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Many physical properties of metals can be understood in terms of the free electron model, as
proven by the Wiedemann-Franz law. According to this model, electronic thermal conductivity can
be inferred from the Boltzmann transport equation (BTE). However, the BTE does not perform
well for some complex metals, such as Cu. Moreover, the BTE cannot clearly describe the origin
of the thermal energy carried by electrons or how this energy is transported in metals. The charge
distribution of conduction electrons in metals is known to reflect the electrostatic potential of
the ion cores. Based on this premise, we develop a new methodology for evaluating electronic
thermal conductivity of metals by combining the free electron model and non-equilibrium ab initio
molecular dynamics simulations. We confirm that the kinetic energy of thermally excited electrons
originates from the energy of the spatial electrostatic potential oscillation, which is induced by the
thermal motion of ion cores. This method directly predicts the electronic thermal conductivity
of pure metals with a high degree of accuracy, without explicitly addressing any complicated
scattering processes of free electrons. Our methodology offers a new route to understand the physics
of heat transfer by electrons at the atomistic level. The methodology can be further extended to
study similar electron involved problems in materials, such as electron-phonon coupling, which is
underway currently.

PACS numbers: 64.30.Ef, 63.20.dk,72.10.Bg,05.70.Ln

I. INTRODUCTION

The electronic thermal conductivity (κel) is one of the
most important physical properties of metals. The ana-
lytical solution of κel based on the Boltzmann transport
equation (BTE) and free electron model can be expressed
as [1, 2]

κel =
π2nk2BTτel

3m
, (1)

where n is the concentration of free electrons, m is the
electron mass, kB is the Boltzmann constant, T is the sys-
tem temperature and τel is the collision time of free elec-
trons, which is mainly determined by electron-electron,
electron-hole and electron-phonon scattering. In prin-
ciple, we can obtain an approximate value for τel from
Matthiessen’s rule. However, describing every scattering
process involved in the heat transfer by electrons of solid
metals is too complicated. Recently, there have been a
number of studies of the κel of solid metals, based on
BTE methodology [3, 4]. However, it is well known that
the BTE of electrons is based on single relaxation-time
approximation which may not hold true for all metals. In
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addition, several methods have been used to evaluate the
κel of liquid-phase metals within the framework of den-
sity functional theory (DFT), such as ab initio molecu-
lar dynamics (AIMD), using the Kubo-Greenwood equa-
tion [5–7]. In view of this, there remains a need for an
effective method to evaluate κel of solid metals.

In this paper, we develop a new methodology to de-
scribe the electronic heat-transport process in solid met-
als without explicitly addressing detailed scattering pro-
cesses. From the second law of thermodynamics, we know
that heat transfer in solids is driven by the temperature
gradient ∇T . It should be noted that, the temperature
in heat transfer describes the thermal motion of atoms,
i.e. the kinetic energy of nuclei. In the meantime, the
vibrations of ions can lead to spatial electrostatic poten-
tial oscillation (EPO), as can be easily deduced from the
mathematical expression for the total Hamiltonian of sys-
tem. It easily follows that the local variation of the elec-
trostatic potential can induce the collective oscillations of
free electrons, and those free electrons near the Fermi sur-
face can be excited above the Fermi surface and obtain
additional thermal kinetic energy with respect to 0 K.
These are called thermally excited electrons. Figs. 1(a, b)
show two cartoons describing how the thermally excited
electrons move in the vibrational lattice and the local
EP field. Higher temperatures, which induce larger and
faster ionic vibrations, lead to stronger EPO. Thus, the
thermally excited electrons in high-temperature regions
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FIG. 1: Cartoons of free electrons in a metal moving in (a)
the vibrating lattice and (b) electrostatic potential field.

have more kinetic energy than those in low-temperature
regions. Once a stable distribution of the thermal ki-
netic energy of thermally excited electrons is established
along the direction of ∇T , then the heat flux carried by
thermally excited electrons and κel can be calculated.

