining bus departure times simplifies to ݀ሺሻ ൌ ܽሺሻǡ  ሺሻǡݓ   ሺሻǡ     (19)ߩ

For obtaining the dwell time of bus ݉ሺ݈ሻ now several cases need to be distinguished though. To 

simplify the notations, in this section we omit subscript n as all notation will always refer to the same 

stop. To begin with, let us assume two successive buses arrive at stop n, and if it is a common-line 

stop, they do not necessarily belong to the same line. Hence the arrival time of these two services can 

be denoted by ܽሺሻ and  ܽ ᇲሺᇲሻ.  
The passengers waiting to board at the stop can now be split into four groups according to their line 

choice set ȳ which will determine their queueing behaviour: Those who are not interested in boarding 

any of the two lines (ȳǡᇲ), those with ࣦ  that includes exactly one of the two lines (ȳǡᇲ and ȳǡᇲ) 
and the common line passengers whose line sets concludes both ݈ and ݈ ᇱ (ȳǡᇲ).  
Whereas the group with choice set ȳǡᇲ will not queue for any bus, the other three passenger groups 

will now split into two queues for the two buses at the stop. Passengers with ȳǡᇲ and ȳǡᇲ will 
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form a queue for the single bus they wish to board. Passengers ȳǡᇲ though have the choice to join any 

one of the two queues. It is reasonable to assume that these passengers will choose to join the shorter 

queue in order to speed up their departure from the stop. 

 

5.2. Necessary condition for two buses loading at the same time 

In order for the case of two buses boarding passengers simultaneously to occur, the boarding process 

of the bus that arrived first must not have finished at the time when the second bus arrives. Assume 

that buses of line l and ݈ᇱ board simultaneously and that the bus of line l arrived first. Then, at ܽᇲሺᇲሻ 
following condition applies: 

ஐǡᇲאࣦݕ  ൫ܽᇲሺᇲሻ൯  ஐǡᇲאࣦݕ ൫ܽᇲሺᇲሻ൯  ܾ൫ܽᇲሺᇲሻ െ ܽሺሻ൯    (20) 

(20) states that the boarding demand for line l must exceed the total number of passengers arrived 

during the period between ܽሺሻ and  ܽ ᇲሺᇲሻ. Where we remind that ࣦݕሺݐሻ denotes the accumulated 

demand for passengers of the respective groups since a previous departure of a bus from choice sets ࣦ . 

These can be obtained generally from (21) where ȳ௫ can be replaced by ȳǡᇲ or ȳǡᇲ respectively.  

ஐೣ൫ܽᇲሺᇲሻ൯אࣦݕ  ൌ σ  ஐೣאᇲሺᇲሻకࣦǡሺሻǡࣦݐሻ݀ݐሺࣦݍ ൌ σ ஐೣאࣦࣦݍ ሺܽᇲሺᇲሻ െ  ǡሺሻǡሻ  (21)ࣦߦ

5.3. Queues at the arrival of the second bus 

In order to define the length of the two queues we firstly define the number of passengers remaining 

from each group at the stop at time ܽᇲሺᇲሻ as אࣦݖஐǡᇲ ൫ܽᇲሺᇲሻ൯: 

ஐǡᇲאࣦݖ ൫ܽᇲሺᇲሻ൯ ൌሾאࣦݕஐǡᇲ ቀܽᇲ൫ᇲ൯ቁ  ஐǡᇲאࣦݕ ቀܽᇲ൫ᇲ൯ቁ െ
ܾ ቀܽሺሻ െ ܽᇲ൫ᇲ൯ቁሿ ௬ࣦאಈǡᇲ ቀᇲሺᇲሻቁ௬ࣦאಈǡᇲ ቀᇲሺᇲሻቁା௬ࣦאಈǡᇲ ቀᇲሺᇲሻቁ      (22) 

The square bracket denotes the total remaining passengers with an interest in boarding line l. This 

term is then multiplied by a fraction 
௬ࣦאಈǡᇲ ሺήሻ௬ࣦאಈǡᇲ ሺήሻା௬ࣦאಈǡᇲ ሺήሻ  to denote the proportion of passengers with 

choice set ȳǡᇲ  that have boarded. The underlying assumption is that there is no ordering in the 

queue between passengers with different choice sets. To obtain אࣦݖஐǡᇲ ൫ܽᇲሺᇲሻ൯ one hence has to 
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replace the fraction by  
௬ࣦאಈǡᇲ ሺήሻ௬ࣦאಈǡᇲ ሺήሻା௬ࣦאಈǡᇲ ሺήሻ . Further note that obviously (23) holds since bus ݉ᇱሺ݈ᇱሻ 

has just been arriving.  

