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Negative-free approximation of probability density function for

nonlinear projection filter*

Jongrae Kim1, and Robert Richardson1

Abstract— Several approaches have been developed to esti-
mate probability density function (pdf). The pdf has two im-
portant properties: the integration of pdf over whole sampling
space is equal to 1 and the value of pdf in the sampling space is
greater than or equal to zero. The first constraint can be easily
achieved by the normalisation. On the other hand, it is very
hard to impose the non-negativeness in the sampling space. In
the pdf estimation, some areas in the sampling space might have
negative pdf values. It produces unreasonable moment values
such as negative probability or variance. A transformation to
guarantee the negative-free pdf over a chosen sampling space
is presented and it is applied to the nonlinear projection filter.
The filter approximates the pdf to solve nonlinear estimation
problems. For simplicity, one-dimensional nonlinear system is
used as an example to show the derivations and it can be readily
generalised for higher dimensional systems. The efficiency of the
proposed method is demonstrated by numerical simulations.
The simulations also show that to achieve the same level of
approximation error in the filter the required number of basis
functions with the transformation is a lot smaller compared to
the ones without transformation. This will be hugely benefited
when the filter is used for high dimensional systems, which
requires significantly less computational cost.

I. INTRODUCTION

Nonlinear estimation has been one of the most studied

topics in control theory in the last half century since the

success of Kalman filter [1] in the Apollo mission [2]. The

orbit estimation problem in the Apollo mission is nonlinear

and the initial success of the Kalman filter relied on the

assumption of the reasonable error bounds in the perturbed

state, which can be approximated by a linear dynamics, and

it is called the extended Kalman filter. The extended Kalman

filter has been applied to many dynamical systems including

the attitude estimation problem for satellite [3], the target

tracking problem such as α-β filter [4] and α-β -γ filter [5], a

traffic management [6], and plethora of many other examples.

It was, however, quickly realised that the limitation of the

extended Kalman filter or linearised approach to nonlinear

estimation, in general. If the initial guess is not close enough

to the region, where the linearisation is valid, then the

estimated state could diverge. In order to resolve the issues,

unscented Kalman filter is proposed [7]. Using a nonlinear

transformation, the unscented Kalman filter improves the

linearisation accuracy up to the 3rd-order in Taylor series
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expansion [8]. Several examples of the unscented Kalman

filter applications can be found in [9]–[11].

True nonlinear estimation can be obtained by solving the

Fokker-Plank equation [12], which governs the propagation

of the underlying joint probability density function (pdf) for

a given nonlinear system, while the propagation is updated

using the Bayes’ rule whenever a measurement is available.

The particle filter is based on these mechanisms [13], where

the required multi-dimensional integration is performed by

the Monte-Carlo sampling method. One of the main issues

in the particle filter is that the sampling points are quickly

concentrated in a few sampling spaces and the re-sampling

methods are developed to rectify the problem, which does

not solve another problem with highly variable cases [14].

The nonlinear projection filter presented in [15] solves

the Fokker-Planck equation in a different way compared

to the particle filter. The solution of the Fokker-Planck

equation is assumed to be a linear combination of a set

of orthogonal basis functions. The dynamics of the time-

varying variables to combine the basis function is obtained

and used for propagating the time-varying variables; and they

are updated based on the Bayes’ rule when a measurement

is available. It has been applied to a target tracking problem

[16]–[18] and there are a few variations of the filter via

combining with particle samplings [19], [20] or performing

the multi-dimensional integration combining with multiple

sensor measurements [21].

As it is emphasised, however, in [21], the approximated

pdf might not satisfy all requirements for any pdf to content.

The integration of pdf over whole sampling space must be

equal to 1. This condition can be easily met for the filter by

normalising the estimated pdf every propagation and/or up-

date step. On the other hand, the non-negativeness condition,

which requires the pdf greater than equal to zero in every

point in the sampling space, is the one that hard to comply

with. It is not easy to impose the non-negativeness during the

propagation and the update steps. The negativeness issue will

not be resolved via simply increasing the number of basis

functions. This is a similar problem in the Fourier transform

called the Gibbs phenomena [22].