II. THEORY AND EVIDENCE

To confirm this conjecture and quantify κel, we per-
formed non-equilibrium ab initio molecular dynamics
(NEAIMD) simulations [8, 9] by modifying the Vienna
Ab initio Simulation Package (VASP) [10, 11]. The
atomic heat flux was realized using the Müller-Plathe al-
gorithm [12], in which the kinetic energies of the atoms in
the heat source and heat sink are exchanged (Supplemen-
tary Information (SI) Sec. 1). With sufficient simulation
time, we can establish a stable temperature gradient in
metals. Figs. 2(a, b) present the Cu model and the cor-
responding temperature profile, respectively. Simultane-
ously, we can calculate the spatial distribution and the
dynamical evolution of the EP, which is expressed as

U =

∫

U(r) · ρtest · (|r −R|)d3r, (2)

where the test charge ρtest is the norm 1, and R repre-
sents the ion position. Fig. 2(c) shows the theoretical
results of the static distribution of the EP for a perfect
Cu lattice. In the rest of this paper, we confirm the rela-
tionship between the spatial EPO and lattice vibrations,
and that the EPO provides additional kinetic energy to
thermally excited electrons. Following this, we show how
to predict κel within our theoretical framework.
To demonstrate the relationship between EPO and lat-

tice vibrations, we analyse the data from our AIMD
simulations using the power spectral density (PSD)
method [13, 14]. For a stationary signal x(t), the PSD is
defined as

Sx(f) =

∫

∞

−∞

Rx(τ)e
−2πifτdτ, (3)

whereRx(τ) = E[x(t)x(t+τ)] is the autocorrelation func-
tion of x(t) [13, 14], and E[ · ] denotes the expectation

FIG. 2: Overview of the simulation model, temperature pro-
file and EP field of copper. (a) Model of copper used in
NEAIMD simulations and (b) the corresponding temperature
profile. One unit cell length comprises two layers of atoms.
We use fixed boundary conditions with the layers of fixed
atoms and vacuum layers along the direction of ∇T . Periodic
boundary conditions are adopted in the other two dimensions.
(c) Theoretical EP field of a perfect copper structure (the test
charge number is norm 1).

value. Here, we consider four signals from an AIMD
simulation: atomic displacement Dion, atomic velocity
Vion, EP displacement Uion, and velocity of EPO (VEPO)
∆Uion; these are used to calculate their respective spec-
tral densities SD, SV [15], SU , S∆U (SI Sec. 2). SD and
SV reflect the frequency-dependent lattice vibrations at
a specific T . Analogously, SU and S∆U provide informa-
tion regarding the EPO with respect to frequency. We
show results for Al from a 10-ps equilibrium AIMD run at
100.90K (Figs. 3(a, b)) and a 70-ps NEAIMD simulation
at 299.46K (Figs. 3(c, d)). Fig. 3(a) clearly shows that
the locations of the density peaks of SD and SU are con-
sistent, demonstrating that the EPO is mainly caused by
the lattice vibration of ion cores. Fig. 3(b) confirms this
relationship. Similar results are shown in Figs. 3(c, d):
for most of the frequency ranges, the peaks of SD and SU ,
SV and S∆U are consistent with each other. However, for
some specific frequencies in Figs. 3(c, d) (3.5 ∼ 5.0 THz),
some discrepancies exist in the peaks’ magnitudes. It is
possible that this phenomenon could be due to the heat
flux applied in the NEAIMD simulations. Nevertheless,
Figs. 3(a ∼ d) provides an unambiguous physical picture
of the EPO being directly induced by the lattice vibra-
tion of ions in metals.

