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Abstract The standard representation theorem for expected utility theory tells us that

if a subject’s preferences conform to certain axioms, then she can be represented as

maximising her expected utility given a particular set of credences and utilities—and,

moreover, that having those credences and utilities is the only way that she could be

maximising her expected utility (given her preferences). However, the kinds of agents

these theorems seem apt to tell us anything about are highly idealised, being (amongst

other things) always probabilistically coherent with infinitely precise degrees of be-

lief and full knowledge of all a priori truths. Ordinary subjects do not look very

rational when compared to the kinds of agents usually talked about in decision the-

ory. In this paper, I will develop an expected utility representation theorem aimed at

the representation of those who are neither probabilistically coherent, logically om-

niscient, nor expected utility maximisers across the board—that is, agents who are

frequently irrational. The agents in question may be deductively fallible, have inco-

herent credences, limited representational capacities, and fail to maximise expected

utility for all but a limited class of gambles.

Keywords Representation theorem · Preferences · Credences · Utilities · Irrational

1 Introduction

The standard expected utility representation theorem tells us roughly that if a sub-

ject’s preferences conform to certain axioms, then she can be represented as max-

imising her expected utility under a particular set of credences and utilities—and,

moreover, that given the facts about her preferences, having those credences and util-

ities is the only way that she could be an expected utility maximiser.
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It has long been thought that representation theorems can tell us something inter-

esting about the connection between a subject’s preferences on the one hand, and her

credences and utilities on the other. Some go for the relatively weak thesis that repre-

sentation theorems establish a clear evidential connection between the former states

and the latter (e.g., [45, pp. 60-61]). This is not especially controversial, though we

do need to be careful on the details of just how strong that evidential connection can

be taken to be. From the beginning, however, many have also thought to use rep-

resentation theorems in support of the more philosophically interesting thesis that

preferences are metaphysically more fundamental than credences and utilities, and

that the latter can be put towards characterising the former.1 In this paper, I will be

mainly interested in the metaphysical thesis, though what I say also has straightfor-

ward connections to the weaker evidential thesis.

In §2, I will explore how the relevant kind of metaphysical connections might

be made and motivated, and highlight some key conditions that any representation

theorem should satisfy if it is to be fruitfully put to such purposes. I will also note

that contemporary theorems fall short of these conditions in a number of respects. At

best, the kinds of agents that these theorems seem apt to tell us much about are highly

idealised: they never make the wrong decisions, they have perfectly probabilistically

coherent credences, full knowledge of all epistemically necessary truths and logical

equivalences, and infinitely precise opinions for any proposition that they consider.2

The average person on the street does not look very rational when compared to the

hyperrational angels for whom these theorems are appropriate (i.e., the kind of agent

who both satisfies the preference axioms of expected utility theory and plausibly has

credences and utilities accurately represented by the corresponding rational credence

and utility functions). We ordinary agents manage to get by, of course, and we seem

to generally act in such a way as to tend to bring about the kinds of things we desire

given the way we take the world to be. But we’re not even close to ideally rational

in the way that, for instance, full probabilistic coherence would require. It would be

nice if we could have a representation theorem for us, too.3

In §3 and §4, I develop a theorem aimed at the representation of even very fre-

quently irrational agents. By ‘frequently irrational agents’, I mean those who:

a) May be probabilistically incoherent by, for example, having non-additive and

non-monotonic credences, and less-than-full belief in some a priori truths;

1 Ramsey [35] developed the first expected utility representation theorem, which he intended as the

basis for a definition of credences and utilities. Authors sympathetic to the metaphysical application of

representation theorems include Cozic & Hill [8], Davidson [9; 10], Ells [13], Harsanyi [18], Jeffrey [20],

Maher [29; 30], and Pettit [33, pp. 171-172]. Note that the issue here is not whether credences and utilities

just are preference states, nor whether they are reducible to preferences alone; these are much stronger

claims than we need commit ourselves to. See §2 for discussion.
2 Here and throughout, I will use ‘epistemically necessary’and ‘epistemically possible’ (or sometimes

just ‘necessary’, ‘possible’) in more or less the sense explicated by Chalmers [6; 7]. Essentially: P is epis-

temically possible iff it can’t be ruled out a priori, and epistemically necessary iff it is a priori knowable.
3 Representation theorems for non-expected utility often forego probability functions in favour of non-

additive Choquet capacities, Dempster-Shafer belief and plausibility functions, sets of probability func-

tions, and so on. These models tend to be somewhat more realistic, but only marginally so—e.g., each

implies that if P necessitates Q, then Cr(Q)≥Cr(P).
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b) May have credences and utilities towards only a set of relatively non-specific

propositions (which need not have an algebraic structure);

c) May not consistently maximise expected utility.

Those mainly interested in the technical results might skim over §2 without loss of

comprehension. The theorem to be established in §3 is a modified version of the one

developed in [15], itself based on the work of Ramsey [35]. The central difference

is a generalised approach to the relation that must hold between propositions used

in characterising the space of options (with some corresponding new and modified

axioms to accommodate). This allows for interesting re-interpretations of the theo-

rem’s axioms, and, as a consequence of this, much more permissive representations

of credences and utilities. The developments discussed in §4 are new, and involve the

removal or modification of several problematic aspects of §3’s theorem.

§5 concludes with a discussion on the plausibility of the axioms underlying the

new theorem, and a comparison between the basic formal structures it uses and those

employed by other prominent representation theorems. In some important respects,

the formal basis for the theorem developed herein is significantly different than the

better known theorems of Savage [37] and Jeffrey [21]. Most importantly, the axioms

put forward here don’t say anything about what our subject’s preferences have to be

like in general; they are only intended to apply to a fragment of her overall preference

structure. This contributes to the flexibility of its representation of credences and

utilities, though it also limits the scope with which the theorem can be used explain

and make predictions about our preferences overall.

2 Functionalism and the Graded Attitudes

I take it for granted that ordinary agents have preferences regarding different ways the

world might be, and that these preferences are a kind of comparative propositional

attitude. I also assume that ordinary agents have credences and utilities, which are

also best construed as propositional attitudes. Finally, I assume that it makes sense to

numerically measure degrees of confidence and desire, though the exact shape that

those measures should take is something that should be left up for grabs.

In speaking of credences and utilities, I mean to refer to the ordinary folk psycho-

logical notions of graded belief and desire. There are also purely stipulative senses of

‘credence’ and ‘utility’, whereby they are supposed to be high-level theoretical con-

structs designed to relate and explain choice behaviour, with no deep connections to

folk psychology or everyday attitude attributions. These are not my topic. Gradation

is an important and, I expect, ineliminable part of the folk conception of the mind.

Inasmuch as we are willing to accept that ordinary agents have propositional attitudes

at all, we can take it for granted that at least some of these attitudes come in degrees.

As theorists, there is some room for explication and systematisation, but we ought

not deviate too far from the ordinary concepts lest we change the topic.

Relatedly, I do not assume that facts about preferences are reducible to facts about

choices. There are plenty of possibilities that we might like to have a choice between

than we will ever actually have a chance to—preferences which may never factor

into any decision we have to make. So, our preferences are not mere re-descriptions
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of our actual choice behaviour. Nor do I think it immediately obvious that facts about

preferences might be reducible to facts about our dispositions to choose under vari-

ous kinds of counterfactual circumstance (for discussion, see [29], pp. 14-15). Choice

dispositions provide evidence for preferences, but the preferences themselves are bet-

ter thought of as causally antecedent mental states that are in principle separable from

our choices and choice dispositions.

It should not be taken for granted that agents have preferences regarding every

way the world may be. Many possibilities may be too fine-grained to even contem-

plate, or involve distinctions that we will never come across and think to factor into

our deliberations. Furthermore, we shouldn’t take it for granted that ordinary agents

are always capable of recognising when two propositions are necessarily equivalent

to one another, or when one proposition implies another. Plausibly, our credences

and utilities are subject to the same kinds of representational limitations, and our

limited rationality means that we’re not always going to have the same degrees of

confidence or desire towards equivalent propositions that we don’t recognise as such.

Nor, for that matter, should we think that credences are monotonic: if we cannot al-

ways recognise when P entails Q, then we cannot be expected to set our credences

accordingly.

I suspect that most nowadays will share these basic assumptions. They imme-

diately raise a number of metaphysical questions. What are preferences, credences,

and utilities? Moreover, how do they relate to one another, and to other (mental and

non-mental) phenomena? From a broadly functionalist approach to understanding

the attitudes, providing answers for the latter class of questions is a crucial first step

towards answering the former. It is with respect to this kind of question that repre-

sentation theorems are poised to play a especially useful role.

Presumably, preferences and utilities are intimately tied to one another. Certain

facts about utilities seem to necessitate facts about preferences. If S attaches a higher

utility to P than she does to Q, then S prefers P to Q. And if S attaches the same utility

to P and to Q, then she is indifferent between the two. These two claims seem like

analytic truths, if any are.

Things aren’t so obvious in the other direction. It looks reasonable to say that the

higher utility relation is transitive and asymmetric, and that equal utility is an equiv-

alence relation. But perhaps S strictly prefers P to Q, while the rest of her system of

preferences is too ill-behaved to make sense of any kind of absolute utility assign-

ment to either proposition—as would plausibly be the case if she preferred P to Q, Q

to R, and R to P, being indifferent with respect to everything else. In short, it seems

possible for S’s preference relations to have properties which come apart from those

we would expect of relative utility relations. Preferences can be intransitive; relative

utilities cannot be.4

4 There is room for disagreement here. It’s easier to argue that a subject’s preferences can be very

ill-behaved when these are thought of as representing choice dispositions. But things are not so straight-

forward when preferences are understood as mental states, for which we only have intuitive evidence to

rely on. To be sure, it is certainly very hard to imagine a strict preference relation which is not asymmetric;

likewise an indifference relation which is not symmetric. I’m inclined to think that these properties are

constitutive of strict preference and indifference, respectively. But it is much more plausible that transitiv-

ity of preference can sometimes fail, and that is what I am mainly appealing to here. Where transitivity

fails, one might argue that we can still make sense of local or context-dependent utilities, even though a
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One plausible condition, then, for the sensible assignment of utilities is a mini-

mally well-behaved preference structure: strict preferences ought to be transitive and

asymmetric; indifferences ought to be transitive, symmetric and reflexive. Some pref-

erence structures are not so well-behaved. It seems, then, that we can have preferences

in the absence of utilities, but we can’t have an assignment of utilities in the absence

of preferences. This asymmetry provides some prima facie support for the metaphys-

ical thesis that facts about preferences are more fundamental than facts about utilities.

But we needn’t posit anything quite so strong as this just yet. What’s more im-

portant for our immediate purposes is that the same kinds of necessary connections

between utilities and preferences just noted imply that information about a subject’s

preferences puts limiting constraints on the facts about her utilities. If S prefers P

to Q, then she can’t have less or equal utility for P than she does for Q—that is,

if she has utilities at all. And if S is indifferent between P and Q, then she can’t

have a greater utility towards either one over the other. The natural question to ask

at this point concerns just how much information about our utilities can be extracted

from our preferences. If it turns out that complete knowledge of subjects’ preferences

fully determines the facts about their utilities, that would certainly suggest pursuing

a functional definition of the latter in terms of the former. And even if that informa-

tion doesn’t pin down everything we might want to know, it may at least point in the

direction of where to look for further constraints.

As it turns out, we can be pretty confident that there must be more to the story of

having such-and-such utilities than just having a minimally well-behaved preference

structure (in the sense of ‘minimally well-behaved’ just outlined). Utilities represent

not just an order of preference, but also the varying strengths of those preferences.

And without some further constraints, we won’t yet get enough information out of the

preferences needed to capture the extra-ordinal information that we ordinarily assume

is encoded in a proper assignment of utilities. Ramsey [35, p. 176] recognised this

problem nearly a century ago. He also proposed a solution, which has since become

standard (see, e.g., [32]): given a plausible picture of how preferences are formed

under conditions of uncertainty, it seems that extra-ordinal facts about our utilities

are primarily functionally relevant in conditions of uncertainty. So, to get a fix on the

extra-ordinal utility facts, we need a fix on at least some facts about our credences.

Remarkably, Ramsey also purported to show that the relevant facts about a sub-

ject’s credences were themselves derivable from facts about that subject’s prefer-

ences, at least under certain conditions and given some reasonable assumptions about

how credences and utilities generally interact in the production of preferences. This

was the intended upshot of his representation theorem, and just below I will discuss

how this might work in some detail. Numerous authors have since established simi-

lar results; e.g., Savage [37], Anscombe & Aumann [2], Jeffrey [21], Luce & Krantz

[28], to name just a small few. See also [16] for a helpful overview.

Now, as a matter of fact I don’t think that the facts about our credences and utili-

ties are fully grounded in the facts about our preferences. Partly, this is because I think

that not one of the representation theorems we currently have actually supports the

global numerical representation of the subject’s preferences won’t be possible. I suspect that something

like this is probably right, but it also very naturally fits the picture where preferences are prior to, and part

of the grounds of, any correct assignment of utilities.
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kind of derivation that Ramsey thought he could provide. But, moreover, we shouldn’t

think that credences are fully grounded in preferences because to do so would neglect

the important role that credences have in response to perceptual evidence and a priori

reasoning. (Cf. Lewis [26] on the need for both Rationalisation and Charity consider-

ations in fixing upon a correct interpretation of a subject’s mental states.) The ‘input’

side of the functionalists’ equation is something which is going to be missed by any

characterisation of credences given wholly in terms of the downstream causal effects

that they are supposed to have.

But it is valuable, and instructive, to see how far we can get in pinning down our

credences and utilities with preferences alone. As I will argue (see §5 esp.), it does

appear that there are some facts about our credences—e.g., what set of propositions

we have some credences towards in the first place—that we cannot straightforwardly

extract from our preferences. Knowing what we can and can’t get from preferences

gives some indication of what else may be needed, and where to look for it. And for

this, we need a representation theorem.

2.1 Representation Theorems: what we want versus what we’ve got

Earlier, I said that the standard expected utility representation theorem tells us that if

a subject’s preferences satisfy certain axioms, then she can be represented as max-

imising her expected utility under a particular set of credences and utilities—and that

having those credences and utilities is the only way that she could be an expected

utility maximiser. Before moving on, it will be worth making this more precise.