ஐǡᇲאࣦݖ  ൫ܽᇲሺᇲሻ൯ ൌ ஐǡᇲאࣦݕ ൫ܽᇲሺᇲሻ൯      (23) 

As noted, we assume common line passengers are supposed to join the shorter queue. This means that, 

if the proportion of common line passengers is large, the common line passengers will distribute 

themselves in such a way as to create queues of equal length. If, however, the proportion of non-

common line passengers is too large equal queues might not be reached. This rule can be expressed 

simply with (24): 

Ƹሺሻሺήሻݖ  ൌ m�n ቀmax ቀ σ ஐǡᇲאሺήሻࣦࣦݖ ǡ σ ஐאሺήሻࣦࣦݖ Ȁʹቁ ǡ σ ஐאሺήሻࣦࣦݖ ቁ   (24) 

where ሺήሻ will be time ܽ ᇲሺᇲሻ in our case. The three values in the function above are illustrating three 

different queue situations: When it is possible for the two queues to equalize, we obtain σ ஐאሺήሻࣦࣦݖ Ȁʹ 

as queue length for the bus of line l, if the queue for line l is longer than for line ݈ ᇱ we obtain σ ஐǡᇲאሺήሻࣦࣦݖ  and for the opposite condition we obtain σ ஐאሺήሻࣦࣦݖ . The max operator covers the case 

that the equilibrium situation is not possible because there is too much demand restricted to boarding 

line l. The min operator then controls for the lower bound of passengers that can board line l which is 

either the equilibrium case or the case that all passengers with line l included in their choice set board 

line l.  

To illustrate this, assume that there are two bus lines serving the stop and that bus m belongs to line 1, 

then (24) becomes ݖƸሺଵሻሺήሻ ൌ m�n ൫ max൫ ݖሼଵሽǡ ൫ݖሼଵሽ  ሼଶሽݖ  ሼଵǡଶሽ൯Ȁʹ൯   ǡݖ ሼଵሽݖ   ሼଵǡଶሽ൯ݖ

Assume further that a bus of line 1 has arrived earlier and that at time t a bus of line 2 arrives. Let   ݖሼଵǡଶሽሺݐሻ ൌ ͺǡ ሻݐሼଵሽሺݖ ൌ ͳͲǡ ሻݐሼଶሽሺݖ ൌ  so that 18 passengers have been queueing for line 1 at time t. 

It follows that m�n ቀͺǡ ଵ଼ିଶ ቁ ൌ   passengers will swap queue to the second one, leaving ͳͲ max ቀͲǡ ଼ାሺିଵሻଶ ቁ ൌ ͳͲ+2=12 waiting to board the first bus, and   m�n ቀͺǡ ଵ଼ିଶ ቁ ൌ    ൌ ͳʹ 

queuing for the second bus. In this equilibrium is reached. If, however, ݖሼଶሽሺݐሻ ൌ Ͳ, i.e. all waiting 

passengers consider taking line 1, m�n ቀͺǡ ଵ଼ିଶ ቁ ൌ ͺ passengers change queue, i.e. all those who can. 

The remaining queue for the first bus is made up of ͳͲ  max ቀͲǡ ଼ାሺିଵሻଶ ቁ ൌ ͳͲ passengers and that 
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for the second of Ͳ  m�n ቀͺǡ ଵ଼ିଶ ቁ ൌ Ͳ  ͺ ൌ ͺ passengers. In other words, in this case equilibrium 

cannot be achieved. 