To understand the dynamical evolution of spatial EPO
intuitively, we present the representative case of Cu, cal-
culated using NEAIMD at 298.49K, in Fig. 4(a). Lit-
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FIG. 3: Overview of the relationship between EPO at ion
cores and lattice vibrations. Blue and red lines represent
the spectral density of (a) atom displacements (SD) and (c)
the EP displacement (SU ), respectively, at specific ion cores.
Green and orange lines represent the spectral density of (b)
atom velocities (SV ) and (d) the EPO velocities (S∆U ), re-
spectively, at specific ion cores. Data in (a) and (b) are from a
10-ps equilibrium AIMD simulation of Al at 100.90K, whereas
(c) and (d) present the same physical quantities from a 70-ps
NEAIMD simulation of Al at 299.46K.

tle variation occurs in the local electronic field between
neighbouring atom layers, and the directions of these lo-
cal fields continually change with time. The variations
of these local fields will drive the collective vibration of
free electrons, as theoretically illustrated in Fig. 4(b).
We see that only free electrons near the Fermi surface
can be thermally excited. Because the direction of the
local field continually changes with time, the vectors of
the local momentum of the thermally excited electrons
should also continually change with time. Therefore, for
a sufficiently long statistical time average, no net electric
current should arise during the thermal transport pro-
cess of metals. This is consistent with the traditional
free electron model [1].
To confirm that the EPO provides additional kinetic

energy to thermally excited electrons in metals, we run
a 100-ps equilibrium AIMD for Al at 329.40K and Li at
283.97K (both with a 2×2×2 conventional-cell and 32
total atoms). When T > 0K, the total energy of the free
electron system can be written as [1, 2](SI Sec. 3)

Esys = E0 + ET = E0 +
π2

4
·N

(kBT )
2

E0
F

,

where E0 is the total energy of the free electron system at
0K, ET is the thermally excited energy of the free elec-
tron system obtained from the outside environment when
T > 0K, N is the total number of free electrons, and E0

F

is the Fermi energy at 0K. Because the Fermi energy

FIG. 4: (a) The variation of EPO in space over time (the test
charge number is 1). Data shown are from a 20-ps NEAIMD
simulation of Cu at 298.49K. (b) Schematic of the whole
Fermi sphere oscillation as local electric field vibration along
the ~z direction.

changes very little with temperature, here, we take the
EF at room temperature as E0

F and adopt the experi-
mental data[1]. We also calculate the energy provided
by EPO using

EEPO = 2 · UEPO ·N · e,

where UEPO is the average effective EPO amplitude. For
Al, ET = 2.6293×10−21 J and EEPO = 2.7674×10−21 J.
For Li, ET = 1.6049 × 10−21 J and EEPO = 1.5909 ×
10−21 J. Based on these results, it is evident that

ET ≈ EEPO. (4)

This relation, although not a strict theoretical deriva-
tion, confirms that lattice vibrations cause EPO in met-
als, which, in turn, induces the collective vibration of free
electrons. In fact, the energy of these collective vibra-
tions provides additional kinetic energy to the thermally
excited electrons. This is the core concept underlying
this methodology.

III. METHOD AND RESULTS

Within this theoretical framework, higher tempera-
tures strengthen the spatial EPO. To confirm this rela-
tionship, we perform direct FFT of the relative displace-
ment of EP Uion and VEPO ∆Uion. Uion and ∆Uion were
used to calculate SU and S∆U in Figs. 3(a − d). Uion de-
scribes the strength of the EPO in space, whereas ∆Uion
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FIG. 5: The direct fast Fourier transform (FFT) amplitudes
of (a) the displacement of EP (DEP, Uion) and (b) VEPO
(∆Uion) of ion cores at different temperatures. Data shown
are from a 20-ps NEAIMD simulation of Cu at 298.49K. The
high and low temperatures correspond to 374.92 K and 198.39
K, respectively.

reflects how fast the oscillation changes. Figs. 5(a, b)
show the frequency-dependent FFT amplitudes of Uion

and ∆Uion, respectively. Clearly, the EPO is stronger
and faster at higher temperatures.
In Fig. 6(a), we present the positive and nega-

tive integrations of the total ∆Uion in the same atom
layer with simulation time, which can be written as
∑Nal

j=1

∑

t ∆Uj(t), where j is the index of the atom in the
layer and Nal is the total number of atoms per layer. The
four quantities in Fig. 6(a) show perfect linear behaviour
over time. From the absolute values, we have:

Nal
∑

j=1

∑

t

|∆Uj(t)hot| >

Nal
∑

j=1

∑

t

|∆Uj(t)cold|,

which is consistent with the evidence shown in
Figs. 5(a, b). Notably, in the same temperature region,

the positive and negative accumulations of
∑Nal

j=1 ∆Uj(t)

are almost the same. In other words,
∑Nal

j=1

∑

t ∆Uj(t) ≃
0, and thus, there is no net electric field gradient along
the heat flux direction for a sufficiently long statistical
time. This result confirms the physical picture illustrated
in Fig. 4(b). Fig. 6(b) presents the distribution of the av-
erage effective amplitude of EPO in each atom layer along
the heat flux direction, UEPO(l), where l is the index of
the atom layers. Moreover, the amplitude distribution
of EPO explains how the thermal kinetic energy of ther-
mally excited electrons is divided in space. We calculate
UEPO(l) using the RMS method [16]:

UEPO(l) =
1

Nal

Nal
∑

j=1

√

√

√

√

1

nsteps

nsteps
∑

ti

(Uj(ti)− U j)2,

where nsteps is the total number of simulation time steps,
Uj(ti) is the U value of atom j in a specific layer at time

FIG. 6: (a) Integration of positive and nega-

tive VEPO (
∑Nal

j=1

∑

t ∆Uj(t)) at different tem-

peratures. (b) The effective amplitude of EPO

( 1
Nal

∑Nal

j=1

√

1
nsteps

∑nsteps

i=1 (Uij − U j)2, average root mean

square (RMS) [16] of EPO, where Nal is the atom number
per layer) in atom layers along the ~z direction. Data shown
are from a 20-ps NEAIMD simulation of Cu at 298.49K.

step ti, and U j is the average value of Uj(ti). Then,

we define the heat flux of electrons ~Jel according to the
kinetic energy of thermally excited electrons between two
adjacent atom layers. Because of the isotropy of the free
electron model (SI Sec. 4), we take half of the difference of
the thermal kinetic energy of thermally excited electrons
between the two layers as

~Jel = −
1

2

n(e) · e

S · t

∂[2 · UEPO(l) · nsteps]

∂Nl

= −
n(e) · e · nsteps

S · t

∂UEPO(l)

∂Nl

, (5)

where S is the cross-sectional area, t is the total simula-
tion time, n(e) is the number of free electrons per atom

layer, and ∂UEPO(l)
∂Nl

is the gradient of the average effective

amplitude value of EPO by linear fitting of UEPO(l) with
the atom layer index numberNl shown in Fig. 6(b). Here,
a nonlinear phenomenon exists in the effective EPO am-
plitude distribution along the heat flux direction in some
metals, such as Al, Be, and Mg. According to a case
study of Be, we find that the nonlinear effect of UEPO(l)
can be reduced by increasing the system size (SI Sec. 4.2).
Because of the non-linear effect, when we calculate the
~Jel of Al, Be and Mg, we fit the linear part only. For Cu



5

FIG. 7: Integration of the atomic kinetic energy flux with
time based on the NEAIMD (Müller-Plathe) simulations of
Al, Li, Be and Mg.

and Li, the UEPO(l) distributions exhibit perfect linear
behaviour along the heat current direction. Thus, we can
calculate κel based on Fourier’s law:

~J = −κ∇T. (6)

Combining Eqs. (5, 6), we obtain the expression for κel:

κel =
n(e) · e · nsteps

∇T · S · t

∂UEPO(l)