The following is a generic interpretation of a non-specific decision-theoretic rep-

resentation theorem, with strong uniqueness conditions:

Rep. Theorem If S’s preferences w.r.t. domain D conform to axioms A ,

then there is (in effect) exactly one pair of functions Cr and U satisfying re-

strictions < R1,R2, . . . ,Rn > such that S is representable as following decision

rule R (w.r.t. D) given credences Cr and utilities U.

In the paragraphs that follow, I’ll break this down into its parts and discuss each one,

before considering how such a theorem might be deployed.

To begin with, every representation theorem posits a specific domain over which a

subject’s preferences are to be defined (i.e., to which the axioms are applied). We will

label this domain ‘D’. In some cases, D is taken to be the set of all things towards

which the subject actually has preferences; sometimes it’s the set of all things towards

which anyone at all might have preferences. Both of these treatments tend to go along

with extremely strong demands on the subject’s overall preference structure. In other

cases, D is taken to be a proper subset of the things towards which a person does or

can have preferences. Generally speaking, we can take D to be whatever we want it

to be—so long as it satisfies whatever structural assumptions we make of it.

Next, for the purposes of proving any representation result and its corresponding

uniqueness result, two (closely related) assumptions must be made about the manner

in which we are going to represent our subjects. First, we need to specify a rule

according to which a subject’s credences and utilities (which we’ll label ‘Cr’ and ‘U’
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respectively) are supposed to interact in generating her preferences. For the theorems

philosophers are most familiar with, this rule will be some form of expected utility

maximisation. There are, however, also many representation theorems for all sorts

of non-expected utility theories. For instance, Buchak’s [5] theorem has us represent

subjects as conforming to her risk-weighted expected utility rule, which takes as input

Cr, U, and the subject’s attitudes towards risk as represented by a function R. To

accommodate the variation between theorems, let’s simply use ‘R’ to represent the

particular decision rule that we are assuming our subject ought to be represented as

following when deciding upon her preferences.

Second, we also require a specification of the admissible properties of the func-

tions Cr and U (and whatever other functions, such as Buchak’s R, which may be

involved in the representation). For instance, common basic properties include that U

be bounded and real-valued, and that Cr be a probability function on some prespec-

ified algebra. (More examples will follow just below.) These are restrictions on the

shape and domains of Cr and U. To keep things general, let’s use ‘< R1,R2, . . . ,Rn >’

as a place-holder for whatever properties Cr and U are assumed to satisfy in estab-

lishing the representation result.

Given this, it is also critically important to emphasise that those same assump-

tions about < R1,R2, . . . ,Rn > and R are needed for the purposes of establishing the

theorem’s uniqueness condition. In general, a uniqueness condition only tells us that

Cr and U are unique (to whatever extent they are unique), relative to some assump-

tions about the shape and domains of those functions and the particular rule by which

they are to be combined. For discussion on the importance of this point, see [46].

And finally, following orthodoxy I will assume that utilities are measurable only

on an interval scale; i.e., U ought to be unique only up to positive linear transforma-

tion. Any positive linear transformation of U can then be said to represent no more

meaningful information that U does itself, so we can say that U is in effect unique just

in case it is unique up to positive linear transformation. (This makes the statement of

the generic representation result significantly simpler.)

With the more precise statement of a representation theorem thus given, we can

then put it to work with the following (very schematic) chain of reasoning:

1 Under conditions C , S’s preferences w.r.t. D conform to axioms A

2 From 1 and Rep. Theorem: Under conditions C , there is (in effect) exactly

one pair Cr, U satisfying < R1,R2, . . . ,Rn > such that S is representable as

following rule R (w.r.t. D) given credences Cr and utilities U

3 Under conditions C , S does in fact follow rule R (w.r.t. D)

4 If S follows rule R (w.r.t. D), then S can be represented as such

5 From 2, 3, and 4: Under conditions C , S either has credences Cr and utilities

U, or her credences and utilities do not satisfy < R1,R2, . . . ,Rn >
6 Under conditions C , S’s credences and utilities satisfy < R1,R2, . . . ,Rn >
7 From 5 and 6: Under conditions C , S has credences Cr and utilities U

8 If S would have credences Cr and utilities U under conditions C , then she

actually has credences and utilities (approximated by) Cr and U

∴∴∴ From 7 and 8: S has credences and utilities (approximated by) Cr and U
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For theorems with weaker uniqueness conditions, the conclusion of this argument

would need to be weakened correspondingly. For example, where Jeffrey’s theorem

only pins down a set of pairs < Cr,U > related by a fractional linear transformation,

the conclusion should be that S’s actual credences and utilities can be located some-

where in that set.5 The introduction of the ‘conditions C ’ and the final argumentative

step involving premise 8 allows for a limited degree of idealisation in getting S to

satisfy the axioms. Essentially: idealisations are allowed, but only to the extent that

they do not involve anything that would significantly alter S’s credences and utilities.

An example of something that could go into C that I’ll mention later is the assump-

tion that S is risk-neutral. Another would be the assumption that S is not under the

influence of any intoxicating substances, nor facing any time constraints or abnormal

internal or external stresses.

Now, I take it that premise 4 will be entirely uncontroversial, an instance of the

plausibly a priori principle that actuality implies representability. The strength of

the argument therefore rests on the empirical premises—1, 3, 6 and 8—which in

turn depend on the specifics of C , A , D , R and < R1,R2, . . . ,Rn >.6 In the best

case scenario, we’d have a theorem with reasonably strong/interesting uniqueness

conditions such that:

(i) The conditions C are the actual conditions (or at least ordinary conditions)

(ii) All proper functioning subjects satisfy axioms A with respect to D

(iii) All proper functioning subjects plausibly follow R with respect to D

(iv) < R1,R2, . . . ,Rn > are minimal, so plausibly satisfied by an adequate represen-

tation of any proper functioning subject’s credences and utilities

We do not currently have a representation theorem with these properties, and in more

than one respect current theorems are quite far from it. This is the central point of a

recent paper by Meacham & Weisberg [31] (see also [11], [12]). But there are also no

arguments in the literature to suggest we cannot develop such a theorem, and I have

explained already why I think it would be valuable to do so.

It’s unlikely that we’ll get things right the first time around; the best I think we

can hope for right now is to edge ever closer by the successive de-idealisation of ex-

isting theorems. A theorem with axioms that ordinary subjects approximately satisfy

5 It is sometimes said that where a representation theorem does not determine a unique Cr and U, we

ought to take the entire set of admissible Cr and U functions as our representation of the subject’s credences

and utilities respectively. Setting aside the sometimes questionable motivations for going this route, note

that what’s really going on here is a re-interpretation of the original theorem—i.e., not as saying that S can

be non-uniquely represented as an expected utility maximiser with such-and-such credences and utilities

(each represented by a single real-valued function), but instead as saying that S can be uniquely represented

as following a more complicated decision rule with such-and-such credences and utilities (represented by

sets of real-valued functions). The more complicated decision rule may be something like: prefer P to Q

just in case the Cr-weighted average utility of P is greater than Q for each/some admissible Cr-U pair.
6 I do not mean to imply that the deductive argument I have presented is the only way to put a represen-

tation theorem to work in fixing a subject’s credences and utilities. For instance, one might try to approach

the matter via inference to the best explanation. In the event that S satisfies (or comes close to satisfying)

A , perhaps the best explanation is that she follows R with credences Cr and utilities U. The deductive

argument I’ve given here is meant to be illustrative, to help us draw out the kinds of properties a theorem

should have if it is to be usefully applied in the relevant way. Even on the IBE model, we’ll still want

something like the desiderata (i) to (iv) I’ve outlined to hold—e.g., if R were relatively implausible, or

< R1,R2, . . . ,Rn > excessively strong, then we wouldn’t have a very good explanation of S’s preferences.
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relative to some interesting domain under minimally idealised conditions, with an in-

tuitively plausible decision rule R and relatively few constraints < R1,R2, . . . ,Rn >
on Cr and U, would be a good start. Even better if it has reasonably strong uniqueness

conditions. The development of just such a theorem is my aim in §3 and §4.

One more point in connection with desideratum (iv), before we move on to the

theorem. It’s worth noting that some of the properties specified in < R1,R2, . . . ,Rn >
may reflect nothing more than a non-essential choice of notational system.7 For in-

stance, we don’t have to represent credences using functions that only take values

between 0 and 1, as opposed to 0 and 100, say. So in a perfectly good sense, the re-

quirement that Cr takes values within [0, 1] is really just an artifact of our measuring

conventions (cf. [22], pp. 414ff). For want of a better term, call these conventional

properties. There is nothing substantive at issue when we need to assume that Cr and

U satisfy conventional properties when we’re proving a representation result.

However, there will generally also be some non-conventional properties present

in < R1,R2, . . . ,Rn >. Every existing representation theorem seems to require Cr

and U to satisfy certain structural properties which are not clearly ‘conventional’.

For example, because his particular system cannot accommodate gambles on non-

contingent propositions, Ramsey has to stipulate Cr’s values for necessary and im-

possible propositions, and his uniqueness result only holds relative to that stipulation

(see [35, p. 180], cf. [15, §2.6]). Jeffrey assumes that the domain of his Cr function

is just the same as the domain of his U, which is hardly obvious and certainly not a

mere notational matter. And in order to ensure his seemingly quite strong uniqueness

result, Savage restricts the range of admissible Cr functions to probability functions

in particular.8

A final example for the unconvinced. Savage also requires his Cr to be defined

over an algebra of events—i.e., disjunctions of highly specific ‘states’ which must

be (i) probabilistically independent of whichever act the subject might choose, and

(ii) logically independent of the outcomes that might result. Furthermore, his U is to

be defined over a set of outcomes which are supposed to be maximally specific with

respect to what the subject cares about. Importantly, these states and outcomes are

used to define the basic relata of Savage’s preference relation (functions from states

to outcomes). So, what kinds of propositions get counted as states and outcomes has

to be built in to the interpretation of the theorem’s basic formal structures from the

outset, rather than derived from the subject’s preferences. Consequently, in merely

setting up his formal representation of a subject S’s preferences, Savage makes sub-

stantive assumptions about how S conceives of her choice situations—of what acts

are available for choice, what states of affairs will be independent of the decision, and

what kinds of things make a difference to what she cares about. As many have noted,

these assumptions are not innocent (e.g., [17], [38]).

7 A similar point holds of course for the particular way in which the decision rule R is formulated,

which is naturally dependent on how Cr and U are characterised.
8 See Meacham & Weisberg [31, pp. 657-659] for an argument that this restriction to probability func-

tions in Savage is substantive, rather than merely notational. There are a number of issues here regarding

what exactly Savage needed to assume about Cr, and what specific properties of his Cr might be conven-

tional rather than substantive (e.g., whether additivity per se is conventional or not is controversial). I don’t

want to rest too heavily on this one example; the other examples should suffice to make the point.
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3 A Theorem for the Frequently Irrational

In what follows, I will show that if a system of preferences over a suitably char-

acterised domain D (consisting of a set of outcomes and simple gambles) satisfies

my axioms, then those preferences can be represented as maximising expected util-

ity with respect to an effectively unique set of credences and utilities. In §3.1, I will

begin with a brief discussion on the intended interpretation of the theorem’s main

formal elements. Then, in §3.2, I will outline three purely structural axioms, used to

specify the set of gambles with which we will be interested. In §3.3 and §3.4, I lay

down the axioms needed for the construction of the utility function, and in §3.5 I add

one more axiom needed for the construction of a credence function. Finally, in §3.6, I

will complete the theorem with a final axiom, and discuss its various interpretations.

Some modifications will be discussed in §4.

3.1 Interpretational Preliminaries

For a given subject S, let % represent S’s weak preference relation; P % Q if and

only if S holds P to be at least as good as Q. We will use ≻ and ∼ for S’s strict

preference and indifference relations, respectively. (In §3.4, ≻ and ∼ will be defined

in terms of %, in the usual way.) The domain of these preference relations is a space

of propositions.

I want to remain as neutral as possible regarding different theories about the na-

ture of propositions, by which I simply mean truth-evaluable objects of thought. I do

not assume that they are sets of possible (and perhaps impossible) worlds, ordered n-

tuples of properties and objects, structures of Fregean senses, or what have you. Most

importantly, I am allowing—though not assuming—that there can be numerically

distinct but necessarily equivalent propositions. Consequently, in what follows I will

keep things neutral between a coarse-grained approach to propositions (according to

which logically equivalent propositions are identical), and a fine-grained approach

(where, e.g., P and ¬¬P might represent distinct objects of thought).

For reasons that will become clearer as we move on, I do make some minimal

assumptions about propositions. I assume that for any proposition P, it makes sense

to talk of its negation, ¬P. And I assume that for any pair of propositions P and Q,

it makes sense to speak of their conjunction, P∧Q. I doubt that any adequate theory

of propositions will deny me these assumptions. I also assume that it makes sense

to embed certain pairs of propositions within counterfactual conditionals. But again,

there is nothing very committal here.

Let O = {o1,o2,o3, . . .} be a set of propositions over which our subject S has

preferences; this will form the domain of our U function. (The use of ‘O’ is to indi-

cate that its elements will form the outcomes of gambles, as discussed shortly.) With

one exception to be discussed in §3.2, no special assumptions need to be made about

O’s internal logical structure. O does not have to be closed under entailment, nega-

tion, disjunction, and so on, nor do we have to assume that the propositions in O

have very specific contents. For simplicity of exposition, I will adopt the notational

convention that sameness of subscript implies sameness of desirability (but not vice
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versa). For instance, it should be assumed in all that follows that o1′ and o1′′ each

refer to outcomes with the same desirability as o1 (i.e. o1 ∼ o1′ ∼ o1′′). It should not

be assumed that o1′ and o1′′ are always distinct from o1.

Let P = {P,Q,R, . . .} be another set of propositions; this will form the domain of

our Cr function (and contains the ‘win conditions’ in the gambles that I will describe

shortly).9 As with O, the formal treatment of P is compatible with many views on the

nature of propositions, so necessarily equivalent propositions may end up constituting

distinct members of P . We will, however, end up having to require that P is closed

under negation (this is a consequence of S2.1 and A1.2). It would be possible to

suppose that every proposition that is in O is also in P (and vice versa), but this

will not be presumed. In this respect the theorem that follows differs from Jeffrey’s,

where the domains of Cr and U (and %) are presumed identical. It also differs from

Savage’s theorem and a vast number of similar theorems, where it’s assumed that the

domains of Cr and U are non-overlapping.