 

5.4. Queues during the period when both buses load passengers 

For the distribution of passengers after time ܽᇲሺᇲሻ and before departure of any of the two buses we 

need to consider the effect of queue length on the newly arriving passengers. In case the queues are of 

equal length the newly arriving passengers will split also so as to maintain equal queue length if the 

distribution of passengers allows doing so. That is, we obtain as line (not line set) specific arrival rates ݍොሺሻǡሺήሻ the same split as in (24). In case the queues are not of equal length, the common line 

passengers will all join the shorter queue until queue equilibrium is reached. Therefore, in summary, 

we obtain: 

ොሺሻሺήሻݍ ൌ ۔ۖەۖ
m�nۓ ቀmax ቀ σ ஐǡᇲאࣦࣦݍ ǡ σ ஐאࣦࣦݍ Ȁʹቁ ǡ σ ஐאࣦࣦݍ ቁ �f ݖƸሺሻ൫ܽᇲሺᇲሻ൯ ൌ Ƹᇲ൫ᇲ൯൫ܽᇲሺᇲሻ൯σݖ ஐǡᇲאࣦࣦݍ �f ݖƸሺሻ൫ܽᇲሺᇲሻ൯  Ƹᇲ൫ᇲ൯൫ܽᇲሺᇲሻ൯σݖ ஐאࣦࣦݍ �f ݖƸሺሻ൫ܽᇲሺᇲሻ൯ ൏ Ƹᇲ൫ᇲ൯൫ܽᇲሺᇲሻ൯ݖ  

                

(25) 

 

Where ݍොሺሻ will be constant from time ܽᇲሺᇲሻ until either bus ݉ ሺ݈ሻ departs or if  equilibrium queues 

might be reached not at ܽᇲሺᇲሻ  but at a later time. A necessary condition for this is that more 

passengers join the shorter queue so that one queue is diminishing faster than the other. Equilibrium 

time, if it exists, can be reached at time interval 
௭ሺሻቀᇲሺᇲሻቁି௭ᇲ൫ᇲ൯ቀᇲሺᇲሻቁොᇲ൫ᇲ൯ቀᇲሺᇲሻቁିොሺሻቀᇲሺᇲሻቁ after ܽ ᇲሺᇲሻ . We can 

further express the time when either one of the queues has disappeared so that this bus departs as in 

(26)  

 ߮ ൌ m�n ቆ ௭Ƹሺሻ ቀᇲሺᇲሻቁିොሺሻቀᇲሺᇲሻቁ ǡ ௭Ƹᇲሺᇲሻ ቀᇲሺᇲሻቁିොᇲሺᇲሻቀᇲሺᇲሻቁቇ      (26) 

With this we can express the time interval of diminishing gaps between the two queues as (27) 

 ɒ ൌ m�n ቆ௭Ƹሺሻቀᇲሺᇲሻቁି௭Ƹᇲ൫ᇲ൯ቀᇲሺᇲሻቁොᇲ൫ᇲ൯ቀᇲሺᇲሻቁିොሺሻቀᇲሺᇲሻቁ ǡ ߮ቇ       (27) 

The resulting dwell time can then be obtained with (28) and overtaking will occur if ݓሺሻ    .ᇲሺᇲሻݓ
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ሺሻݓ ൌ ۔ۖەۖ
ᇲሺᇲሻܽۓ െ ܽሺሻ  ߮  ௭Ƹሺሻǡ ቀᇲሺᇲሻାఝቁିොሺሻǡቀᇲሺᇲሻାఝቁ �f ݖƸሺሻ൫ܽᇲሺᇲሻ൯ ൌ  Ƹᇲ൫ᇲ൯൫ܽᇲሺᇲሻ൯ݖ

ܽᇲሺᇲሻ െ ܽሺሻ  ɒ  ௭Ƹሺሻǡ ቀᇲሺᇲሻାதቁିොሺሻǡቀᇲሺᇲሻାதቁ ݁ݏ݅ݓݎ݄݁ݐ  (28) 

5.5. Summary: Queue distribution for front and back buses 

Table 1 summarises the cases that can now be distinguished, assuming, without loss of generality, that 

bus ݉ ሺ݈ሻ is at the stop and then bus ݉Ԣሺ݈Ԣሻ arrives. Depending on which case applies in (26) the 

common line passengers will choose the shorter queue or split so that the queues remain equally long. 

In the third column of the table then the resulting times at which the queues are equally long are 

denoted, while the fourth column indicates whether overtaking occurs. 

In the same way the reversed table can be constructed to obtain the cases if bus ݉ሺ݈ሻ arrives at the bus 

stop when there is already a bus boarding passengers. We also note that the case that two buses belong 

to the same line i.e. ݈ ൌ ݈ᇱ is also covered in above discussion. In that case all passengers can be 

considered as common line or “flexible” passengers with choice set ȳǡᇲ that can board both buses. 