∂Nl

, (7)

where ∇T is obtained by linear fitting the temperature
profile with the representative case shown in Fig. 2(b).
Note that, the induced temperature gradient is greater
than that expected in a real system. Preliminary calcu-
lations showed that both κel and κph were invariant to
temperature gradient within the range of values studied.
This can be seen in our final values for κ (Fig. 8(a), see
detailed computation parameters in Table 1 and Table 3
in SI). It should be noted that each case listed in Ta-
ble 3 in the SI has different temperature gradient, i.e.
different heat flux. In some cases the temperature gra-
dient differs by a factor of 1.81, yet both κel and κph

show no noticeable difference. This indicates that differ-
ent temperature gradients result in almost the same κ.
Using larger temperature gradients (within the linear re-
sponse regime) can help to establish a stable temperature
profile with a smaller associated uncertainty, since the
temperature difference between layers becomes greater
than statistical fluctuations. It is also helpful to reduce
non-linear effects of the VEPO in space, enabling us to
obtain a stable value for the thermal conductivities from
both electrons and phonons. It also helps to ensure that
we have enough data for statistics. As the NEAIMD
is realized by the Müller-Plathe method, the tempera-
ture gradient relies on the interval time for the exchange
of atomic velocities between hot and cold baths. The
smaller the interval time (meaning more frequent veloc-
ity exchange), the larger the heat flux of atoms and the
larger the temperature gradient. This means that with
larger temperature gradients we have more valid data
points to calculate the heat flux.
Within this framework, we studied the κel of five met-

als (Li, Be, Mg, Al, and Cu) near room temperature. Ad-

FIG. 8: NEAIMD-EPO simulation results for metals. (a)
Total thermal conductivities of metals from NEAIMD simu-
lation (with error bars determined from the calculation of ∇T

and ∂UEPO(l)
∂Nl

along the heat-transport direction) and exper-

imental data at 300K. (b) Pie graphs showing the electronic
and phononic contributions to the total thermal conductivity
of Al, Li, Be, and Mg at 300K.

ditionally, by integrating the Müller-Plathe [12] atomic
kinetic energy flux, as shown in Fig. 7, we predict the lat-
tice (phonon) thermal conductivities of the metals (κph).
Here we adopt the statistical physics approximation that,
with sufficient simulation time, the time average of κel

and κph are equal to the ensemble average. Because of fi-
nite size effects, our NEAIMD results underestimate κph,
especially for Cu and Mg (SI Sec. 5). By summing κel

and κph from the NEAIMD simulations, we obtain the
total thermal conductivities of the metals, as presented
in Fig. 8(a). The results demonstrate that the thermal
conductivities of metals slowly decrease with tempera-
ture near room temperature, which is consistent with
traditional theory and experimental data. The error es-
timates in Fig. 8(a) are calculated from the expression
for κel and error propagation theory [17]. They mainly
stem from the calculation of the gradient of UEPO(l) and
∇T . Here, we note that because the statistical temper-
ature fluctuation (∆T )2 = kBT

2/Cv [18] of each atom
layer is large (because of the small number of atoms
per layer), the conventional error estimate of ∇T will
be quite large. However, NEAIMD consistently yields a
stable temperature profile after a sufficiently long simu-
lation time. Thus, we adopt the error in the linear fitting
for ∇T . We also note that the aforementioned nonlinear
phenomenon of the gradient of UEPO(l) can also lead to
large error bars. The details of the error-bar analysis can
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FIG. 9: Bar graph comparing the thermal conductivities of
metals calculated using the NEAIMD method (with error
bars), Boltzmann method and experimental data at 300K.

FIG. 10: Autocorrelation function of VEPO from NEAIMD
simulations for the case of (a) Cu and (b) Al. The exponential
fitting follows the function: y = Aexp(−t/τexp), where τexp
represents the exponential autocorrelation time of VEPO.

be found in SI Sec. 6. Meanwhile, in Fig. 8(b) we use
pie graphs to show the electronic and phononic contribu-
tions to the total thermal conductivity. Our results show
that κel indeed dominates the thermal transport process
in metals.
To the best of our knowledge, the BTE of electrons is

the only theory to be relatively successful evaluating the
κel of solid metals. To compare our results with those of
the traditional BTE method, we also utilize the Boltz-
TraP software [3] (based on electron energy band the-
ory) to calculate κel