My strategy is heavily influenced by Ramsey [35], whose theorem involves the

extraction of an agent’s credences and utilities from her preferences over a set of

gambles with maximally (or near-maximally) specific propositions as payoffs, under

the assumption that she is a logically omniscient and deductively infallible expected

utility maximiser (see [15, §2]). My space of gambles will in one sense be less re-

stricted (in another sense, more). In general, a two-outcome gamble can be thought

of as any act or choice such that, if made, o1 would end up being the case were P the

case, and o2 would end up being the case otherwise. Let [o1,P;o2] represent such a

gamble. On first pass, if we say that G is a (still-to-be-specified) set of two-outcome

gambles, then we can say that the relevant domain D of % to which the axioms that

follow will be applied is O∪G. Exactly which gambles get into G will be discussed

in §3.2 and §3.6.

We need to be a little careful here, for two reasons. First of all, it’s possible

to be mistaken about a gamble’s payoff structure—about the pattern of outcomes

that would result should it be chosen—and so we shouldn’t characterise gambles

according to payoff structure that they actually have. We value gambles according

to the payoffs we believe they’ll have, not according to the payoffs they actually

have. Secondly, and more importantly, I have characterised % as a relation between

propositions—and gambles are not propositions. Thus, it’s not quite correct to say

that G is a set of gambles. Instead, I will assume that the value S attaches to a gamble

[o1,P;o2] with a known payoff structure is the same value she attaches to the state

of affairs that she has made the gamble [o1,P;o2]. Strictly speaking, G only includes

the latter. In practice, I’ll continue to speak as though G is a set of gambles, rather

than propositions about S having made such-and-such a gamble. Likewise, I’ll use

[o1,P;o2] (and etc.) to represent members of G directly.

The central goal will be to find a set of axioms for % on O∪G, such that S’s value

for [o1,P;o2] is determined by the utility that she attaches to the outcomes (under the

9 Because we have to specify P at the outset, the following theorem cannot really be thought of as

giving us a way of deriving a subject’s credences from her preferences. Instead, we can say that given

knowledge of what propositions S has some credences, the theorem allows us to work out just what degrees

of confidence she assigns to each. See §5 for further discussion.
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relevant conditions) weighted by the uncertainty she has for the gamble’s conditions:

U([o1,P;o2]) =Cr(P) ·U(o1 ∧P)+Cr(¬P) ·U(o2 ∧¬P)

In supposing that S’s utilites are determined in this way, I am assuming that S is

neither risk seeking nor risk averse (when considering the relevant gambles). To the

extent that this is false, we really ought to be considering S’s preferences were she to

have risk neutral attitudes (this would go into the specification of the conditions C ).

3.2 Purely Structural Axioms

The way in which we formalise the members of G is not especially important, but

it will be helpful to think of them as functions from complementary pairs of propo-

sitions in P to outcomes in O. So, [o1,P;o2] is just the set {(P,o1),(¬P,o2)}, and

consequently, [o1,P;o2] and [o2,¬P;o1] will always be equipreferable, being just two

different ways of representing one and the same gamble.

What’s more important is that G as a whole be suitably characterised. The main

purpose of this section is to explain what I mean by that, by means of three back-

ground purely structural axioms. These are axioms which impose no direct con-

straints on %, instead serving to characterise some basic properties which we’ll be

assuming hold of O, P and G. There are also several partially structural axioms

which will follow later; see A1, A5, and A8.

To begin with, although I have placed very few conditions on the internal struc-

tures of O and P , it is important for the results that follow that the propositions in O

might stand in a certain kind of relation to the propositions in P . We’ll denote this

relation using ‘⇀’, and in the event that P ⇀ Q and Q ⇀ P, we will write ‘P ⇋ Q’. I

will discuss the interpretation of ‘⇀’ in some depth in §3.6—there are several inter-

esting possibilities here, and each gives rise to a different way of understanding the

theorem as a whole. For now, it will be most helpful to read ‘P ⇀ Q’ under any of

the following interpretations, listed in order of strength:

Interpretation 1 S believes that P implies Q

Interpretation 2 S recognises that P implies Q

Interpretation 3 P obviously implies Q

By ‘P obviously implies Q’, I mean that we can reasonably expect any ordinary sub-

ject capable of considering the matter to recognise that P implies Q, where recogni-

tion is a factive species of belief. For example, we can reasonably expect of anyone

capable of contemplating that P to know that P implies that P∧P, but it may not

be so obvious that P implies P →¬((¬P∧Q)∧ (P∧¬Q)). Under none of the sug-

gested interpretations should we presume that ⇀ is transitive. In §3.6, I’ll suggest

some reasons to prefer Interpretation 1, though I think each has interest.

In the very final stages of the theorem’s proof, I will make appeal to three pre-

sumed characteristics of ⇀. These I state now as a single structural assumption:

Axiom S1 For all P,Q ∈P ∪O,

(S1.1) If P ⇀ Q, then P ⇋ (P∧Q)
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(S1.2) If P ⇋ Q, then ¬P ⇋ ¬Q

(S1.3) If P ⇋ Q, then if R ⇀ P, R ⇀ Q

I suspect that there will be counterexamples to S1 under any of the three interpreta-

tions I’ve suggested. The most problematic clause is S1.3, which by itself implies that

⇋ is transitive. Furthermore, if we also assume that P ⇀ Q whenever P ⇀ (Q∧R),
which seems reasonable enough, then S1.1 and S1.3 together imply that ⇀ is tran-

sitive. However, the latter two clauses only play a very minor role in what follows,

and the nature of that role is such that it’s more important that they come close to the

truth than that they hold with absolutely no exceptions. In §3.6, I’ll briefly note how

S1.2 and S1.3 might be dropped in favour of something less problematic. S1.1, on

the other hand, is crucial, for reasons that I will get to shortly.

Once we’ve pinned down ⇀, the next structural assumption directly characterises

the kinds of gambles which can be found in G:

Axiom S2 [o1,P;o2] ∈ G iff:

(S2.1) o1,o2 ∈O and P,¬P ∈P

(S2.2) o1 ⇀ P and o2 ⇀ ¬P

(S2.3) If P is possible, so is o1 ∧P, and if ¬P is possible, so is o2 ∧¬P

S2 does not by itself imply that G contains any gambles; it is merely meant to char-

acterise the kinds of gambles that might go into G. Later, A1 will state that for every

P in P , G contains a gamble on P; and for every outcome o, there will be a gamble

in G with an outcome equal in value to o.

S2.1 is not particularly interesting, requiring only that the gambles in G be con-

structed from the members of O and P . S2.2 and S2.3, on the other hand, are some-

what more substantive. S2.3 has us limiting our attention to those gambles [o1,P;o2]
where the outcomes o1 and o2 are ⇀-related to the conditions under which they

are won. Given S1.1, this means that o1 ⇋ (o1 ∧ P) and o2 ⇋ (o2 ∧¬P), which

will ultimately be used to ensure that if [o1,P;o2] ∈ G, then U(o1) = U(o1 ∧ P)
and U(o2) = U(o2 ∧¬P). Indeed, more generally I will eventually want to estab-

lish that (where P and Q are assigned credences and utilities at all), if P ⇋ Q, then

Cr(P) =Cr(Q) and U(P) =U(Q). Implicit in this is a centrally important constraint

on our interpretation of ⇀; viz., it needs to be a relation such that, plausibly, the above

equalities hold. Where ‘⇀’ is take to represent obvious, recognised, or even just be-

lieved implication, this seems fair: one who thinks that P and Q imply each other

should assign the same credences and utilities to P and Q. A failure to treat them as

such suggests a lack of belief in their equivalence.10

10 There may be some difficulties here regarding framing effects, whereby a choice might be evaluated

differently depending on whether its outcomes are cast in a negative or a positive light (see [41], [23]). For

example, a doctor might know that giving a population of 1000 deathly ill patients a particular treatment

will cure 75% but kill the rest. When choosing whether to administer the treatment, it seems to make a

difference whether this outcome is described as ‘750 lives are saved’ or as ‘250 people die’, although

in both cases the doctor presumably recognises that 750 will live and 250 will die. We do not know

the mechanisms underlying these effects, so it’s unclear whether they conflict with the assumption that

U(P) = U(Q) whenever P ⇋ Q. One plausible explanation which doesn’t obviously generate conflict is

that the way in which a choice is framed can make particular aspects of a complex outcome more salient
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The purpose of S2.3 is to rule out what we might call impossible gambles. Not

every ‘gamble’ that we might be able to formally construct out of the members of

O and P represents a genuine object of choice. When a decision-maker takes up a

gamble [o1,P;o2], she is making true the following conjunction of counterfactuals:

(P �→ o1)∧ (¬P �→ o2)

However, not every conjunction of this form is possibly true. Assuming a Lewisean

semantics for counterfactuals (with a space of epistemically possible worlds), S2.3

ensures that every gamble in G corresponds to an epistemically possible conjunction

of counterfactuals.11 We can call a gamble [o1,P;o2] impossible just in case P is pos-

sible and o1 ∧P isn’t, and/or ¬P is possible and o2 ∧¬P isn’t; it’s possible otherwise.

Note that S2.3 does not rule out gambles with impossible win conditions, nor does it

rule out gambles with impossible outcomes—possible gambles may have impossible

parts!

Finally, we will need one last purely structural axiom. I have said just above

that I intend to show that if [o1,P;o2] ∈ G, then U(o1) = U(o1 ∧P) and U(o2) =
U(o2 ∧¬P). This can only be true if U(o1 ∧P) and U(o2 ∧¬P) are defined, which

will require the relevant propositions to be in O:

Axiom S3 If [o1,P;o2] ∈ G, then o1 ∧P ∈O

On the fairly plausible presumption that (P∧Q) ⇀ P, S2 and S3 jointly imply that

O contains infinitely many fine-grained propositions: for any [o1,P;o2] in G where P

is consistent, there will be o1 ∧P and o2 ∧¬P in O that (are believed to) imply P and

¬P respectively. It is then easy to check that S2.1, S2.3, and S2.3 will also hold for

the gamble [o1 ∧P,P;o2 ∧¬P], so S3 then requires that O also include (o1 ∧P)∧P

and (o2 ∧¬P)∧¬P, and so on, ad infinitum.

I don’t think that this should be cause for much concern. For one thing, it’s not

obvious that o1 ∧P, (o1 ∧P)∧P, and so on, constitute genuinely distinct objects of

thought. But even if you take a very fine-grained approach to content, it’s not clear

there is a real worry here. Although before now I have never considered the proposi-

tions before, in a dispositional or implicit sense I have very plausibly always believed

that 1523410 is one less than 1523411, and that 1523411 is one less than 1523412,

and so on. Likewise, I have always known that P∧Q is just the same state of affairs as

(P∧Q)∧Q, and ((P∧Q)∧Q)∧Q, and so on, ad infinitum. If so, then it’s not implau-

sible that a function U designed to represent my utilities should assign one and the

than other aspects ([42], [25]). So, instead of representing the doctor as assigning different utilities to

distinct but recognisably equivalent representations of one and the same outcome (750 will live & 250

will die), we see her as having different utilities towards non-equivalent aspects of the outcome (750 will

live, 250 will die), with positive or negative descriptions of that outcome influencing which aspects get

represented as ‘the’ outcome. If this kind of explanation is correct, then framing effects describe an error in

how agents go from descriptions of choices to their own internal representations of those choices. Since my

% is defined over the representations directly, we do not have to worry about any potential cognitive biases

that might influence how we go from a description of a gamble or outcome to the (mis-)representation

thereof.
11 I do not place very much weight on this assumption about the semantics of counterfactuals. For in-

stance, if there can be impossible counterfactuals with impossible antecedents, then alternative conditions

can be placed on G to fix upon the appropriate set.
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same value to an infinite collection of propositions that only differ by successive con-

junctions of the same conjunct—even if, for the vast majority of these propositions, I

have not and likely never will take the time to contemplate them explicitly.12

3.3 1⁄2 Probability Propositions

For the next step, we will need to characterise a set of propositions towards which

our subject has a credence of 1⁄2, which we will label using ‘Π ’. To do this “without

peeking”, we’ll need a way to construct Π given just S’s preferences and the minimal

assumptions we’ve made about her. The strategy we’ll use was pioneered by Ramsey

[35, pp. 177-8], though I’ll appeal to Savage’s generalisation of the same reasoning.

Suppose we have two outcomes o1 and o2 such that o1 ≻ o2, and two gambles

[o1,P;o2] and [o1′,Q;o2′] (both in G), with [o1,P; o2] % [o1′,Q;o2′]. (Recall that

sameness of subscript implies indifference, so o1′ ∼ o1 ≻ o2′ ∼ o2.) On the assump-

tions we’ve made so far, if our subject is maximising expected utility with respect to

these two gambles, then she must attach at least as much credence to P as she does to

Q. Essentially, [o1,P;o2] is weakly preferred to [o1′,Q;o2′] just because it has at least

as great a chance of resulting in the better outcome o1 as [o1′,Q;o2′] does.