The negativeness in the approximated pdf causes inac-

curate and/or physically impossible values in the moment

calculation. The first moment, i.e. the average, would not

suffer directly from the discrepancy in the pdf. Higher

moments including the variance would be directly affected:

for example, a calculated variance would be negative, which

is impossible by the definition. In order to impose the

non-negative condition, a novel transformation approach is



proposed using a log function. This is partially inspired by

the method presented in [23].

This paper organises as follows: firstly, the summary

of the nonlinear projection filter is presented; secondly, a

transformation for prohibiting the negativeness of pdf is

presented along with the detail derivations of the filter for

a one-dimensional nonlinear system, where we highlight

that for many cases analytic expression can be obtained

for a general type of multi-dimensional nonlinear systems.

Thirdly, numerical simulations are performed to show the

effectiveness of the proposed transformation and to compare

the results with the ones without the transformation. Finally,

the conclusions are presented.

II. NONLINEAR PROJECTION FILTER

One of the standard forms of nonlinear stochastic system

is given by

dx = f(x)dt +G(x)dβ (1)

for t ≥ t0, where x is an n-dimensional state, β (t) is a b-

dimensional Brownian motion, E(ββ T ) = Q(t)dt, E(·) is the

expectation, (·)T is the transpose, f(·) is an n-dimensional

nonlinear function, and G(·) is an n× b matrix. The mea-

surement is given by

yk = h(xk)+vk (2)

for k ≥ 1, where yk is an m-dimensional real vector, vk

is a white noise whose covariance is Rk, and h(·) is the

m-dimensional measurement function. It is assumed that

β (t) and vk are not correlated.

The conditional probability density function can be written

as follows:

p(t,x| Yk) =
p(t,x,Yk)

p(Yk)
,

where Yk is the collection of all measurement up to tk ≤ t.

The time evolution of the conditional pdf is governed by the

Fokker-Planck equation:

∂ p

∂ t
=−

n

∑
i=1

∂ (p fi)

∂xi

+
1

2

n

∑
i=1

n

∑
j=1

∂ 2
[

p
(

GQGT
)

i, j

]

∂xi∂x j

(3)

where xi and fi are the i-th element of x and f(x), respec-

tively, (GQGT )i, j is the i-th row and j-th column element

of the matrix, GQGT , and the initial condition is given by

p(t0,x). Once the conditional pdf is obtained, any moment

can be calculated as follows:

E
(

x
ℓ1
1 x

ℓ2
2 . . .xℓn

n

)

=
∫

Ω

(

x
ℓ1
1 x

ℓ2
2 . . .xℓn

n

)

p(x, t| Yk)dx,

where Ω is a closed bounded subset of R
n and ℓi for

i = 1,2, . . . ,n is a real number.

The nonlinear projection filter is derived by assuming the

pdf as a linear combination of basis functions as follows:

p(t,x| Yk)≈ pN(t,x| Yk) =
N

∑
ℓ=1

cℓ(t)φℓ(x), (4)

where the basis functions are orthogonal

∫

Ω
φi(x) φ j(x)dx =

{

1 for i = j,

0 for i 6= j
(5)

for i, j = 1,2,3, . . . ,N−1,N.

Propagation: Substituting (4) into (3), projecting onto φq

and integrating over Ω provide the following differential

equation for c(t):

ċ(t) = (A1 +A2)c(t), (6)

where (˙) is the derivative by time, the initial condition is

equal to

c(t0) =
∫

Ω
p(t0,x)φ(x)dx,

φ(x) = [φ1(x), φ2(x), . . . , φN(x)]T , and the ith-row and jth-

column element of A1 or A2 is given by

[A1]i, j =−
n

∑
k=1

∫

Ω

∂ [φ j fk]

∂xk

φidx,

[A2]i, j =
1

2

n

∑
k=1

n

∑
ℓ=1

∫

Ω

∂ 2
[

φ j

(

GQGT
)

k,ℓ

]

∂xk∂xℓ
φidx.