τel
. However, it is very difficult to ac-

curately and straightforwardly calculate the lifetime of
electrons. Theoretical studies indicate that the magni-
tude of the lifetime of electrons is around 1 × 10−14 s
at room temperature[1, 3, 4, 22], and so, similar to pre-

vious studies[3, 4], we also use the constant relaxation
time approximation, with τel = 1 × 10−14 s. To avoid
finite size effects in the calculation of κph, we also eval-
uate κph from the BTE method with interatomic force
constants obtained from ab initio calculations [19, 20], as
implemented in the ShengBTE package [21]. Then, we
obtain the total thermal conductivities of the metals via
the BTE method by summing κel from BoltzTraP and
κph from ShengBTE. Our NEAIMD method, the tradi-
tional BTE method and experimental data are compared
in Fig. 9. The results demonstrate that the BTE method
is unable to correctly describe κel for all metals, and our
method is superior to the traditional BTE method in
predicting the electronic thermal conductivities of met-
als, especially for Be and Cu at room temperature.

Moreover, we observe an interesting phenomenon when
calculating the spectral density of VEPO (S∆U ) in
Figs. 3(b, d). We perform exponential decay fitting of
the autocorrelation function of the VEPO using the for-
mula y = Aexp(−t/τexp). Surprisingly, the exponential
autocorrelation time of VEPO τexp at room temperature
is on the same approximate order of magnitude as the
theoretical collision time of the free electrons [3, 4, 22].
The results for Cu and Al are shown in Fig. 10. We also
examine other metals (Be, Li, and Mg) and obtain simi-
lar results (SI Sec. 8). Therefore, we anticipate that some
physical mechanisms must drive this phenomenon, i.e., it
is not a coincidence.

Before closing, we would like to point out that, in the
BTE expression for κel, the interactions between elec-
trons and nuclei are implicit in the electron scattering
time τel, or equivalently, the presence of nuclei has a sig-
nificant effect on the electron scattering time, which, in
turn, affects κel. Thus, in principle, κel should depend
on the vibration of nuclei. In this sense, our theory and
methodology is not in conflict with the traditional free
gas model. However, in contrast to the traditional elec-
tron BTE method, our direct non-equilibrium ab initio
molecular dynamics simulation based on EPO (we name
it NEAIMD-EPO method) can calculate electronic ther-
mal conductivity directly by mimicking the real physical
picture of the heat transfer in metals, without artificial
manipulation and input parameters. The NEAIMD-EPO
method naturally, but implicitly, includes the compli-
cated interactions between electrons and electron-phonon
coupling. Our method is applicable to all solid metals,
whereas the traditional electrons BTE method struggles
to evaluate κel for some elements. Our method also has
some limitations, at present, such as: 1) as our NEAIMD-
EPO framework is built on the free electron gas model,
so far, this method is limited to simulation of pure met-
als; 2) this method cannot be directly used to simulate
thermal transport of metals at low temperatures; 3) as
this method is realized in the ab initio molecular dy-
namics simulation, the simulation results will depend on
the pseudopotential used and 4) the computation costs
for the NEAIMD simulations are much higher than that
of normal density functional theory (DFT) simulations.
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However, with theory and computational capacity im-
proving, the NEAIMD- EPO method shows potential for
investigation of different kinds of electronic systems, i.e.,
alloys, semiconductors, metal/non-metal interfaces, and
even directly simulating nano-devices in the future.

IV. CONCLUSIONS

In summary, we have developed a new methodology
based on the concept of electrostatic potential oscilla-
tion to predict the electronic thermal conductivities of
metals via direct non-equilibrium ab initio molecular dy-
namics simulation. We provide a clear and new physical
picture of the origin of the thermal energy carried by
electrons and reveal how this energy is transported in
metals. Without explicitly addressing any complicated
scattering processes of free electrons, our NEAIMD-EPO
method provides better predictions of the electronic ther-
mal conductivities of pure metals than the traditional
BTE method near room temperature. Our methodol-
ogy offers a new route to understand the physics of heat
transfer by electrons at the atomistic level. We expect
that this methodology will be helpful and useful for un-
derstanding and studying the heat-transfer problems of
metal systems in the future. Further extension to cope

with some presently challenging problems in materials,
such as electron-phonon coupling, is also foreseen.
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