That gives us the general case, and we will eventually be able to show that

Cr(P)≥Cr(Q) will hold whenever there are outcomes and gambles such that o1 ≻ o2

and [o1,P;o2] % [o1′,Q;o2′].
13 For now, take the special case where Q = ¬P, and

suppose that [o1,P; o2] ∼ [o1′,¬P; o2′]. The latter of these two gambles is just an-

other way of representing [o2′,P;o1′], so [o1,P; o2] ∼ [o2′,P;o1′]. Since we know

that o1 ≻ o2, the only way to get this kind of indifference between the gambles is if

Cr(P) =Cr(¬P) = 1⁄2. Hence:

Definition 1 Π = {P ∈ P : for some [o1,P;o2], [o2′,P;o1′] ∈ G such that o1 ≁ o2,

[o1,P;o2]∼ [o2′,P;o1′]}

Henceforth, I will use π , π′, π′′, and so on, to designate propositions within Π . (It

should not be assumed that π 6= π′.)
Many of the axioms I’ll outline relate specifically to gambles conditional on a

1⁄2-probability proposition, and so it is important to ensure that Π contains enough

members. We do this by means of the following axiom:

Axiom A1 O and P are non-empty, and:

(A1.1) For every pair o1,o2 ∈O, there is some [o1′,π;o2′] ∈ G

(A1.2) For all P ∈P , there is at least one [o1,P;o2] ∈ G, where o1 ≁ o2

12 A similar point holds, I think, for the equivalence between P,¬¬P,¬¬¬¬P (and etc.). To the extent

that these represent distinct objects of thought, it’s reasonable to think that most ordinary agents know

(at least implicitly) that if the number of negations preceding a claim P is a multiple of two, then the

proposition expressed is equivalent to P; otherwise it’s equivalent to ¬P.
13 To ensure that Cr(P)≥Cr(Q), it suffices to assume that o3 % o1 ≻ o4 % o2 and [o1,P;o2]% [o3,Q;o4].

Letting o3 and o4 be o1′ and o2′ respectively makes the reasoning somewhat more transparent, especially

when it comes to defining Π .
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A1.1 implies that Π is non-empty, and that not all outcomes are equipreferable. More-

over, A1.1 is that each of the universally quantified statements about possible gambles

conditional on some π in the proofs that follow are never trivially true. Given this, I

will for ease of exposition often omit steps involving A1.1 when obvious. A1.2 will

not be relevant until §3.5.

One of A1.1’s direct consequences is that for each outcome o1, there will be at

least two outcomes o1′ and o1′′ such that o1′⇀ π and o1′′⇀ ¬π . It’s plausible that

for a great many values we will be able to find such a proposition. Consider, for

instance, the following situation. Our subject has no intrinsic interest in the outcomes

of coin tosses. Let o be an arbitrary consistent outcome; and let π be the proposition

the next fair coin to be tossed lands heads. Then, suppose that o1′ = o1 ∧ π , while

o1′′ = o1 ∧¬π . Plausibly, o1 ∼ o1′ ∼ o1′′, while o1′ (obviously) implies π and o1′′
(obviously) implies ¬π , but neither π nor ¬π imply either o1′ or o1′′. The condition

seems to be at least approximately satisfied in this sense—for any outcome o1, we

should be able to find a pair of equally-valued outcomes which are equivalent in all

respects that the agent cares about but for the outcome of a fair coin toss (or some

other 1⁄2 probability event that our subject doesn’t really care about).

3.4 Difference Relations and Algebraic Difference Structures

For the next stage, we will need to supply a condition for when the difference in

utility between two outcomes o1 and o2 is at least as great as the difference in utility

between another pair of outcomes o3 and o4. We will write this as (o1,o2)≥
d (o3,o4).

As with our definition of Π , the trick is to assume the final form of the representation

we want to end up with, and work backwards from that to a definition of ≥d . That is,

we suppose first of all that our subject is an expected utility maximiser with respect

to the relevant gambles, so:

U([o1,π;o2]) =Cr(π) ·U(o1 ∧π)+(1−Cr(π)) ·U(o2 ∧¬π)

We then know that [o1,π;o4]% [o2,π;o3] just in case:

Cr(P) ·U(o1 ∧π)+(1−Cr(π)) ·U(o4 ∧¬π)≥
Cr(π) ·U(o2 ∧¬π)+(1−Cr(π)) ·U(o3 ∧¬π)

Since Cr(π) = 1⁄2 = 1−Cr(π), and since U(o1 ∧ π) = U(o1) (and so on) for the

gambles that we will be considering, this holds just in case:

U(o1)−U(o2)≥U(o3)−U(o4)

This gives us enough to characterise ≥d (the coherence of which will be established

shortly below):

Definition 2 (≥d) (o1,o2) ≥
d (o3,o4) iff, for all [o1′,π; o4′], [o2′,π′;o3′] ∈ G,

[o1′,π;o4′]% [o2′,π′;o3′]

With the information about differences in utilities thus codified, we can look for

ways to construct U. We will want the following result, established in [24, §4.4.1]:
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Theorem 1 Suppose that <X ×X ,%∗> is an algebraic difference structure; i.e.,

X is non-empty, %∗ is a binary relation on X ×X , and the following five conditions

hold for all x1,x2,x3,x4 ∈X , and all sequences x1,x2, . . . ,xi, . . . ∈X ,

C1 %∗ on X ×X is transitive and complete

C2 If (x1,x2)%
∗ (x3,x4), then (x4,x3)%

∗ (x2,x1)
C3 If (x1,x2)%

∗ (x4,x5) and (x2,x3)%
∗ (x5,x6), then (x1,x3) %

∗ (x4,x6)
C4 If (x1,x2) %

∗ (x3,x4) %
∗ (x1,x1), then there exist x5,x6 ∈ X such that (x1,

x5)∼
∗ (x3,x4)∼

∗ (x6,x2)
C5 If x1,x2, . . . ,xi, . . . is such that (xi+1,xi) ∼

∗ (x2,x1) for every xi,xi+1 in the

sequence, (x2,x1)≁
∗ (x1,x1), and there exist x j,xk ∈X such that (x j,xk) ≻

∗

(xi,x1)≻
∗ (xk,x j) for all xi in the sequence, then it is finite

Then, there exists a function f: X 7→ R such that, for all x1,x2,x3, x4 ∈X ,

(i) (x1,x2)%
∗ (x3,x4) iff f (x1)− f (x2)≥ f (x3)− f (x4)

Furthermore, f is unique up to positive linear transformation

The main purpose of the next five axioms is to establish that < O×O,≥d>
satisfies C1 through to C5. A2 says that <O∪G,%> is a weak order:

Axiom A2 For all x,y,z ∈O∪G,

(A2.1) If x % y and y % z, then x % z

(A2.2) Either x % y or y % x

We can now define ≻ and ∼. Say that x ≻ y iff x % y and ¬(y % x); and x ∼ y iff x % y

and y % x. A2 then ensures that ∼ is an equivalence relation.

The completeness requirement (A2.2) is quite strong. It’s prima facie implausible

that many ordinary agents have complete preference rankings, even where the domain

of that ranking is restricted just to those propositions that they have utilities towards.

We will return to this briefly in §4.2, when we discuss the need to accommodate the

apparent imprecision in our credences and utilities.

The next says that if we have a gamble [o1,π;o2], then we’re allowed to substitute

either outcome for another of equal value, or one proposition π for another π′, so long

as the gamble that results is in G:

Axiom A3 If [o1,π;o2], [o2′,π′;o1′] ∈ G, then [o1,π;o2]∼ [o2′,π′;o1′]

A3 states that we’re allowed to change around the order of equally-valued outcomes

within gambles conditional on a 1⁄2-probability proposition without changing the gam-

ble’s value. Given A1.1 and A2, the axiom also immediately implies that any pair of

gambles [o1,π;o2] and [o1′,π′;o2′] are always equipreferable (since there will be

some [o2′′,π′′;o1′′] to which each is equipreferable).

Although nearly opaque in its present formulation, in light of the earlier axioms

the next axiom more or less directly implies that ≥d is transitive (see proof below):

Axiom A4 If, for all [o1,π;o4], [o2,π′;o3], (i) [o3,π′′;o6], [o4,π′′′;o5]∈G, [o1,π;o4]
% [o2, π′;o3], and (ii) [o3,π′′;o6]% [o4,π′′′;o5], then, for all [o1′,π

∗;o6′], [o2′,π
+;o5′]

∈ G, [o1′,π
∗;o6′]% [o2′, π+; o5′]
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With these three new axioms, we have enough already to show that < O ×
O,≥d> satisfies C1 through to C3, above. The following lemma will prove help-

ful, and relies solely on A1 to A3:

Lemma 1 If [o1′,π;o4′]% [o2′,π′;o3′] for any pair [o1′,π;o4′], [o2′,π′;o3′]∈G, then

(o1, o2)≥
d (o3,o4)

Proof Suppose that [o1′,π;o4′]% [o2′,π′;o3′] for some such pair in G. From A3, for

any [o1′′,π′′; o4′′], [o2′′,π′′′;o3′′] ∈ G, then, [o1′,π;o4′]∼ [o1′′,π′′;o4′′] and [o2′,π′;
o3′]∼ [o2′′,π′′′;o3′′]. Thus, for all such pairs, [o1′′,π′′; o4′′]% [o2′′,π′′′;o3′′], which

is just the right hand side of Def. 2. ⊓⊔

We can now prove that <O×O,≥d> satisfies C1:

Proof For any pair of pairs (o1,o4),(o2,o3), there will be [o1′,π;o4′], [o2′,π′; o3′],
and since % is complete, either [o1′,π;o4′] % [o2′,π′;o3′] or [o2′,π′;o3′] % [o1′,π;

o4′]. From Lemma 1, if the former then (o1,o2) ≥
d (o3,o4), and if the latter then

(o3,o4) ≥
d (o1,o2). So ≥d is complete. Next, suppose that (o1,o2) ≥

d (o3,o4) and

(o3,o4) ≥
d (o5,o6). From Def. 2, this implies (for all relevant gambles) that [o1′,π;

o4′]% [o2′,π′; o3′] and [o3′,π
∗;o6′]% [o4′,π

+;o5′]. For any pair of gambles [o1′′,π′′;
o6′′], [o2′′,π′′′; o5′′], A4 then requires that [o1′′,π′′;o6′′]% [o2′′,π′′′;o5′′], so (o1,o2)
≥d (o5,o6). So ≥d is transitive. ⊓⊔

Furthermore, we can also prove that <O×O,≥d> satisfies conditions C2 and C3:

Proof Suppose (o1,o2) ≥
d (o3,o4), so [o1′,π;o4′] % [o2′,π′;o3′]. A1 ensures some

[o4′′,π
∗;o1′′], [o3′′,π

+;o2′′] exist, and by A3, [o4′′, π∗; o1′′]∼ [o1′,π;o4′] and [o3′′,
π+;o2′′] ∼ [o2′,π′;o3′]. Substituting for equally valued gambles, [o4′′,π

∗;o1′′] %
[o3′′,π

+;o2′′], which implies (o4,o3) ≥
d (o2,o1). So < O×O,≥d> satisfies C2.

By similar reasoning, if (o1,o2) ≥d (o3,o4) then [o1′,π;o4′] % [o3′′,π
+;o2′′], so

(o1,o2)≥
d (o3,o4) also implies that (o1,o3)≥

d (o2,o4). Supposing next that (o1,o2)
≥d (o4,o5) and (o2,o3)≥

d (o5,o6), it follows that (o1,o4)≥
d (o2,o5) and (o2,o5)≥

d

(o3,o6). As ≥d is transitive, (o1,o4) ≥
d (o3,o6). Thus, if (o1,o2) ≥

d (o4,o5) and

(o2,o3)≥
d (o5,o6), then (o1,o4)≥

d (o3,o6), and C3 is satisfied. ⊓⊔

We will need two further axioms to show that <O×O,≥d> satisfies the struc-

tural axioms C4 and C5. A5 corresponds directly to C4:

Axiom A5 If there are [o3,π;o1], [o1′,π′;o4], [o2,π′′, o3′]∈G such that [o3,π;o1]%
[o1′,π′; o4] % [o2,π′′,o3′], then there are [o5,π

∗;o3′′], [o4′, π+;o6] ∈ G such that

[o5,π
∗; o3′′]∼ [o1′,π′;o4] and [o4′,π

+;o6]∼ [o2,π′′,o3′]

With this, <O×O,≥d> satisfies C4:

Proof Suppose (a) (o1,o2)≥
d (o3,o4) and (b) (o3,o4)≥

d (o1,o1), for any o1,o2,o3,
o4 ∈O. (a) will hold only if, for all relevant gambles in G, [o3′,π;o1′]% [o1′′,π′; o4′];
likewise (b) will hold only if for the relevant gambles [o4′,¬π′;o1′′] % [o2,π′′,o3′].
So, since [o4′,¬π′;o1′′]∼ [o1′′,π′;o4′], if (o1,o2)≥

d (o3,o4)≥
d (o1,o1), then there
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will be the relevant gambles in G such that [o3′,π;o1′]% [o1′′,π′; o4′]% [o2,π′′,o3′].
A5 then asserts the existence of some o5,o6 ∈ O with corresponding gambles in G

such that, by Lemma 1, (o1,o5) =
d (o3,o4) and (o2,o4) =

d (o6,o3). We’ve already

seen that (o1,o2)≥
d (o3,o4) implies (o1,o3)≥

d (o2,o4), so from (o2,o4) =
d (o6,o3)

we get (o2,o6) =
d (o4,o3). And we’ve already shown that C2 holds, so this gives us

(o3,o4) =
d (o6,o2). So, if (o1,o2) ≥

d (o3,o4) ≥
d (o1,o1), then there must be some

o5,o6 ∈O such that (o1,o5) =
d (o3,o4) =

d (o6,o2). ⊓⊔

In terms of the final representation, A5 says that if there are two outcomes o1 and o2

such that U(o1)−U(o2) = n ≥ 0, then for every outcome o3 there must be another

outcome o4 such that either U(o3)−U(o4) = n or U(o4)−U(o3) = n. This is weaker

than the assumption that Ramsey used to get C4, which in our system would be:

Axiom A5∗ For every triple o1,o2,o3 ∈O, there is an o4 ∈O such that for some

[o1′,π;o3′], [o4, π′;o2′] ∈ G, [o1′,π;o3′]∼ [o4,π′;o2′]

Roughly, A5∗ says that if you’ve got two outcomes o1 and o2 with U(o1)−U(o2)= n,

then, for any other outcome o3, you should be able to find an o4 such that U(o3)−
U(o4) = n. This has the unfortunate consequence of precluding the existence of high-

est and lowest ranked outcomes, whereas our A5 does not.