Update: The conditional probability density function is

updated by the Bayes’ rule at the measurement available

from a sensor [13]. Substituting (4) into the Bayes’ rule,

the update equation is obtained as follows:

c(t+k ) = η
[

Y (yk) c(t−k )
]

(8)

where t+k and t−k indicate after and before the k-th measure-

ment are considered,

Y (yk) =
∫

Ω
p(yk|x)φφ T dx

and η is the normalising constant. The full details on the

nonlinear projection filter derivation can be found in [15].

III. NEGATIVE-FREE PDF APPROXIMATION

In the nonlinear projection filter with the basis function ap-

proach, the main issue is the negativeness of the probability

in some places of the sampling space. To reduce the size of

the negative probability area, the number of basis functions

must increase quite significantly. The computational cost

increases exponentially as the number of basis functions

increases. This would be the one of main obstacles in the

applications of the filter to some reasonable size systems

For simplicity, all derivations from now on are based on

the following nonlinear system [15]:

dx = sin(x)dt +dβ (9)

with a measurement equation equal to

yk = xk + vk (10)

where the variance of the process noise, β (t), is equal to q,

and the variance of the measurement noise, vk, is equal to

r. Note that the similar procedures can be applied to various

types of nonlinear function with higher-dimensional states.



A. Transformation

Define ρ(t,x|Yk) using the joint pdf, p(t,x|Yk)

ρ(t,x|Yk) = ln[p(t,x|Yk)+ ε] (11)

where ε is a small positive real number in order to prevent

the log-function becoming the negative infinity or a large

negative value for p(t,x|Yk) to approach to zero arbitrary

close. As the domain of x, i.e., Ω, less likely includes the

regions where the joint pdf is exactly equal to zero, the

following assumption is introduced without imposing any

strong restriction:

Assumption 3.1: Ω is chosen such that δ in the following

inequality is close to zero but not exactly zero.

0 < δ ≤min
t≥0
x∈Ω

[p(t,x|Yk)] (12)

Hence, ε can be set to very close to zero and a lower bound

of ρ(t,x|Yk) is given by

−∞ < ln(δ + ε)≤ ρ(t,x|Yk) (13)

and ρ(t,x) can be negative unlike p(t,x)≥ 0 for all t ∈ [0,∞)
and x ∈Ω. The inverse transformation is simply

p(t,x|Yk) = eρ(t,x|Yk)− ε (14)

In practice, ε can be chosen to be very close to zero allowed

by the given numerical precision.

B. Propagation

Take the time derivative of the inverse transformation

d p(t,x|Yk)

dt
= eρ(t,x|Yk)

dρ(t,x|Yk)

dt
(15)

Substitute (14) and (15) into the Fokker-Planck equation, (3),

eρ dρ

dt
=−eρ sin(x)ρ ′+(eρ − ε)cos(x)+

q

2

[

eρ(ρ ′)2 + eρ ρ ′′
]

where (·)′ = d(·)/dx and (·)′′ = d2(·)/dx2. Divide both sides

by eρ , which is greater than ε ,

ρ̇ =−sin(x)ρ ′+
eρ − ε

eρ
cos(x)+

q

2

[

(ρ ′)2 +ρ ′′
]

(16)

In the nonlinear projection filter [15], it is proposed that

the joint pdf is approximated by (4). The approximation uses

a set of basis functions and it does not force the approximated

values at all x in Ω be non-negative. On the other hand,

as ρ(t,x|Yk) can be positive or negative, it is natural to

approximate ρ(t,x|Yk) instead of p(t,x|Yk) by a set of basis

functions without concerning to impose non-negativeness.