Table 1. Effect of initial queues on subsequent queue distribution, equilibrium times and overtaking 

Initial queue at ܽᇲ൫ᇲ൯ : ݖƸሺሻǡ 
Queue distribution just after ܽᇲሺᇲሻ  Resulting time at 

which queues are in 
equilibrium 

Does overtaking 
occur?  ݍොሺሻ ݍොᇲሺᇲሻ 

Equilibrium 
queues σ ஐאሺήሻࣦࣦݖ Ȁʹ  

σ ஐאሺήሻࣦࣦݍ Ȁʹ  σ ஐאሺήሻࣦࣦݍ Ȁʹ   From ܽᇲሺᇲሻ  until 

departure. 

No, buses depart at 
the same time σ ஐǡᇲאሺήሻࣦࣦݍ   σ ஐᇲאሺήሻࣦࣦݍ   At ܽᇲሺᇲሻ  but 

queues do not 
remain in 
equilibrium 

Yes  

σ ஐאሺήሻࣦࣦݍ   σ ஐǡᇲאሺήሻࣦࣦݍ   No, bus ݉ሺ݈ሻ 
departs first 

Queue of bus 

m(l) is longer σ ஐǡᇲאሺήሻࣦࣦݖ   

σ ஐǡᇲאሺήሻࣦࣦݍ   σ ஐᇲאሺήሻࣦࣦݍ   possibly at ߬  as 
obtained from (27)  

Not if equilibrium 
is reached, 
otherwise yes. 

Queue of bus ݉ᇱሺ݈ᇱሻ is longer σ ஐאሺήሻࣦࣦݖ   

σ ஐאሺήሻࣦࣦݍ   σ ஐǡᇲאሺήሻࣦࣦݍ   No 

 

We note that this table omits some possibly even more complex cases: Let bus ݉ሺ݈ሻ arrive first 

followed by a bus of a different line ݈ᇱ that is arriving while the bus of line l is still boarding. In case 

there are few common line passengers and the arrival rate of passengers for bus l is high, it might 

mean that the first bus is hence overtaken. It might now be that another bus is arriving while bus ݉ ሺ݈ሻ 
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is still boarding passengers. This correction in dwell time due to a third bus interacting with bus ݉ሺ݈ሻ 

and relieving its load is not taken into consideration in above algorithm. The error will be usually 

small though unless, possibly, if all three buses are from different lines and if there are high rates of 

passenger flows who have attractive line sets consisting of two of the three lines. In that case, 

denoting the lines in order of bus arrival, bus 2 might not have relieved the load of bus 1 significantly 

if there are many passengers with choice set {1,3}. If there are few passengers with choice set {2}, 

bus 2 will leave early and the split of queues when bus 3 arrives would need additional consideration. 

Algorithm 2 could be amended accordingly and in line with our discussion above. In the following 

case study we limit ourselves though to the cases of two lines. 

5.6. Bus trajectories with overtaking  

Combining this discussion with the state equations shown in Algorithm 1, an alternative Algorithm 2 

can be obtained. 

 

Algorithm 2: Bus trajectories with overtaking 

Initialisation as in Algorithm 1 

For each stop ݊ in increasing order  

 Sort buses according to arrival time at stop 

For each bus ݉ ࣦ in order of increasing arrival times 

 If   ܽ ሺሻǡ  ݀ᇲ൫ᇲ൯ǡ݉ᇱ ቚܽሺሻǡ  ܽᇲ൫ᇲ൯ǡ:  Bus m is front bus at the stop 

  Obtain ݓሺሻ as in Eq. (16) and ݀ሺሻ as in (19)  

  Test if ݀ ሺሻǡ  ܽᇲ൫ᇲ൯ǡ݉ᇱ ቚܽሺሻǡ ൏ ܽᇲ൫ᇲ൯ǡ 

  If yes, revise dwell time according to cases in Table 1 and (28) 

Else: Bus is back bus of two at bus stop 

  Obtain dwell time according to (28)  

 Obtain ݀ ሺሻ with (19) and ܽ ሺሻǡାଵ with (18). 
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5.7. Alternative formulations 

In addition to the overtaking case introduced above and the non-overtaking case, one might also 

define an “intermediate case” where buses are allowed to overtake buses of different lines but not of 

the same line. This case appears to be the operating practice in many countries, including in Japan, out 

of “fairness” considerations. That is, the FIFO principle should not be violated in that passengers who 

queued and boarded earlier should also have the right to arrive earlier compared to passengers who 

boarded the same line later. In the algorithms this means hence that the departure time will be 

obtained instead by 

 ݀ሺሻ ൌ max൛݀ሺሻିଵǡ   ǡߝ ܽሺሻǡ   ሺሻǡൟ     (29)ݓ

 

6. Evaluation measures 
 

In order to quantify the benefits of overtaking and common line stops evaluation measures are needed. 