Finally, we will need to make sure that <O×O,≥d> satisfies the C5. In effect,

this condition ensures that the numerical representation U satisfies the Archimedean

property of the reals: for any positive number x, and any number y, there is an integer

n such that n+x ≥ y. To cash out the next axiom, I will need to characterise a strictly

bounded standard sequence:

Definition 3 (Strictly bounded standard sequence) o1,o2, . . . ,oi, . . . is a strictly

bounded standard sequence iff:

(i) For all [o2′,π;o1′], [o1′′,π′;o1′′′] ∈ G, [o2′,π;o1′]≁ [o1′′,π′; o1′′′]; and

(ii) For every oi,oi+1 in the sequence, [oi+1′,π;o2′] ∼ [o1′, π′;oi′] for all [oi+1′,
π;o2′], [o1′,π′;oi′] ∈ G; and

(iii) There exists o j,ok ∈O such that for all oi in the sequence, [o j′,π;oi′]≻ [o1′,π′;
ok′] and [oi′′,π′′;ok′′] ≻ [o j′′,π′′′;o1′′], for any [o j′,π;oi′], [o1′,π′; ok′], [oi′′,
π′′;ok′′], [o j′′,π′′′;o1′′] ∈ G

The next axiom is then easy to state:

Axiom A6 All strictly bounded standard sequences in O are finite

Given A6 and Def. 3, the proof that < O×O,≥d> satisfies C5 is trivial and will

also be left unstated.

Let me summarise the situation so far. Given S2—we don’t need S1 and S3 yet—

if % on O ∪G satisfies A1 to A6, Theorem 1 implies that there is an effectively

unique U : O 7→ R such that:

(o1,o2)≥
d (o3,o4) iff U(o1)−U(o2)≥U(o3)−U(o4)
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Interestingly, we don’t yet have enough to derive that o1 % o2 iff U(o1) ≥ U(o2),
which I take to be a minimal condition on U being a representation of S’s preferences

over O. To achieve this further result, we need to connect S’s preferences over out-

comes to the utilities she assigns to the gambles involving those outcomes. We can

do this by means of A7 (which will also play an important role later):

Axiom A7 For all o1,o2 ∈O,o1 % o2 iff for all [o1′,P;o2′] ∈ G,o1 % [o1′,P;o2′]

Essentially: a gamble is never strictly preferred to its best outcome. From this we can

also work out that a gamble is never considered to be worse than its worst outcome. (I

prove this further below.) From this and the earlier axioms, it is then easy to establish

that U represents % on O:

Proof From A7, o1 ∼ o1′ iff, for all [o1′′,P;o1′′′]∈G,o1 ∼ [o1′′,P; o1′′′]. So o1 % o2

iff [o1′′,π;o1′′′]% [o2′′,π′;o2′′′], which holds iff (o1,o2)≥
d (o2,o1). From Theorem

1, (o1,o2)≥
d (o2,o1) iff U(o1)−U(o2)≥U(o2)−U(o1), which is true just in case

U(o1)≥U(o2). So o1 % o2 iff U(o1)≥U(o2). ⊓⊔

Finally, we will make appeal to one further existential axiom:

Axiom A8 For every [o1,P;o2] ∈ G, there is either (i) an [o3,π;o4] ∈ G such that

[o1,P;o2]∼ [o3,π;o4], or (ii) an o5 ∈O such that [o1,P;o2]∼ o5

Note that if the P in [o1,P;o2] is in Π , then the first disjunct is trivially satisfied.

If it also turns out that the second disjunct is satisfied and there’s an o5 such that

[o1,P;o2]∼ o5, then U(o5) = 1/2 ·U(o1)+ 1/2 ·U(o2):

Proof As we’ve already established, o5 ∼ [o5′,π;o5′′], so [o5′,π;o5′′] ∼ [o1,P;o2]
(for P∈Π ). This holds just in case (o1,o5) =

d (o5,o2), from which it quickly follows

that U(o5) = 1/2 ·U(o1)+ 1/2 ·U(o2). ⊓⊔

Given this, A8 lets us extend U on O to O∪G, by means of the following per-

fectly reasonable stipulation:

For all [o1,P;o2]∈G: if there is an o3 such that [o1,P;o2]∼ o3, then U([o1,P;

o2]) = U(o3); otherwise, if there is an [o4,π;o5] ∈ G such that [o1,P;o2] ∼
[o4,π;o5], U([o1,P;o2]) = 1/2 ·U(o4)+ 1/2 ·U(o5)

The uniqueness properties of U on O will carry over to U on O∪G.

With the possible exception of A2.2, A8 seems the least plausible of the axioms

outlined so far. While it makes intuitive sense for expected utility maximisers with

precise credences, we should not presume that ordinary agents’ credences are always

precise. From A1-A7, we get that every outcome in O is assigned a precise utility—

which is problem enough, and something we’ll have to deal with later on—but A8

adds the additional implication that every gamble can be assigned a precise utility. It

is reasonable to think, however, that where S’s credence towards P is imprecise, her

utility towards any (non-trivial) gamble conditional on P should likewise be at least

somewhat imprecise. Dealing with imprecision in Cr and U is something we’ll come

back to in §4.2. For now, we’ll suppose that A1 to A8 hold.
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3.5 Deriving Degrees of Belief

Our goal now is to construct a credence function, Cr : P 7→ [0,1], which combines

with U to supply an expected utility representation of % on O∪G. As usual, we begin

by assuming that Cr will satisfy the properties we intend for it. Suppose that o1 ≁ o2

and [o1,P;o2] ∈ G. So U([o1,P;o2]) =Cr(P) ·U(o1 ∧P)+(1−Cr(P)) ·U(o2 ∧¬P).
Because U(o1) =U(o1∧P) 6=U(o2) =U(o2∧¬P), this can be rearranged to provide

the following definition of Cr:

Definition 4 (Cr) For all P ∈P , if there is a [o1,P;o2] ∈ G such that o1 ≁ o2, then:

Cr(P) =
U([o1, P; o2]) − U(o2)

U(o1) − U(o2)

A1.2 ensures that there’s enough gambles in G for Def. 4’s existential requirements

to be satisfied for each P ∈ P . However, we will also need to make the following

rather strong assumption to ensure that Def. 4 is coherent:

Axiom A9 For all [o1,P;o2], [o3,P;o4] ∈ G where o1 ≁ o2 and o3 ≁ o4,

U([o1, P; o2]) − U(o2)

U(o1) − U(o2)
=

U([o3, P; o4]) − U(o4)

U(o3) − U(o4)

I am cheating somewhat in stating A9 as I have done here, in terms of U. Since

U can be constructed entirely from preferences, A9 is equivalent to some condition

stated purely in terms of %. I do not think, however, that there is much to be gained

by rephrasing the axiom in terms of %, as doing so would only serve to obscure

its content. I’ll have more to say about A9 in §4.1, specifically about the kinds of

representations of S’s credences that we might get if we go without it.

For now, what it says can be visualised as follows. Def. 4 tells us that Cr(P) is,

say, 0.75, if o1 ≻ o2 and U([o1,P;o2]) sits exactly three quarters of the way from

U(o2) to U(o1). In order for Def. 4 to be coherent, therefore, it is important that

the value we obtain for Cr(P) does not depend upon the particular choice of gamble

[o1,P;o2]. This is where A9 comes in, requiring that for all pairs of gambles o1,o2

such that o1 ≻ o2, if [o1,P;o2] ∈ G, then its utility also sits three quarters of the way

from U(o2) to U(o1).
This provides us with the resources to prove the following:

Theorem 2 If S2 and A1-A9 hold, then there is a function U: O ∪G 7→ R and a

function Cr : P 7→ [0,1] such that for all x,y ∈ O ∪G, all o1,o2,o3,o4 ∈ O, all

[o1,P;o2] ∈ G,

(i) x % y iff U(x)≥ U(y)
(ii) U([o1,P;o2]) =Cr(P) ·U(o1)+Cr(¬P) ·U(o2)

Furthermore, Cr is unique and U is unique up to positive linear transformation. Ad-

ditionally, Cr has the property that for all P ∈P ,

(iii) Cr(P) = 1−Cr(¬P)
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Proof That a U satisfying property (i) exists, and that it is unique up to positive

linear transformation, has already been established using A1 to A8; the only structural

assumption appealed to there was S2. The rest of the proof will proceed in four stages.

First, we’ll show that Cr is a function from P into [0, 1]. Then, we will show that

property (ii) holds for all [o1,P;o2]∈G, and then that (iii) holds for all P∈P . Finally,

we will show that Cr is unique.

That Cr maps P to [0, 1]: That Cr is defined for all P ∈P follows from A1.2 and

Def. 4. That Cr(P) is independent of the choice of outcomes and gambles satisfying

the antecedent conditions follows immediately from A9. To see that the range of Cr

is [0,1], we’ll first show that given A2 and A3, A7 implies that if o1 % o2, then for

all relevant [o1′,P;o2′], o1 % [o1′,P;o2′]% o2. That o1 % o2 implies o1 % [o1′,P;o2′]
is just A7. Next, suppose that o1 % o2, so either o1 ∼ o2 or o1 ≻ o2. If o1 ∼ o2,

then A7 implies that o1 ∼ [o1′,P;o2′] and o2 ∼ [o2′,¬P;o1′] (recall that [o1′,P;o2′] =
[o2′,¬P;o1′]). If o1 ≻ o2 then ¬(o2 % o1), so ¬(o2 % [o2′,¬P;o1′]); thus [o1′,P;o2′]≻
o2. In either case, then, if o1 % o2 then o1 % [o1′,P;o2′] % o2. With that established,

we then note that for all [o1,P;o2], either o1 % o2 and o1 % [o1,P;o2] % o2, or o2 %

o1 and o2 % [o1,P;o2] % o1. With the already established properties of U we know

U([o1,P;o2]) sits somewhere weakly between U(o1) and U(o2); thus, the difference

between U([o1,P;o2]) and U(o2) will never be greater than the difference between

U(o1) and U(o2), and the ratio of those differences will be within [0, 1].

That (ii) holds for all [o1,P;o2] ∈ G: Suppose first that o1 ∼ o2; then, by the

reasoning noted above, U(o1) = U(o2) = U([o1,P;o2]). Let (o1) = x, so (ii) holds

in this case just in case x = Cr(P) · x+(1−Cr(P)) · x. We have just established that

Cr(P)∈ [0,1], so regardless of what value Cr(P) takes the required equality will hold.

Suppose next that o1 ≁ o2. By Def. 4,

Cr(P) =
U([o1, P; o2]) − U(o2)

U(o1) − U(o2)

This holds iff

Cr(P) ·
(

U(o1)−U(o2)
)

= U([o1,P;o2])−U(o2)

which can be rearranged to

U([o1,P;o2]) = Cr(P) ·U(o1)−Cr(P) ·U(o2)+U(o2)

Next we’ll demonstrate that Cr(¬P) = 1−Cr(P), concluding the proof that (ii) holds.

That (iii) holds for all P ∈P : For any pair o1, o2 such that o1 ≁ o2, if [o1,P;o2] ∈
G then [o2,¬P;o1] ∈ G. A1.2 ensures that for every P ∈ P we’ll find the former

gamble in G, so we know both are. So:

Cr(¬P) =
U([o2, ¬P; o1]) − U(o1)

U(o2) − U(o1)

Multiplying the denominator and the numerator by −1 gets us:

Cr(¬P) =
U(o1) − U([o2, ¬P; o1])

U(o1) − U(o2)
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Let U([o1,P;o2]) = x = U([o2,¬P;o1]). Given the foregoing, Cr(P) + Cr(¬P) is

equal to:

x − U(o2)

U(o1) − U(o2)
+

U(o1) − x

U(o1) − U(o2)
=

U(o1) − U(o2)

U(o1) − U(o2)

Thus, Cr(P)+Cr(¬P) = 1, so Cr(P) = 1−Cr(¬P).
That Cr is unique: Because ratios of differences will always be preserved across

admissible transformations of U, there can be only one Cr such that:

Cr(P) =
U([o1, P; o2]) − U(o2)

U(o1) U(o2)
, whereo1 ≁ o2 and [o1,P;o2] ∈ G

We know that this equality holds iff

U([o1,P;o2]) = Cr(P) ·U(o1)+(1−Cr(P)) ·U(o2)

So there is only one Cr that satisfies (ii). ⊓⊔

It’s worth pausing to say a few things about the properties of Cr. Perhaps most

important, Cr need not be a probability function, nor need it even be monotonic.

The main restriction on Cr is that for any π ∈ Π , Cr(π) = 1⁄2, and there must be at

least two propositions in Π . Also important to note is that none of the propositions

in the domain of Cr (or U) need be very specific. Because we have placed so few

constraints on the internal structures of either O or P , we need not suppose anything

as strong as, say, Jeffrey’s assumption that P (minus a set of ‘null propositions’)

forms a bottomless algebra with ever-increasingly fine-grained contents.

A very simple example will help bring these points out. For simplicity, I’ll assume

that propositions are coarsely individuated, and that P ⇀ Q iff P ⊢ Q.

1. P = {π,¬π,P,¬P,P∨Q,¬(P∨Q)}
2. O = {ot ,om,ob,ot ∧π,om ∧π,ob ∧π,ot ∧¬π,om ∧¬π,ob ∧¬π}
3. ot ⊢ P and ob ⊢ ¬(P∨Q)
4. ot , ob are logically independent of π

5. om is logically independent of every member of P

From S2, we can determine the gambles that will be found in G:

[ot ∧π,π;ot ∧¬π] = γ1

[om ∧π,π;ot ∧¬π] = γ4

[ob ∧π,π;ot ∧¬π] = γ7

[ot ,P;ob] = γ10

[ot ∧π,π;om ∧¬π] = γ2

[om ∧π,π;om ∧¬π] = γ5

[ob ∧π,π;om ∧¬π] = γ8

[ot ,P∨Q;ob] = γ11

[ot ∧π,π;ob ∧¬π] = γ3

[om ∧π,π;ob ∧¬π] = γ6

[ob ∧π,π;ob ∧¬π] = γ9

Given a coarse-grained approach to propositions, S3 is satisfied. (If we were to take a

very fine-grained approach to propositions, we would need separate entries in O for

ot , ot ∧P, (ot ∧P)∧P, and so on; likewise for P, ¬P, ¬¬P, etc.)