Let

ρ(t,x) = cT (t)φ(x) (17)

and substitute the approximation into (16)

ċT φ =−sin(x)
(

cT φ ′
)

+
ecT φ − ε

ecT φ
cos(x)

+
q

2

[

(cT φ ′)2 + cT φ ′′
]

(18)

where the N-number of cosine-basis functions are chosen

φi(x) =







1/
√

∆x for i = 1,
√

2

∆x

cos [κi(s−ax)] for 2≤ i≤ N
(19)

∆x is equal to bx−ax, ax is the lower bound of x, bx is the

upper bound of x, i.e., x ∈ [ax,bx] and κi = [(i−1)π]/∆x for

i = 1,2, . . . ,N. The basis functions satisfy the orthogonality

condition.

Proposition 3.2: The basis functions are satisfied

φ
′
(x) =−Kψ(x) (20a)

φ
′′
(x) =−K2φ(x) (20b)

where

K = diag
[

κ1 κ2 . . . κN

]

, (21a)

ψ(x) =

√

2

∆x















0

sin[κ2(s−ax)]
sin[κ3(s−ax)]

...

sin[κN(s−ax)]















, (21b)

Proof : The proof is straightforward and omitted. The full

derivations can be found in [18]. �

Using the proposition 3.2, (18) becomes

ċT φ =− sin(x)
(

cT Kψ
)

+
ecT φ − ε

ecT φ
cos(x)

+
q

2

[

(cT Kψ)2− cT K2φ
]

(22)

Multiply φ both sides and integrate over Ω

ċ =−
∫

Ω
sin(x)

(

ψT Kφ
)

dx c+
∫

Ω

ecT φ − ε

ecT φ
cos(x)φdx

+
q

2

∫

Ω
(cT Kψ)2φdx− q

2
K2c (23)

Re-arrange it

ċ =−
[

∫

Ω
sin(x)

(

ψT Kφ
)

dx+
q

2
K2

]

c

+
∫

Ω

ecT φ − ε

ecT φ
cos(x)φdx+

q

2

∫

Ω
(cT Kψ)2φdx (24)

Some of the integrals in the right hand side of (24) have

analytic expression. The first row of the first integral is zero,
[

∫

Ω
sin(x)

(

ψT Kφ
)

dx

]

1 j

= 0 (25)

for j = 1,2, . . . ,N. The diagonal terms are given by
[

∫

Ω
sin(x)

(

ψT Kφ
)

dx

]

ii

=
2(i−1)2π2[sin(b)− sin(a)]

∆x[∆2
x−4π2(i−1)2]

(26)

for i = 2,3, . . . ,N. Note that ∆x must not be equal to 2π(i−1)
and this is always possible as the size of the sampling space

can be always chosen to be different from an integer multiple

of π . Hence, the following assumption is introduced.



Assumption 3.3: ∆x is not equal to ℓπ for all ℓ in N, where

N is the set of natural number.

The assumption is not strong as Ω can be always adjusted so

that the boundary length is not equal to ℓπ . The non-diagonal

terms have an analytic expression but the expression is too

long and omitted.

Consider the magnitude difference between the second

term in (24) and the one with ε equal to zero.

∆ =

∥

∥

∥

∥

∥

∫

Ω

ecT φ − ε

ecT φ
cos(x)φdx−

∫

Ω
cos(x)φdx

∥

∥

∥

∥

∥

∞

=
ε

ecT φ

∥

∥

∥

∥

∫

Ω
cos(x)φdx

∥

∥

∥

∥

∞

≤ ε

ecT φ
≤ ε

δ + ε
(27)

where ‖ · ‖∞ is the infinity norm. Set ε equal to γ-times

smaller than δ , where 0 ≤ γ ≪ 1, the error is bounded by

the following inequality:

∆≤ ε

δ + ε
=

γδ

δ + γδ
=

γ

1+ γ
≪ 1 (28)

where ε is very small by Assumption 3.1. Given the choice

of ε = γδ , the second integration term is approximated by

∫

Ω

ecT φ − ε

ecT φ
cos(x)φdx≈

∫

Ω
cos(x)φdx (29)

and the integral with the approximation has an analytic

expression. Define b =
∫

Ω cos(x)φdx and it becomes

b =

































sin(bx)− sin(ax)√
∆x√

2 ∆
3/2
x

[

sin(bx)(−1)2+1− sin(ax)
]