Firstly, the total passenger waiting time for a single stop and line can be obtained by ݓ ൌ σ  ሻοࣦǡሺሻǡݐሺݍݐ ሺሻݐ݀         (30) 

As we assume constant arrival rates (30) is likely to lead to an overestimation of the true waiting time 

though if we assume a constant number of buses and delays. The bunching effect means that the last 

bus is likely to arrive later at the last bus stop. This in turn means that more passengers have arrived 

which hence means an unequal comparison in terms of number of passengers. To account for this, we 

consider the average waiting time of each passenger for each line to be a better index to assess the 

performance of the service from the view of users, which can be expressed by 

ഥݓ ൌ σ σ  ௧ሺ௧ሻοࣦǡሺሻǡሺሻσ σ  ሺ௧ሻοࣦǡሺሻǡሺሻ         (31) 

Secondly, we utilise the standard deviation of οǡ with respect to each line in (32) as an indicator 

of service regularity. We define this measure line specific as we are particularly interested in 

understanding the knock-on effect of delays on one line to regularity of an initially unaffected line.  

ߪ ൌ ඨσ  σ ൫οࣦǡሺሻ ିοതࣦǡሺሻ ൯మሺሻ ெሺሻேሺሻ         (32) 
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In addition, the maximum waiting times might also be of concern as some long waiting times might 

be perceived worse than a number of slightly longer than usual waiting times. We specifically pay 

attention to the maximum waiting time at the last stop N(l) as in (34) where the service is generally 

worst. If the maximum waiting time of the unreliable line at the last stop is reduced due to common 

lines, it indicates that the more reliable line has helped the less reliable line to recover service 

regularity over the common line section. ݓෝே ൌ maxሺሻ οࣦǡሺሻேሺሻ         (33) 

 

7. Case study 
 

7.1. Specifications 
We consider the simple two line scenario illustrated in Figure 1 with 10 stops. The red line is referred 

to as L1 and the blue one as L2 hereafter. The two bus lines both run with the same frequency of 

h=6min and are scheduled to arrive at stops with a constant inter-arrival time so that every 3min a bus 

serves the stop. We choose these simple settings as we our main conclusions are best illustrated by 

these. Choosing different headways for the lines and/or varying inter-arrival times is though not a 

model restriction. Our third parameter is the arrival-to-loading ratio where we assume k = 0.25 for all 

stops. We assume that an initial random delay of 2min occurs for the 2nd bus of Line 1 at stop 2: ߩଶሺଵሻଶ ൌ ʹ. This means that the first buses of both lines are unaffected and hence run with the 

expected headways and encounter the same (expected) dwell times at the stop.  

To evaluate the effect of common lines we test different common-line stop specifications. Firstly, we 

test the effect of Stops 2 to 8 being common-line stops or not. Stops 9 and 10 are never common-line 

stops in order to illustrate the effect that buses might split again after the section of route they serve 

together. In case none of the bus stops is set as common-line stop, clearly L2 is unaffected by the 

delay that occurred to L1. Generally we expect, the more common lines, the more L1 can recover, but 

the more the operation of L2 will be disturbed. 

At each stop we thus have an arrival rate vector ൫ݍሼଵሽǡ ሼଶሽǡݍ  ሼଵǡଶሽ൯ where the first two elementsݍ

denote the fixed demand for L1 and L2 and the third element describes the flexible demand of 

common-line users to whom both L1 and L2 are attractive. We vary the distribution of these arrival 

rates in Section 7.2. In Section 7.3 we then assess the service performance under all possible 

combinations of common-line stops within this corridor.  
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7.2. Delays and trajectories in case all stops are common line stop   

We first focus on a scenario where all stops from 2 to 8 are common-line stops. We test three different 

percentages of common-line users, distinguishing the cases with or without overtaking. The three 

demand levels are for ݍሼଵǡଶሽ equals to 0%, 20% and 80% of total boarding demand respectively. This 

leads to six scenarios; the resulting bus trajectories are shown in Figure 3. 