Assuming that ot ≻ om ≻ ob and that oi ∼ (oi ∧π)∼ (oi ∧¬π), A1.1 is also satis-

fied. π could be thought of as something to the effect of the next fair coin to be tossed

lands heads (§3.3). For every proposition in P there is a gamble with unequally val-

ued outcomes in G, so A1.2 is satisfied. We now let the following preference relations

hold:

ot ∼ γ1 ≻ γ2/4/10 ≻ om ∼ γ3/5/7 ≻ γ6/8/11 ≻ ob ∼ γ9
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It is then easy to check that each of our other axioms are satisfied. Suppose, then,

that we normalise our utility function, so that U(ot) = 1, U(γ10) = 0.75, U(om) =
0.5, U(γ11) = 0.25, U(ob) = 0. Given the values for γ10 and γ11 in particular, Def.

4 implies that Cr(P) = 0.75, and Cr(P ∨ Q) = 0.25. This is despite the fact that,

obviously, P ⊢ P∨Q. Indeed, Cr(P) and Cr(P∨Q) could have taken any of a range

of other values without falsifying our axioms: the choice to let γ10 ∼ γ2 and γ11 ∼ γ6

was more or less arbitrary.

The reason for Cr’s permissiveness is that internal logical relations amongst the

members of P play almost no role in fixing Cr’s values. (The only major exception

is the requirement that every P be paired with a ¬P.) Essentially, P can be thought

of as a set of points, each of which is related to at least one other point (its negation).

The values that Cr then attaches to those pairs of points then depends entirely on the

placement of gambles involving them, and the axioms leave a great deal of freedom in

that respect. In particular, without additional restrictions or assumptions, the axioms

we’ve specified thus far are effectively blind both to the semantic content of P’s

members, and to (most of) the logical relations between them. Consequently, there

are (almost) no mechanisms by which relations amongst P’s members can be used

to determine the relative placement of gambles within the preference ordering.

Theorem 2 is thus compatible with a wide range of credence functions. Indeed,

Cr is capable of assigning values of greater than 0 to impossible propositions, and

less than 1 to necessary propositions. In the above model add ‘P∨¬P’ and ‘P∧¬P’

to P , and to O add on = P∧¬P, with on ∼ ob. As every consistent outcome in O

implies P∨¬P but only on implies P∧¬P, we’ll have nine new gambles in G. Three

in particular are salient:

[ot ,P∨¬P;on] = γ12 [om,P∨¬P;on] = γ13 [ob,P∨¬P;on] = γ14

From A7, we know that γ14 ∼ ob, but we have a lot more freedom with respect to

the placement of γ12 and γ13. If γ12 ∼ ot , then Cr(P∨¬P) = 1. If γ12 ∼ om, then

Cr(P∨¬P) = 0.5 (and P∨¬P ∈ Π ). If γ12 ∼ ob, then Cr(P∨¬P) = 0. Of course,

on a coarse-grained approach to thought content, then no one plausibly attaches zero

credence to P∨¬P (or has preferences like γ12 ∼ ob and γ12 ∼ om), but we don’t need

our axioms to preclude that possibility either.

I take the lack of imposed structure on Cr to be a feature, not a bug. Plausibly,

ordinary agents don’t have probabilistically coherent degrees of belief, so any repre-

sentation of our credences which presupposes such coherence is flawed. (And nothing

I’ve said implies that Cr can’t be coherent.) In §3.6, I will suggest a further axiom

which ensures that Cr(P) =Cr(Q) just in case P ⇋ Q. With that condition in place,

we can reasonably expect that any blatant impossibilities are assigned a credence

of 0, and any obvious logical necessities a credence of 1. With additional axioms,

it’s also possible to ensure that Cr satisfies particular structural properties, such as a

weakened form of monotonicity: if P ⇀ Q, then Cr(Q)≥Cr(P) (see [15, §4.4]).

3.6 Indifference Under ⇋ Equivalence

We have not said anything yet to guarantee that U(o1) = U(o1 ∧P), and this is a

problem. Take a pair of propositions o1 and P such that o1 ⇀ P. Supposing that
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all of the axioms so far stated are satisfied, Theorem 2 tells us that we can derive

some Cr and U such that for any [o1,P;o2] ∈ G, U([o1,P;o2]) = Cr(P) ·U(o1) +
Cr(¬P) ·U(o2). This the right result only if U(o1) =U(o1 ∧P) and U(o2) =U(o2 ∧
¬P). Where this is not the case, we should really be considering our utilities for the

outcomes under the conditions that obtain if they are won. This, I take it, should be

taken as both a normative requirement and a plausible descriptive condition: ordinary

agents do not ignore background conditions when evaluating an outcome. However,

it is entirely consistent with A1 to A9 that o1 ≁ (o1 ∧P), and so U(o1) 6=U(o1 ∧P).
In this case, Theorem 2 would have us represent S’s utilities over gambles in a way

that only seems appropriate if o ⇀ P implies o ∼ (o∧P), but it achieves this via a

set of axioms which are consistent with o ⇀ P and o ≁ (o∧P). Something has gone

wrong.

A condition that we could add to avoid this kind of situation would be:

Axiom A10a For all o ∈O and P ∈P , if o ⇀ P, then o ∼ (o∧P)

In the paragraphs that follow, I want to argue that we ought to posit something

stronger than this. The key issue concerns what kind of justification we could have

for A10a, or any other axiom we might add to play the same role.

Much here depends on how we interpret ‘⇀’. That relation hasn’t played any

interesting role in the foregoing proofs. In particular, we’ve not yet made use of S1,

so for the purely formal purposes of proving Theorem 2, ⇀ might as well be any

arbitrary relation between outcomes and propositions. Soon, we’ll use S1 in estab-

lishing that if o ⇀ P, then U(o) = U(o∧P). But there are plenty of relations which

satisfy the conditions of S1; the most obvious are various kinds of necessitation or

implication relations. What we need, therefore, is an interpretation of ‘⇀’ which both

satisfies S1 and would justify something like A10a. I’ve already suggested three pos-

sibilities, which I’ll return to shortly below. But first, it will be fruitful to consider

some interpretations which won’t give us what we want.

Pick your favourite sense of ‘necessitates’: logical, metaphysical, or a priori; then

suppose that ‘o ⇀ P’ means o necessitates P. Under this interpretation, G will consist

of all and only the two-outcome gambles that can be constructed from O and P such

that the outcomes necessitate the conditions under which they are won. A10a then

asserts that for pairs of outcome-propositions o and o∧P such that o necessitates P (so

necessarily, o and o∧P are necessarily equivalent), o ∼ (o∧P). Now, this isn’t quite

as strong as saying that S is indifferent between all pairs of necessarily equivalent

propositions—but it’s hard to see how A10a could be justified in any way without

also justifying the stronger claim. After all, it imposes a very strict kind of inferential

infallibility upon the agent—an ability to always recognise whenever o necessitates

P, for any pair of o in O and P in P . There seems to be no important difference

between this kind of infallibility and the more general ability to determine the relevant

necessitation relationships between any arbitrary pair of propositions that might be

considered. So it seems that if ‘o ⇀ P’ is taken to mean that o necessitates P in any

of those strong senses, then A10a looks pretty implausible for ordinary agents. The

representations we arrive at with Theorem 2 are then only plausible for certain kinds

of idealised agent who always assign the same utilities to equivalent propositions. We
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are left without a representation for the average person on the street, who lacks such

intellectual brilliance and who may fail to recognise that o necessitates P.

Furthermore, the remarked upon flexibility of Cr becomes rather odd under this

kind of interpretation of ⇀. If our subject is always able to recognise implication rela-

tions, then we might expect her credences to satisfy at least a basic monotonicity con-

dition: if P necessitates Q, then Cr(P)≤Cr(Q). However, we have seen that (without

further axioms) Cr need not be monotonic. Indeed, the joint satisfaction of each of

the axioms outlined so far (including A10a) is compatible with Cr(P) 6= Cr(Q) for

equivalent P and Q. It seems implausible to demand of an agent extraordinary intel-

lectual capabilities with respect to one domain (U on O), whilst at the same time

representing that agent as highly irrational with respect to another domain (Cr on P).

Inasmuch as we need to presuppose that S has some special kind of inferential capac-

ity to make Theorem 2’s U a plausible representation of S’s utilities, it had better not

be the case that the very same theorem supplies us with a credence function which

would only make sense when taken to represent the inferentially incompetent!

What the foregoing suggests, then, is that we require something stronger than

A10a. We need an axiom which will impose a greater degree of consistency in S’s

credences and utilities in the event that P⇋Q. To that end, the following axiom looks

plausible:

Axiom A10 For all o1,o2 ∈ O, if o1 ⇋ o2, then o1 ∼ o2; and for all P,Q ∈ P , if

P ⇋ Q, then if [o1,P;o2], [o1′,Q;o2′] ∈ G, then [o1,P;o2]∼ [o1′,Q;o2′]

In light of the other axioms, A10 implies A10a, and ensures that if P and Q are in the

domain of Cr and/or U and P ⇋ Q, then Cr(P) =Cr(Q) and U(P) = U(Q):14

Proof Given the established properties of U, if o1,o2 ∈O and o1 ∼ o2, then U(o1)
= U(o2); so, if o1 ⇋ o2 and A10 holds, then U(o1) = U(o2). Likewise, given the

established properties of Cr, if P,Q ∈ P and [o1,P;o2], [o1′,Q;o2′] ∈ G, then A10

states that if [o1,P;o2] ∼ [o1′,Q;o2′], then Cr(P) = Cr(Q). So we just need to show

that the right pair of gambles exists in G. For this we use S1.2 and S1.3. Given that

P ⇋ Q implies that o ⇀ P iff o ⇀ Q, and that P ⇋ Q iff ¬P ⇋¬Q, if some [o1,P;o2]
is in G then [o1,Q;o2] is certain to be in G as well. Thus, if P ⇋ Q and P,Q ∈ P ,

Cr(P) =Cr(Q). ⊓⊔

On the other hand, if ¬(P ⇋ Q), then Cr(P) need not equal Cr(Q), and U(P)
need not equal U(Q). P and Q may still be assigned the same values by Cr and U,

14 Note the role of S1.2 and S1.3 in this proof: they are used to establish that if P ⇋ Q, then if [o1,P;o2]
is in G, [o1,Q;o2] will be in G too. Given A9, we could get away with dropping both conditions if we made

the relatively weak partially structural assumption that when P ⇋ Q, there is some pair of outcomes o1,o2

such that there are [o1,P;o2], [o1′,Q;o2′] ∈ G, and [o1,P;o2]∼ [o1′,Q;o2′]. Alternatively, we could tweak

the second part of A10 to say that if P ⇋ Q, then there will be a pair of gambles [o1,P;o2], [o3,Q;o4] in G

such that:
U([o1, P; o2]) − U(o2)

U(o1) − U(o2)
=

U([o3, Q; o4]) − U(o4)

U(o3) − U(o4)

However, this latter option would result in an axiom somewhat less intuitive than A10 as stated. Finally, if

we wanted to get rid of S1.2, S1.3 and A9 while preserving the result that P⇋Q implies Cr∗(P) =Cr∗(Q)
(see §4.1), we’d need to posit that whenever P ⇋ Q and [o1,P;o2] ∈ G, there’s a [o1′,Q;o2′] in G.
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but it won’t fall out of the theorem that they must be. Furthermore, given S3 and

S1.1’s implication that o1 ⇋ (o1 ∧P) whenever o1 ⇀ P, A10 also guarantees that

U(o1) =U(o1 ∧P).
Now, A10 seems like an incredibly plausible assumption—both normatively and

descriptively—under either Interpretation 1 (believed implication), Interpretation 2

(recognised implication), or Interpretation 3 (obvious implication). If we take the

most flexible interpretation, Interpretation 1, A10 says that if S believes that P and

Q are just the same state of affairs, then (i) she will be indifferent between P and Q,

and (ii) she will also be indifferent between any two gambles of the form [o1,P;o2]
and [o1′,Q;o2′]. After all, each has a Cr(P) = Cr(Q) likelihood of resulting in an

outcome equal in value to o1 and a 1−Cr(P) likelihood of resulting in an outcome

equal in value to o2. That is, she does not distinguish between purportedly equivalent

propositions P and Q when forming her preferences over O and G. Where P and Q

are recognised as being equivalent, or even obviously equivalent, we should expect

A10 to hold all the more so. Even if ordinary agents don’t live up to this very weak

standard of rationality, it can hardly be doubted that they approximate the condition

quite closely—and any agent who does not even come close to satisfying A10 (on

any of the three suggested interpretations) is likely too irrational to have coherently

measured credences and utilities in any case.

We now have enough to state our main representation result:

Theorem 3 If S1-S3 and A1-A10 hold, then there is a function U: O∪G 7→ R and

a function Cr : P 7→ [0,1] such that for all x,y ∈ O ∪G, all o1,o2,o3,o4 ∈ O, all

[o1,P;o2] ∈ G, and all P ∈P ,

(i) x % y iff U(x)≥ U(y)
(ii) U([o1,P;o2]) =Cr(P) ·U(o1 ∧P)+Cr(¬P) ·U(o2 ∧¬P)

Furthermore, Cr is unique and U is unique up to positive linear transformation. Ad-

ditionally, Cr and U have the properties that for all P,Q ∈P and o1,o2 ∈O,

(iii) Cr(P) = 1−Cr(¬P)
(iv) If P ⇋ Q, then Cr(P) =Cr(Q), and if o1 ⇋ o2, then U(o1) =U(o2)

Proof The proof has already been given that if P ⇋ Q, then Cr(P) = Cr(Q) and

U(P) = U(Q), for relevant P,Q ∈P ∪O. That o1 ∧P ∈O whenever [o1,P;o2] ∈ G

is asserted directly by S3, so we know U(o1 ∧P) and U(o2 ∧¬P) are both defined.

As we already know that U([o1,P;o2]) = Cr(P) ·U(o1)+Cr(¬P) ·U(o2) when S2-

S3 and A1-A9 hold, and since A10 and S1 jointly imply that U(o1) =U(o1 ∧P) and

U(o2) =U(o2 ∧¬P), property (ii) follows immediately. ⊓⊔

The way we interpret ‘⇀’ thus makes a significant difference to how we interpret

Theorem 3 as a whole. What is the best way to interpret ‘⇀’? Well, that depends

on your aims. If you’re interested in a certain kind of idealised agent, you might like

to read it as a kind of epistemic necessitation relation. My own aim is to see how

much information about an ordinary subject’s doxastic states can be extracted from

her preferences under certain reasonably minimal assumptions about her. For that

reason, my first preference is for Interpretation 1.
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To be sure, there is a prima facie tension with adopting that interpretation given

my aims: any specification of ⇀ under Interpretation 1 requires epistemic access to

when S believes that P implies Q. But if I needed that kind of access to S’s doxas-

tic states before making use of the theorem, I’d probably be helping myself to too

much. But there are options here for the fan of Interpretation 1. In particular, we can

let the specification of when ⇀ holds be one more variable to be fixed (or at least

significantly restricted) by the information we have of S’s preferences.