∆2
x− (2−1)2π2

√
2 ∆

3/2
x

[

sin(bx)(−1)3+1− sin(ax)
]

∆2
x− (3−1)2π2

...√
2 ∆

3/2
x

[

sin(bx)(−1)N+1− sin(ax)
]

∆2
x− (N−1)2π2

































(30)

The k-th element of the last integration term in the right

hand side of (24) can be reformulated as follows:
[

∫

Ω
(cT Kψ)2φdx

]

k

=
∫

Ω
(cT Kψ)2φkdx

=
∫

Ω

N

∑
i=1

N

∑
j=1

cic jκiκ jψiψ jφkdx

=

[

∫

Ω
(ψT ⊗ψT )φkdx

]

(K⊗K)(c⊗ c)

= sT
k (K⊗K)(c⊗ c) (31)

where sT
k is equal to the integration of (ψT ⊗ψT )φk over Ω,

and its size is N2×1. Define

S =
[

s1 s2 . . . sN

]T
(32)

whose size is N ×N2. Note that S has most of the terms

equal to zero. The last integration term of (24) is given by

∫

Ω
(cT Kψ)2φdx = S(K⊗K)(c⊗ c) (33)

Consider ℓ-th element of sk

(sk)ℓ =
∫

Ω
ψiψ jφkdx (34)

where ℓ = (i−1)N + j. It is trivial that all integrations with

ψ1 is equal to zero as ψ1 = 0. Also, it can be easily shown

that all integrations in the following index set are equal to

zero:

{(i, j,k)|i 6= j + k−1 or j 6= i+ k−1 or k 6= i+ j−1} (35)

for i, j, k are in [1,N]. For the case of either i = j + k− 1

or j = i + k− 1, (sk)ℓ is equal to 1/
√

2∆x. For the case of

k = i+ j−1, (sk)ℓ is equal to −1/
√

2∆x.

Finally, the differential equation of c(t) can be written in

a compact form as follows:

ċ = fc(c) =−Ac+b+
q

2
[S(K⊗K)] (c⊗ c) (36)

where

A =
∫

Ω
sin(x)

(

ψT Kφ
)

dx+
q

2
K2 (37)

Note that S and (K⊗K) are sparse and can be obtained for

large size N without requiring long computation and large

memory size. For each sampling time, the above differential

equation is used to propagate c(t) from t = tk to t = tk+1 as

follows:

c(tk+1) = Φ[tk+1, tk,c(tk)] (38)

where tk+1 = tk +∆tk, Φ(·) is the transition function. In the

original propagation with p(t,x|Yk) = cT (t)φ(x) in [15], the

differential equation for c(t) is linear and the transition func-

tion can be obtained off-line. The propagation equation with

ρ(t,x|Yk), (36) is nonlinear. Hence, the transition function has

to be calculated on-line. The following algorithm is proposed

to propagate c(tk):

Algorithm 3.4: c(tk) propagation to c(tk+1)

1) Select np, a positive integer, and set ∆t = ∆tk/np, ℓ = 0,

and cℓ = c(tk)
2) Calculate

cnew = cℓ +∆t fc[cℓ] (39)

3) Increase ℓ by one, i.e., ℓ← ℓ+1

4) Set cℓ = cnew

5) If ℓ = np, set c(tk+1) = cℓ and stop. Otherwise, go to

step 2).



(a) N = 16 (b) N = 64

Fig. 1. Without the transformation: the regions in white colour are the space where the pdf is negative. The heat-map indicates the time-history of the
pdf over the sampling space. The true state is shown by the black solid line and the measurements are depicted by the hollow circles.