Firstly, we observe that expected waiting times of passengers for both lines are reduced with the 

increase of common-line users as these can take whichever bus arrives first. Comparing the 

trajectories and indices shown in the left column (without overtaking) to those in the right column 

(with overtaking) by each row, it is obvious that common lines are less effective in case overtaking is 

not possible (or not allowed). The initial delay to the red bus causes it to be further delayed 

downstream and the green line cannot give enough support to the red line as overtaking is not possible. 

In case of higher common-line user percentage, worsening service irregularity for both lines is the 

consequence. Therefore we observe that common line stops are preferably implemented in systems 

where overtaking is possible. If not, only the negative effect of bunching (spill-over of delay to other 

lines) occur but the positive effects (service recovery on initial delayed line) cannot be utilized. 

However, in case overtaking is allowed, the common lines appear to improve the service if there are 

sufficient common line users. This is rational because whichever bus finishes boarding first can leave 

and arrive at the downstream stops sooner. In accordance with this, we observe that the standard 

deviation of departure intervals for the initially delayed line in general reduces if the percentage of 

common line users increases. The flip-side of this, that is increases in service regularity for the second 

line, appear to be smaller compared to the benefits for line 1. We illustrate this non-linear relationship 

further in Figure 4. Interestingly the service appears to be least reliable if only roughly half of all 

passengers are common line passengers.   
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(a) no common-line user, no overtaking (b) no common-line user, overtaking 

  

(c) 20% is common-line user, no overtaking (d) 20% is common-line user, overtaking 

  

(e) 80% is common-line user, no overtaking (f) 80% is common-line user, overtaking 

Figure 3 Bus trajectories under different common-line user percentages and distinguished by whether 
overtaking is allowed or not; indices have the unit [min] 

 

ഥ࢝ ࢊࢋ࢘ ൌ2.68 ࢊࢋ࢘࣌ ൌ2.47 

ഥ࢝ ࢋࢋ࢘ࢍ ൌ2.23 ࢋࢋ࢘ࢍ࣌ ൌ1.58 

ഥ࢝ ࢊࢋ࢘ ൌ3.08 ࢊࢋ࢘࣌ ൌ1.97 

ഥ࢝ ࢋࢋ࢘ࢍ ൌ2.82 ࢋࢋ࢘ࢍ࣌ ൌ0.68 

ഥ࢝ ࢊࢋ࢘ ൌ3.35 ࢊࢋ࢘࣌ ൌ2.04 

ഥ࢝ ࢋࢋ࢘ࢍ ൌ3.02 ࢋࢋ࢘ࢍ࣌ ൌ0.52 

ഥ࢝ ࢊࢋ࢘ ൌ3.25 ࢊࢋ࢘࣌ ൌ1.72 

ഥ࢝ ࢋࢋ࢘ࢍ ൌ3 ࢋࢋ࢘ࢍ࣌ ൌ0 

ഥ࢝ ࢊࢋ࢘ ൌ2.87 ࢊࢋ࢘࣌ ൌ1.17 

ഥ࢝ ࢋࢋ࢘ࢍ ൌ2.83 ࢋࢋ࢘ࢍ࣌ ൌ0.70 

ഥ࢝ ࢊࢋ࢘ ൌ2.24 ࢊࢋ࢘࣌ ൌ0.49 

ഥ࢝ ࢋࢋ࢘ࢍ ൌ2.14 ࢋࢋ࢘ࢍ࣌ ൌ0.66 
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(a) Average waiting time per passenger 

 

(b) Std. Dev. of ∆ 

Figure 4 Service performance comparison with different percentage of common line users (with 
overtaking) 

 

7.3. Tests with different combinations of common-line stop designs 
Whereas in the previous section we varied the common line demand in this section we focus on bus 

stop design and test for the effect of combinations of common line and non-common-line stops. Since 

each stop from 2 to 8 can have two layouts, in total we have 27 = 128 scenarios. We assume that 80% 

of users are common-line users. 