For instance, if we grant that ⇀ generally satisfies S1.1 and that ordinary agents

generally satisfy A10, then for any plausible specification of ⇀ (and therefore G),

we should expect to find the following:

If P ⇀ Q, then (i) P ∼ (P∧Q); and (ii) for any pair of gambles [o1,P;o2],
[o1′,P∧Q;o2′] in G, [o1,P;o2]∼ [o1′,P∧Q;o2′]

We can take this expectation to generate a basic criterion of adequacy for any poten-

tial specification of when ⇀ holds between two propositions. Roughly: S probably

doesn’t believe that P implies Q if she doesn’t have the kinds of preference patterns

we’d expect of someone with those beliefs. If nothing else, this gives us a plausible

way of ruling out certain hypotheses about whether S believes P implies Q.

I suspect that this won’t be enough to pin down ⇀ exactly: there may be many

possible ways of specifying ⇀ consistent with the criterion’s satisfaction. To help

deal with some of the left-over indeterminacy, something like a principle of charity

would likely be useful. If we have a default assumption that agents’ beliefs about

whether P implies Q are generally accurate, then we have a secondary way of filtering

out hypotheses about when ⇀ does and doesn’t hold. It’s also worth emphasising that

we don’t need % to determine Cr and U down to complete uniqueness for the kinds

of purposes I have in mind (§2), and it’s probably a mistake to expect that it should.

It is enough to show that information about S’s preferences imposes very significant

and interesting constraints on what credences and utilities she might have.

Interpretation 2 presents a similar kind of ‘access’ worries to Interpretation 1—

recognition is a species of belief, and we certainly can’t expect ordinary agents to

recognise arbitrary implication relationships whenever they hold. However, because

recognition is factive, we can expect to get a little more purchase on when S recog-

nises that P implies Q from her preferences. In particular, we can modify the above

criterion of adequacy to get the following:

If P ⇀ Q, then (i) P implies Q, (ii) P ∼ (P∧Q); and (iii) for any pair of

gambles [o1,P;o2], [o1′,P∧Q;o2′] in G, [o1,P;o2]∼ [o1′,P∧Q;o2′]

Indeed, if P actually implies Q, and S’s preferences are as if she recognises this fact,

then that is certainly strong evidence that she does recognise that P implies Q.

Finally, there is also the obvious implication interpretation. For this I have in

mind a kind of objective obviousness. I take it that there are clear cases in which P

obviously implies Q. For instance, there are dogs obviously implies that there are

things; and there are dogs and cats obviously implies there are cats. And there are

clear cases where P non-obviously implies Q. For instance, there are dogs implies that

there are infinitely many primes, but this is by no means obvious. But, between these,

there are also cases where an implication may be obvious to some, but not so obvious
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to others. I don’t see any benefit to adopting this subjective notion of obviousness

in the interpretation of ‘⇀’, as it presents the same kinds of ‘access’ difficulties that

Interpretation 1 and Interpretation 2 have without any clear additional benefits. On

the other hand, suppose there are some inferences which just are obvious to everyone

in your community, which everyone recognises as obvious, and which should be

obvious to anyone worthy of being called an agent, at least in normal conditions. We

would then have a way of interpreting ‘⇀’ as a restriction on the ordinary implication

relation which we can plausibly assume S reliably reasons in accord with, without

ever needing to peek inside S’s head.

There are two main difficulties with adopting Interpretation 3. The first (and most

obvious!) is in spelling out the conditions for when P objectively obviously implies

Q. I do not know how this would be done. One might appeal to a notion of minimal

rationality as a constitutive norm of agency: it’s not at all implausible that part of

what it is for S to be an agent at all is for S to be minimally rational, to respond

appropriately to the evidence around her, and to make rational choices in light of that

evidence. To say that S is an agent is to presuppose that S at least comes close to

satisfying some basic criterion of rationality. If so, it would be natural to presume

that S draws out any obvious implications from the propositions she considers, and

recognises obvious logical equivalences, ceterus paribus.

The second difficulty is more worrying to me. It’s plausible that for any P, there

are very few things that P objectively obviously implies. If so, Interpretation 3 gener-

ates significant tension with the main existential assumption we’ve made about gam-

bles, A1. The more tightly restricted ⇀ is, the less plausible this axiom will be—and

if there are too few gambles in G, we won’t get very much of a fix on Cr and U. The

other two interpretations are less restrictive, which is an important benefit that they

have over Interpretation 3.

4 Weakening the Axioms

In this section, I want to discuss three independent ways of modifying the axioms

outlined in §3. In particular, I want to see what can be done without the strong con-

sistency axiom A9 (§4.1), and how we can modify the system to accommodate im-

precise credences and utilities by getting rid of A8 and A2.2 (§4.2)

4.1 Accommodating Inconsistency

A9 is a very strong condition. I’m inclined to think that it is the least plausible of the

axioms outlined in this paper. It essentially requires of our subject an extraordinary

degree of precision and consistency with respect to how she ranks different gambles

conditional on the same proposition. It is the kind of axiom which would only make

sense of subjects who are unflinchingly consistent qua expected utility maximisers

with precise credences, always calculating their value precisely according to the ex-

pected utility formula. This is too much to ask of ordinary agents, who we should at

best only expect to approximate such norms of consistency.
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It’s also worth noting that A9 also ends up implying analogues of controversial

independence axioms from other expected utility theorems. For instance, it implies

something much like von Neumann & Morgenstern’s [32] ‘Independence’ axiom:

if o1 % o2, then for any pair [o1′,P;o3], [o2′,P;o3′] ∈ G, [o1′,P;o3] % [o2′,P;o3′].
Likewise, it implies restricted analogues of Savage’s axioms P2 and P4: (i) for all

relevant gambles in G, [o1,P;o2] ≻ [o3,P;o2] if and only if [o1,P;o4] ≻ [o3,P;o4];
and (ii) if o1 ≻ o2 and [o1,P;o2] % [o1′,Q;o2′], then for all relevant gambles in G, if

o3 ≻ o4, then [o3,P;o4] % [o3′,Q;o4′]. It would certainly be best to do without these

implications, to whatever extent possible.

As it turns out, we can to some extent do without A9 by making some tweaks to

our definition—and interpretation—of Cr:

Definition 5 (Cr
∗) For all P ∈P ,Cr∗(P) = [λ1,λ2] iff [λ1,λ2] is the smallest inter-

val such that for any [o1,P;o2] ∈ G where o1 ≁ o2,

U([o1, P; o2]) − U(o2)

U(o1) − U(o2)
∈ [λ1,λ2]

For more or less the same reason that Cr is unique, Cr∗ will also be unique. In what

follows, I’ll first say a few words about Def. 5 and the results we get if we drop A9,

after which I’ll discuss how I think Cr∗ ought to be interpreted.

Here is the intuitive idea behind Cr∗. Def. 4 essentially says that Cr(P) = 1⁄n just

in case the agent treats all gambles conditional on P precisely as though she assigns

a credence of 1⁄n to P, in the sense that the value of U for all gambles [o1,P;o2] with

o1 ≻ o2 sit 1⁄n of the way between o1 and o2. Def. 5, on the other hand, allows for some

variability in the agent’s preferences with respect to gambles conditional on P, and

Cr∗ represents that variation by means of an interval. For example, suppose (i) that

o1 ≻ o2 ≻ o3 ≻ o4, (ii) the agent’s utility for [o1,P;o2] sits 1⁄2 way between her utilities

for o1 and o2, (iii) her utility for [o3,P;o4] is 1⁄4 of the way between her utilities for

o3 and o4, and finally (iv) [o1,P;o2] and [o3,P;o4] are the only gambles conditional

on P. Then, Cr∗(P) would be [1⁄4, 1⁄2]. If there were yet more gambles to consider—

say, [o1,P;o4]—and its value sat 1⁄3 of the way between the values of its outcomes,

then Cr∗(P) would remain unchanged; however, if it was 1⁄5 of the way, then Cr∗(P)
would equal [1⁄5, 1⁄2]. Notice, though, that if A9 is satisfied, then Cr(P) = n just in case

Cr∗(P) = [n,n]. Thus, Cr∗ can be seen as a generalisation of Cr, the latter reducing

to the former in the special case that A9 holds.

Theorem 4 If S1-S3 and A1-A8, A10 hold, then there is a function U : O∪G 7→ R

and a function Cr∗ : P 7→ {[λ1,λ2] : [λ1,λ2] ⊆ [0,1]} such that for all x,y ∈O∪G,

all o1,o2,o3,o4 ∈O and all P ∈P ,

(i) x % y iff U(x)≥ U(y)
(ii∗) U([o1,P;o2]) = λ ·U(o1)+(1−λ ) ·U(o2), for some λ ∈Cr∗(P)

Furthermore, there is only one Cr∗ satisfying Def. 5, and U is unique up to positive

linear transformation. Additionally, Cr∗ and U have the properties that for all P,Q ∈
P and o1,o2 ∈O,

(iii∗) Cr∗(P) = [λ1,λ2] iff Cr∗(¬P) = [1−λ2,1−λ1]
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(iv∗) If P ⇋ Q, then Cr∗(P) =Cr∗(Q), and if o1 ⇋ o2, then U(o1) =U(o2)

The proof of Theorem 4 essentially reiterates the proof of Theorem 3, and so has been

suppressed. The only important difference between the two is that instead of using

A9 to justify deriving the value and properties of Cr(P) from an arbitrarily chosen

gamble [o1,P;o2] where o1 ≁ o2, we instead perform the same steps on the lowest

and highest ranked gambles conditional on P (with differently valued outcomes) to

derive the lower and upper bounds of Cr∗(P) as defined by Def. 5. Basically the same

steps that were used to establish (ii), (iii) and (iv) in the proof of Theorem 2 can then

be used to show that properties (ii∗), (iii∗) and (iv∗) hold.

I don’t think it would be right to interpret Cr∗ as a representation of S’s credences

per se. Rather, the most plausible way to understand Cr∗ is to take it as providing

us with a limit on any adequate measure of S’s credences towards P, given the infor-

mation we have about her preferences and assuming that she at least approximately

evaluates the utility of gambles according to their expected utility. In other words, I

would suggest that Cr∗(P) = [λ1,λ2] tells us that the agent’s preferences constrain

what her credence in P are likely to be at least down to [λ1,λ2], on the presupposition

that she generally approximates the norm of expected utility maximisation.

This way of reading of Cr∗ is compatible with a range of possibilities. For in-

stance, Cr∗(P) = [λ1,λ2] would be consistent with the agent having a precise cre-

dence for P anywhere within [λ1,λ2]—in which case she is presumably somewhat

inconsistent with respect to how she evaluates the utilities of gambles conditional on

P. It is also compatible with the agent having imprecise credences accurately mea-

sured by some interval within [λ1,λ2], including but not necessarily [λ1,λ2] itself. In

either case, though, Cr∗(P) = [λ1,λ2] should only be taken to mean that whatever the

true measure of the agent’s credences regarding P may be, it (most likely) sits some-

where within [λ1,λ2]. Further information would need to be considered to determine

how exactly the agent’s credences in P should be represented.

4.2 Accommodating Imprecision

Ordinary agents probably don’t have infinitely precise credences and utilities, so it’s

probably not a good idea to represent their credences and utilities using real-valued

Cr and U. Real-valued functions imply comparative completeness: for all o1 and o2

in O, either U(o1) ≥ U(o2) or U(o2) ≥ U(o1); and for all P and Q in P , either

Cr(P) ≥ Cr(Q) or Cr(Q) ≥ Cr(P). But it seems reasonable to expect that there will

be some incompleteness in our preferences, and likewise some incompleteness in

our overall confidence ranking. Let ‘P %b Q’ mean that S takes P to be at least as

probable as Q. Then we should allow both % and %b to be incomplete, and Cr and U

should reflect this.

Since the Ramseyean strategy is to derive credences from utilities, and utilities

from preferences, I’ll start with a look at accommodating imprecise credences under

the continued assumption that utilities are precise. In §3.4, I said that it was plausible

that where S’s credence in P is imprecise, her utility towards any interesting gamble
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conditional on P should likewise be at least somewhat imprecise.15 If this is correct,

then A8 (in the context of the other axioms) stands out as particularly implausible

for any agent with imprecise credences. Where every outcome in O is assigned a

precise utility, if the utility for [o1,P;o2] is imprecise because S’s credence for P is

imprecise, then there will be no o3 ∈O such that [o1,P;o2]∼ o3; nor will there be a

gamble conditional on a 1⁄2-probability proposition equipreferable to [o1,P;o2].
16 Let

GΠ be that subset of gambles in G conditional on 1⁄2-probability propositions. Then,

the most we should expect is:

Axiom A8∗ For each [o1,P;o2] ∈ G, there are some x,y ∈ O∪GΠ such that x %

[o1,P;o2]% y

Suppose we replace A8 with A8∗, and allow for some incompleteness in % specif-

ically with respect to gambles outside of GΠ . (That is, if there is a z ∈O∪GΠ val-

ued between x and y for x % [o1,P;o2] % y, then it’s possible for [o1,P;o2] to be

incomparable with z.) Without the stronger axiom A8, it won’t be possible to as-

sign every gamble a precise utility. By itself, A7 ensures that o1 % [o1,P;o2] % o2,

but that’s not much to go on when it comes to fixing Cr(P). In many cases, how-

ever, we’ll be able to get more fine-grained than this. For any o3 and o4 such that

o1 % o3 % [o1,P;o2] % o4 % o2, we’ll know that the utility of [o1,P;o2] (whether

precise or not) must be somewhere weakly between U(o3) and U(o4). That’s a start.