C. Update

The conditional probability density function is updated

using the current measurement by Bayes’ rule [13]:

p(t+k ,x|Yk) = η p(yk|x) p(t−k ,x|Yk−1) (40)

where η is the normalising constant to be determined, and

p(yk|x) is the sensor model. To determine the normalising

constant, η , integrate (40) over the sampling space, Ω,
∫

Ω
p(t+k ,x|Yk)dx = η

∫

Ω
p(yk|x) p(t−k ,x|Yk−1)dx (41)

where the left hand side is equal to 1 as it is the total

probability. Hence,

η =

[

∫

Ω
p(yk|x) p(t−k ,x|Yk−1)dx

]−1

(42)

Substituting the inverse transformation, (14), into, (42), and

η is calculated as

η =

{

∫

Ω
p(yk|x)

[

ecT (tk)φ(x)− ε
]

dx

}−1

(43)

This integral must be performed on real-time and the Monte-

Carlo integration method was proposed in [21]. Sample

the random points based on the sensor model provides an

efficient integration performance, which reduces the required

sampling points significantly. See [21] for details.

Substituting the pdf approximation with the transformation

into (40)

eρ(tk+1,x|Yk)− ε = η p(yk|x)p(t−k ,x|Yk−1) (44)

Take log both sides

ρ(tk+1,x|Yk) = log
[

η p(yk|x)p(t−k ,x|Yk−1)+ ε
]

(45)

and replace ρ(tk+1) by the approximation

cT (tk+1)φ(x) = log
[

η p(yk|x)p(t−k ,x|Yk−1)+ ε
]

(46)

Finally, multiply φ T (x) both sides and integrate over Ω

c(tk+1) =
∫

Ω
log

[

η p(yk|x)p(t−k ,x|Yk−1)+ ε
]

φ(x) dx, (47)

which provides the update equation. Again, this integration

must be performed on real-time and the efficient sampling

could be implemented based on the a priori joint pdf,

p(t−k ,x|Yk−1).

IV. SIMULATION

The variances of the noises in the system and the sensor

are set to q = 0.5 and r = 0.5, respectively. The measurement

is taken every 0.1s. The state variable, x, is in the range of

[−2.2π,2.2π] and the initial state is equal to zero. The sensor

is assumed to have the following noise model:

p(yk|x) =
1√
2πr

e−(yk−x)2/(2r) (48)

To compare the performance, the same measurement set is

used for the filter without the transformation and the one

with the transformation. ε for the transformation is set to

10−300.

Figure 1 shows the results without the transformation for

the number of basis functions equal to 16 or 64. Both cases

have large areas with the negative pdf, which is depicted by

the white colour. For N = 16, around the time equal to 5.8s,

the negative region even appears across the true value. For

N = 64 the negativeness still exist in the wide areas. In order

to reduce the negative region significantly, N must be very

large. This causes serious issues in applying the filter for

higher dimensional systems as the number of basis function

increases with Nn, where n is the dimension of state. Hence,

it is important to keep N small. The filtering results for the

same data set with the transformation are shown in Figure

2. As shown in the figure, they do not have any negative

region by the definition and the quality of estimation is

not distinguishable in the results for N = 16 and N = 64.

Hence, the number of basis functions could be kept lower,

for example, as small as N = 5 in this case (simulation result

is not shown).

V. CONCLUSIONS

A novel transformation is presented to obtain the negative-

free approximation of the probability density function. The



(a) N = 16 (b) N = 64

Fig. 2. With the transformation: the pdf does not have negative values by the definition. The heat-map indicates the time-history of the pdf over the
sampling space. The true state is shown by the black solid line and the measurements are depicted by the hollow circles.

approximation is used to derive the nonlinear projection filter,

where the joint probability density function is estimated. It is

shown that some analytic expressions can be derived with the

set of cosine basis functions and this could be applicable for

various types of nonlinear functions. In addition, the required

number of basis functions could be reduced significantly

and it would enable to apply the filter to higher-dimensional

systems. The effectiveness of the proposed method is demon-

strated by some numerical simulations.
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