Figure 5 first shows an evaluation of these 128 scenarios distinguishing the case without and with 

overtaking. The average waiting time per passenger for the two different lines is used evaluation 

criteria. The scenarios are grouped (and colour-coded in Fig. 5) by the number of common-line stops 

the scenario has, regardless where they are located. There are eight groups with respectively 0, 1, 
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2,...7 common line stops. A general trend emerges in Fig. 5 that the more common line stops the 

network has, the less the average waiting time. A few scenarios with three common line stops have 

higher average wait time than some of the scenarios with four common line stops, suggesting that a 

strategic implementation of three common line stops can lead to as much delay reductions as four 

common line stops.  

We also observe that the average wait times for Line 1 are always greater than those for Line 2 in 

Figure 5a (without overtaking) and in general equal greater in Figure 5b (with overtaking). This can 

be expected as we assume that the initial delay occurs on Line 1 and that the demand distribution for 

both lines is identical. Therefore Line 2 can absorb some delay of Line 1 but will still perform better 

than the line that was affected initially. 

Comparing Figures 5a and b we find that with larger number of common line stops, the average 

passenger waiting time for Line 1 can be reduced by as much as 20% when overtaking at bus stops is 

allowed. This suggests that allowing for overtaking is particularly useful if there are long stretches of 

common line stops.  

In Figure 6 we repeat an illustration of the case shown in Figure 5b and in addition vary the headway 

of Line 2 (all other settings remain the same). Whereas in our previous tests both lines had a headway 

of 6 minutes in this case we also illustrate the case of Line 2 having a headway of 8 and 20 minutes. 

This means that clearly the average waiting time of passengers boarding Line 2 increases. If there are 

no common lines the average wait for Line 2 passengers equals half the headway. If there are many 

common line stops and Line 2 has a low frequency, a trade-off relationship can be seen. One the one 

hand, the assumption of 80% common line passengers means that many of the passengers who board 

Line 2 did not wait long as they only happen to board Line 2 if it arrives before Line 1. One the other 

hand, the longer the headway for Line 2, the more passengers will board Line 1 and hence increase 

dwell time and reduce Line 1 service regularity. Therefore, as shown for the case of Line 2 having a 

long headway of 20min, in fact the average waiting time of passengers boarding Line 1 increases. 

Overall though, the benefits in total waiting time reduction for all passengers are obvious considering 

the different scale of the two axes.  
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(a) without overtaking 

 

(b) with overtaking 
 

Figure 5 Average waiting time for different number of common-line stops.  
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Figure 6 Average waiting time for different Line 2 headways and different number of common line 
stops 

 

We return to the case of equal line headways (hL1 = hL2 = 6min). Figure 7 shows the standard 

deviation of wait time for all stops. The figure illustrates the advantages to maintain service regularity 

in case common lines are introduced. If all stops are converted into common-line stops, the standard 

deviation of ο reaches the minimum for Line 1. Generally solutions with six or seven stops are on or 

near the Pareto optimal front whereas reducing the number of common line stops can lead to solutions 

where one might argue that the reduction in service irregularity for Line 1 is not offset by the 

irregularity reductions for Line 2. 

Finally, as a further evaluation index, Figure 8 plots the maximum ο for Stop 9 at the end of the 

possible common line section when the services split again. Clearly if there are no common lines the 

second line is not affected by the initial delay to Line 1 so that ο is equal to the service headway. The 

presence of common line stops reduces the maximum delay to Line 1 significantly and can be 

achieved by only increasing the maximum delay on Line 2 slightly. Further interesting to note is the 

generally non-symmetric pattern created by our 128 scenarios.  
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Figure 7 Standard deviation of ο (with overtaking) 

 

 

Figure 8 Max ο at the end of common section (with overtaking) 

 

8. Conclusions and further work 
 
The literature on bus bunching has focused mainly on various forms of holding strategies to reduce 

the bus bunching effect. However, every holding of a bus is an additional delay whereas we propose 

here that network layout might be utilised to support service regularity. This paper instead discusses 

the effect of common lines on bus bunching. We formulated state equations to obtain bus trajectories 

to obtain theoretical insights. We further envisage this approach to be useful for transit network 
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planning where one wants to test a large number of network and bus stop configurations. In the model 

formulation we introduced in particular the possibility of overtaking among the buses as we believe 

this was not explicitly formulated in previous literature (except for simulation approaches). 

Furthermore, a main contribution has been the formulation of a queuing model that considers 

explicitly the behaviour of passengers according to their choice set. We assume that passengers want 

to minimise their waiting time and hence form queues of equal length which tends to favour bunching. 