Make the simplifying assumption that for every gamble [o1,P;o2], there is an l

and an r in O∪GΠ such that (i) l % [o1,P;o2] and there is no x∈O∪GΠ such that l ≻
x% [o1,P;o2], and (ii) [o1,P;o2]% r and there is no y∈O∪GΠ such that [o1,P;o2]%
y ≻ r. In other words, l and r are the (or amongst the) ‘closest’ two outcomes on the

left and right sides of [o1,P;o2] respectively. (A little extra footwork is involved if

there are no closest outcomes, but the points that follow won’t be changed much if

so.) We know from A7 that if o1 % o2, then o1 % l % r % o2; and if o2 % o1, then

o2 % l % r % o1. We can then let Cr+ be defined as follows:

Definition 6 (Cr
+) For all P ∈ P , if there is a gamble [o1,P;o2] ∈ G such that

o1 ≁ o2, then if l ∼ r,

Cr+(P) =
U(l) − U(o2)

U(o1) − U(o2)

15 How agents make decisions with imprecise credences is a matter of much contemporary discussion,

so I cannot say anything very definite here. For an overview of the main approaches to decision-making

with imprecise credences, see [40]. For a very natural model according to which imprecise credences

will generate imprecise utilities for gambles, see [36]. Most descriptively-motivated models of decision-

making with imprecise credences aim at representing the apparently risk-averse attitudes that ordinary

subjects take towards gambles conditional on propositions with ‘ambiguous’ probabilities. As such, it is

unclear how well they fit with the assumption that our subject is risk-neutral (§3.1). If it turns out that

otherwise ordinary, risk-neutral agents with imprecise credences follow a rule quite unlike expected utility

maximisation, like Γ -maximin (see [1], [39]), then Theorem 3 will likely have to be revised at a very

fundamental level (e.g., the motivations for Def. 1, Def. 2 and Def. 4 will be undermined).
16 With the exception of A9—which I’ll return to in a moment—none of the other axioms appear espe-

cially problematic if S has imprecise credences. A1.1 does presuppose that there are at least two proposi-

tions towards which S assigns a credence of exactly 1⁄2, but this seems a relatively minor idealisation.
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Otherwise, if l ≻ r, then Cr+(P) = (λ1,λ2), where:

λ1 =
U(l) − U(o2)

U(o1) − U(o2)
, λ2 =

U(r) − U(o2)

U(o1) − U(o2)

If l ∼ r, then Cr+(P) = Cr(P). When l ≻ r, the gamble [o1,P;o2] will have no pre-

cise utility, but its location within the preference ranking will be represented by

the open interval (U(l),U(r)), for which U(l) = λ1 ·U(o1)+ (1− λ1) ·U(o2), and

U(r) = λ2 ·U(o1)+ (1− λ2) ·U(o2). To ensure Cr+(P) is well-defined, we’d need

to make corresponding changes to A9—i.e., we’ll want to ensure that the value of

Cr+(P) is independent of whatever gamble conditional on P is chosen, so long as it

has outcomes of unequal value. Alternatively, we can simply remove A9 as we did in

§4.1, and construct a still more complicated function on P .

It would be too hasty to read Cr+ as a direct representation of S’s credences; with-

out further conditions, it should be given an interpretation similar to the one suggested

for Cr∗. The reason for this is that nothing in our axioms ensures that U is continu-

ous: between any two outcomes o1 and o2 such that o1 ≻ o2, there may be no third

outcome o3 such that o1 ≻ o3 ≻ o2. As such, there will always be two (not mutually

exclusive) explanations for whenever we find that l ≻ [o1,P;o2] ≻ r: either S’s cre-

dences towards P are imprecise, or there simply weren’t enough outcomes between

l and r to pin down her actual utility for [o1,P;o2]. Again: Cr+ expresses a limit on

what S’s credences might be, given some background assumptions. Even if it doesn’t

nail down her credences exactly, there’s nothing wrong with a little indeterminacy—

so long as we’re not trying to construct S’s credences entirely out of her preferences.

And, crucially, we’ve done nothing to presuppose that S’s credences must in general

be precise.

Finally, we need to accommodate incomplete preference orderings. About this I

will be brief, as the general strategy I’ll mention is fairly well known (see, e.g., [3],

[19], [34], [44]). First, for any % on O∪P , call %+ a completion of % just in case

(i) %+ is complete and (ii) if x % y, then x %+ y. Second, say that % is coherent just

in case it satisfies A1 to A7. And third, if % is incomplete, say that it is coherently

completable just in case there is at least one coherent completion of %. In §3.4 we

proved that every coherent % could be represented by a real-valued function U. The

natural thing to do, then, when representing an incomplete but coherently completable

preference ordering, is to have U map each o ∈O to the set of values it might take

under each possible coherent completion of %.17

Requiring only that % should be coherently completable significantly weakens

the requirements on our subject’s preferences. It should go without saying, though,

that any resulting ‘fuzziness’ with respect to U will ramify up the system and result

in an even less specific credence function.

17 Taking this strategy also requires a slight re-interpretation of ≻ and ∼, as they were defined in §3.4.

We can keep the definitions of ≻ and ∼ in terms of %, but we should only say that S strictly prefers P to Q

(or is indifferent between them) if P ≻ Q (or P ∼ Q) on all coherent completions of %.
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5 Conclusion

In §2.1, I said I wanted a representation with axioms that ordinary subjects come

close to satisfying relative to some interesting domain under minimally idealised

conditions, with an intuitively plausible decision rule R and relatively few constraints

< R1,R2, . . . ,Rn > on Cr and U. Furthermore, the uniqueness conditions on Cr and U

should be reasonably restrictive. To conclude, then, I want to offer a brief evaluation

of the foregoing results in light of these goals.

Let’s begin with < R1,R2, . . . ,Rn >. In establishing the existence and uniqueness

conditions for Theorem 3’s Cr, we have only officially had to assume that it is real-

valued and defined on some prespecified set of propositions P , which need not have

an algebraic structure. Likewise, we have only needed to assume U is real-valued,

and defined on a prespecified space of outcomes O.18 Any other properties of Cr and

U (e.g., that Cr(P) = 1−Cr(¬P), that Cr(P) ∈ [0,1], that Cr(π) = 1⁄2, etc.) are all

then consequences of the axioms, not independent restrictions we need to place upon

the functions for the purposes of proving the representation and uniqueness results.

Of course, within those axioms are a number of non-trivial structural constraints

on P and O. From S2 and A1.2, P has to be closed under negation. Also from S2

and A1.2, for every complementary pair of propositions P and ¬P in P , there has to

be a pair of outcomes o1 and o2 of unequal value bearing the ⇀ relation to P and ¬P

respectively. From S2 and A1.1, for every outcome o, there is at least one proposition

π ∈ Π such that Cr(π) = 1⁄2 and o′ ⇀ π for some outcome o′ equal in value to o.

And from S3, for every gamble that can be found in G, certain conjunctions need

to exist in O. (Whether this automatically makes O infinite or not depends on how

fine-grained you like your propositions.) Each of these conditions will still need to be

met even if we pursue any of the weakened versions of the theorem discussed in §4,

but I’m not inclined to see any as especially problematic.

The fact that O and P have to be specified independently presents an interesting

challenge, and one which is far too often overlooked. That is, we need to have some

minimal access to what propositions our subject has credences and utilities towards

in order to flesh out the purely formal constructions that we have been employing to

talk about her preferences. At best, Theorem 3 gives us a way of pinning down the

particular degrees of confidence and desire that S attaches to different propositions,

given a specification of just what propositions she has credences and utilities towards.

What Theorem 3 doesn’t do is give us a way of getting at what sorts of propositions

she has these attitudes towards in the first place.

But this limitation is not had by Theorem 3 alone. As noted in §2.1, Savage re-

quires us to stipulate at the outset the domains of both Cr and U. On the other hand,

Jeffrey makes the assumption that every proposition towards which S has preferences

is also one towards which S has credences. He then also assumes that S has prefer-

ences towards a non-specific bottomless algebra of propositions. Neither assumption

is trivial, and I would prefer to avoid making either in the absence of strong reasons

in their favour.

18 The extension of U to O∪G is an optional extra. It’s straightforward to restate the theorem such that

U is only defined for outcomes, with a distinct function EU on G characterised in terms of Cr and U.
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The flexibility that my O and P have therefore seems like a distinct advantage,

and the fact that their domains cannot be derived from the facts about preference

is not obviously a disadvantage. It is not at all clear that it’s possible to determine

an appropriate domain for Cr merely given S’s preferences.19 It’s plausible that we

can derive an appropriate domain for U from S’s preferences, for obvious reasons.

The real difficulty is in getting a specification of P out of %. And it’s certainly not

unreasonable to think that we may not be able to extract a complete specification of

Cr’s domain solely from S’s preferences. If this is so, then the need to treat O and

P as primitives rather than trying to derive them from % just reflects the facts about

what kinds of information we can expect to get out of preferences alone.

Regarding whether ordinary agents generally satisfy my axioms and whether the

basic expected utility norm for gambles in G is plausible, I cannot say a great deal

for certain. Ultimately, this is an empirical matter, not one that’s suited for armchair

speculation. I have argued that we can do without Theorem 3’s least plausible ax-

ioms (A2.2, A8, and A9), at the cost of greater indeterminacy in Cr and U. Of these,

axiom A9 in my system is the most similar to those axioms of more classical ex-

pected utility theorems which have created the most controversy; e.g., von Neumann

& Morgenstern’s ‘Independence’ axiom and Savage’s P2 and P4.

Of those axioms that remain, I think it’s plausible that ordinary agents come close

to satisfying the axioms under fairly normal conditions; i.e., conditions where they

have time to reflect, are not under the influence of drugs, anxiety and alcohol, and

so on. I’ve already given reasons for thinking that A1.1 is generally satisfied, and

it’s certainly hard to imagine widespread failures of A3, A7 and A1.2. Although

contestable, A2.1 seems on the whole to be empirically plausible [27, p. 13]. A4 is

only really plausible once it has been translated in terms of ≥d , which is problematic:

the translation presupposes the adequacy of Def. 2 as a definition of ≥d , which in

turn presupposes the accuracy of an expected utility representation for % on G. A5

and A6 are partially structural axioms with analogues shared by the large majority

of decision-theoretic representation theorems, so the present theorems are at least no

worse than their competitors in that respect.

Nevertheless, it will be worth saying a few more things about the empirical evi-

dence relating to expected utility theory generally. The orthodox opinion is that ordi-

nary agents generally do not satisfy the axioms associated with any of the classical

theorems for expected utility theory; there is a long history of experiments pointing

to violations with Savage’s theorem in particular. However, these theorems aim for

a much more general representation of subjects’ preferences than I have aimed for:

their ‘relevant domain D’ is usually the set of all things towards which a subject does

(or might) have preferences. Savage’s axioms put restrictions on arbitrarily complex

‘acts’, the vast majority of which won’t be representable in our set of simple two-

outcome gambles G. Consequently, some of the evidence that’s relevant to expected

utility theory qua general theory of decision-making is difficult to apply in the present

19 In connection with this point, it’s worth pointing out that Savage’s credence functions are fundamen-

tally incapable of representing subjects’ credences regarding their own actions and anything probabilis-

tically dependent upon them [14]. The same applies to every theorem based on a similar kind of formal

framework. If agents do have credences towards the relevant kinds of proposition, then no Savagean theo-

rem will let us fully pin down all of the credence facts using information from preferences alone.
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context. For example, without three-outcome gambles it’s not possible to formulate

even the very simple set-up needed for the Allais paradox.

Classical expected utility theorems also typically aim towards the probabilistic

representation of subjects’ credences. For that reason, they require additional con-

straints and a more complex space of gambles which are capable of partitioning the

possibilities into more than just a single ‘win condition’ and its negation. Ramsey’s

own representation theorem begins with axioms very similar to Theorem 2’s, but he

ensures probabilistic coherence only through the addition of further axioms for n-

outcome gambles. See Bradley [4, esp. §2.3] for discussion on how this is done. Note

that Bradley’s proofs require stronger assumptions about the logical structure of P

than I have made, and the additional axioms (R10, R11) are only intuitively plausi-

ble to the extent that the subject is fully cognizant of that extra structure. Generally,

something like this is always going to be needed if Cr is to be a probability function.

So, one lesson that we can take from the empirical literature seems to be this: we

are not (probabilistically coherent) expected utility maximisers in general. And with

our bounded capacities, we’ll be less and less likely to satisfy the norms of expected

utility theory as the options we deliberate on become more and more complex. How-

ever, for the simple cases, something like expected utility theory probably comes

close to the truth a lot of the time. This much is supported by the evidence. Even

psychological models that are explicitly designed to accommodate the empirical evi-

dence of our deviations from expected utility theory typically bear a very close resem-

blance to that theory. With just a few exceptions, they involve a real-valued (though

usually non-additive) Cr and a real-valued U, combined in something like expecta-

tional form, with the basic decision-making rule being that an agent will pick the

option which has the highest Cr-weighted average utility. There may be some bells

and whistles added in to deal with risk-attitudes and framing effects, non-additive or

imprecise credences and so on, but—as a rule—contemporary models of decision-

making closely resemble the basic model of expected utility theory.20 It would be a

mistake to infer, from the very large amount of evidence that we are not expected util-

ity maximisers, that we are therefore nothing like expected utility maximisers—nor

that we wouldn’t be under some fairly minimal idealisations.

The axioms put forward here don’t say anything about what our subject’s prefer-

ences have to be like for the kinds of arbitrarily complicated (and often imaginary)

choices that Savage’s framework lets us model; but that is not their point. Instead, the

very simple gambles in G provide a limited domain for % wherein something like

expected utility theory is more likely to be accurate, and (hence) where an ordinary

agent’s credences and utilities will most clearly shine through in her preferences. This

can be true even for the frequently irrational—so long as they maximise expected

utility with respect to G, we can show that there’s enough information contained in

their preferences to play a significant role in pinning down what their credences and

utilities have to be.

20 This is essentially the case, for example, of Tversky and Kahneman’s [41] cumulative prospect theory,

widely thought to be the most empirically accurate model of decision-making so far developed. Simplify-

ing somewhat, CPT models agents as preferring acts with the greatest µ-weighted average utility, where

µ is a monotonic function from a set of events to [0, 1]. The ‘decision-weight’ µ is usually taken to be

decomposable into the subject’s credences and her attitude towards risk (cf. [43])
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