Our case study illustrates that the presence of common lines can significantly reduce service 

irregularity. Common lines will have a positive effect on service irregularity specifically if overtaking 

is allowed and possible. If an operator can only transform some stops into common line stops we find 

that still significant benefits can be obtained though the negative effects of delay spreading to more 

reliable lines can be considerable compared to the gain in service regularity for lines prone to delays. 

 

Our scenario tests all assumed that there are no delays except for one initial delay to one of the bus 

lines and the resulting effects. We did so in order to clearly illustrate the secondary bunching effects. 

Modelling more general cases of various random delays occurring to buses between stops (traffic 

lights, congestion etc) or at stops (e.g. passengers requiring additional time for cash handling) does 

though pose no theoretical challenges as one could generate random ࣋ matrices for delays at stops as 

well as between stops. The main reason for distinguishing two models in Sections 4 and 5 are due to 

different passenger behaviour: The travel time minimising passenger will have no incentives to board 

a bus stuck behind another one, whereas, if buses depart whenever passengers on-board, queues of 

equal length will form. 

A number of other further research issues appear important. To increase the realism of the case study 

we highlight the following issues already noted in various sections of this paper: The role of time-

dependent loading factors, considering passenger groups with different common line sets, 

consideration of alighting times as well as bus capacity constraints. In general we would expect that 

considering these factors, in particular capacity problems, would amplify the propagation of delays, as 

crowded buses tend to require more time per passenger to complete boarding and alighting. 

Consideration of crowding would further possibly lead to a revised queueing model in which 

passengers might predict that crowded buses require more dwell time at subsequent stops and hence 

prefer to board less congested buses as they tend to complete alighting at stops faster. 
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Appendix: Delay of the first bus and subsequent buses 
 

Proposition: Increasing the sequence of common line stops reduces the maximum delay of the first 

delayed bus for constant ݇. 

Proof: Assume there is no common line stop, and an initial random delay  ߩሺሻ  at stop i. Let ݀ሺሻௌ  

be the scheduled departure of bus m(l) at stop i. Then the delay at stop i is ߜሺሻ ൌ ݀ሺሻ െ ݀ሺሻௌ ൌ ߩሺሻ. At the following stop the bus is delayed further due to οࣦǡሺሻାଵ οௌࣦǡሺሻାଵൌ ݄, where ݄  
denotes the scheduled headway of the line. Since we assume that no further delays occur between 

stops οࣦǡሺሻାଵ െ ݄ ൌ ሺሻାଵߜ :ሺሻ and the delay at stops can be derived asߩ ൌ ሺሻߩ    ሺሻ ݇ାଵǡߩ
Assuming that k is constant across stops and buses this hence leads to ߜሺሻାଶ ൌ ሺሻାଵߜ  ሺሻାଵ݇ߜ ൌ ሺሻߩ  ሺሻ݇ߩʹ   ሺሻ݇ଶߩ

Or in general for downstream stops from i 

ሺሻǡାߜ  ൌ ሺሻǡାିଵߜ  ሺሻǡାିଵ݇ߜ ൌ ሺሻሺͳߩ  ݇ሻ       

Utilising that the stop departure from a stop j can be derived from arrival time  ܽሺሻ plus dwell οࣦǡሺሻ݇  the departure time considering delays can hence also be obtained accordingly 

݀ሺሻ ൌ ݀ሺሻௌ  ሺሻߜ ൌ ܽሺሻௌ  ሺሻǡିଵߜ  οࣦǡሺሻ݇  
Above assumed that none of the stops is a common lines stop. Assume now that stop j’>i is the first 

common line stop after stop i. Comparing this to the case j where the stop is not a common lines stop 

leads to οࣦᇲǡሺሻᇲ οࣦǡሺሻ since in the case of j’ set ࣦ ᇱ includes line l plus at least another line and it 

follows that ݀ ሺሻᇲ  ݀ሺሻ . Clearly any further common line stops downstream of j will further 

reduce the delay. Q.E.D. 

The proof above only holds for the first bus of the line. The second bus of line l at stop j can be 

further delayed if j is a common line stop due to the earlier departure of the first bus. It can, however, 

also be less delayed if a bus of another line was able to pick most of the passengers by the time the 

second bus arrives. 
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