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 26 

Abstract 27 

This study demonstrates the use of a geographically weighted principal components 28 

analysis (GWPCA) of remote sensing imagery to improve land cover classification 29 

accuracy. A principal components analysis (PCA) is commonly applied in remote 30 

sensing but generates global, spatially-invariant results. GWPCA is a local adaptation 31 

of PCA that locally transforms the image data, and in doing so, can describe spatial 32 

change in the structure of the multi-band imagery, thus directly reflecting that many 33 

landscape processes are spatially heterogenic. In this research the GWPCA localised 34 

loadings of MODIS data are used as textural inputs, along with GWPCA localised 35 

ranked scores and the image bands themselves to three supervised classification 36 

algorithms. Using a reference data set for land cover to the west of Jakarta, 37 

Indonesia the classification procedure was assessed via training and validation data 38 

splits of 80/20, repeated 100 times. For each classification algorithm, the inclusion of 39 

the GWPCA loadings data was found to significantly improve classification accuracy. 40 

Further, but more moderate improvements in accuracy were found by additionally 41 

including GWPCA ranked scores as textural inputs, data that provide information on 42 

spatial anomalies in the imagery. The critical importance of considering both spatial 43 

structure and spatial anomalies of the imagery in the classification is discussed, 44 

together with the transferability of the new method to other studies. Research 45 

topics for method refinement are also suggested. 46 

 47 

Key words: GWmodel, GWPCA, spatial heterogeneity, accuracy 48 

 49 
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1. Introduction 50 

 51 

This paper describes the application of a Geographically Weighted Principal 52 

Components Analysis (GWPCA) as a method to improve the reliability of land cover 53 

classification from remotely sensed data.  54 

 55 

Supervised classification of remote sensing imagery to identify land cover is a 56 

clustering process. Training data are collected, typically through field surveys or from 57 

higher resolution imagery, and the multivariate image properties of the training data 58 

are used to train a clustering algorithm. Commonly, this identifies cluster centres for 59 

each class, based on the multivariate properties of the training data and the 60 

classification proceeds by allocating each image object, typically a pixel, to the 61 

cluster to which it is closest in the multivariate image space. Different classification 62 

algorithms can vary in the way that they define cluster centres, multivariate distance 63 

and in their iteration. Classification algorithms can also differ to whether or not class 64 

statistics are calculated (for example, choosing between a logistic regression or 65 

support vector machines). 66 

 67 

Collinearity occurs when variables exhibit linear relationships and this has been 68 

found to affect the reliability of the classification algorithm (Congalton, 1991). PCAs 69 

have been used to handle collinearity in remote sensing. The first few components 70 

of a PCA frequently capture most of the image data variation and structure by 71 

transforming the data into an ordered set of orthogonal components. In remote 72 

sensing, PCA approaches have been used to improve classification (e.g. Collins and 73 

Woodcock; 1996; Xu et al., 2003; Toutin, 2004; Koutsias et al., 2009), to explore 74 
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structure or trends in image data (e.g. Legendre and Legendre, 1998) and to detect 75 

anomalies in the outputs (Lasaponara, 2006).  76 

 77 

Spatial effects can be important in land cover classifications. They may result in  78 

spatial heterogeneity in the relationship between the land cover classes and the 79 

imagery (Wang et al., 2005; Propastin, 2012) and the spatial autocorrelation of 80 

errors (Congalton, 1988). These arise when the classification algorithm fails to 81 

incorporate any spatial effects. To handle such spatial effects some authors have 82 

used texture measures constructed from image data as inputs into classifications 83 

(Car and Miranda, 1998; Chica-Olmo and Abarca-Hernandez, 2000; Atkinson and 84 

Lewis, 2000; Myint, 2003). In these, localised statistics are calculated for one image 85 

band at a time (e.g. local variance) using a simple moving window (e.g. a square) of a 86 

subjectively specified size. 87 

 88 

This study demonstrates the application of a local version of PCA, termed 89 

geographically weighted principal components analysis (Fotheringham et al., 2002; 90 

Harris et al., 2011). A GWPCA investigates how outputs from a PCA vary spatially. It 91 

provides a significant methodological advance on previous approaches. First, all 92 

image bands are considered together to provide multivariate localised statistics. 93 

Second, a sophisticated distance-decay weighting scheme replaces the moving 94 

window approach. This is specified such that it provides a degree of objectivity on 95 

the spatial scale at which the local statistic is calculated. In this way, GWPCA is used 96 

to create texture variables that account for the spatial heterogeneity in the multi-97 

band image structure. Spatial changes in data dimensionality and multivariate 98 

structure can be explored via maps of the GWPCA outputs (Fotheringham et al., 99 
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2002; Harris et al., 2011; 2015). GWPCA can also be used to detect multivariate 100 

spatial anomalies (Harris et al., 2014b; 2015). This study uses the outputs of a 101 

GWPCA applied to 7-band MODIS imagery to classify land cover. In particular, 102 

GWPCA loadings for structure and GWPCA scores for anomalies are included as 103 

textural inputs, together with the raw image bands themselves as inputs to three 104 

standard classification algorithms: latent discriminant analysis, logistic regression 105 

and support vector machines. Thus GWPCA outputs provide informative multivariate 106 

spatial inputs into the classification process. The study does not seek to directly 107 

account for any local dimensionality issues or local collinearity effects in image data, 108 

although GWPCA could be used to do so. Rather it aims to capture the local structure 109 

in the multi-band image data to improve classification accuracy. 110 

 111 

2. Background 112 

 113 

In remote sensing, PCAs are used to transform image data into a new orthogonal set, 114 

principal components (PCs), whose observations are called PC scores. Components 115 

are ordered by the amount of variance in the original image data they explain and 116 

there is always the same number of components as there were image bands. For a 117 

PCA to be used for data reduction, it is typically hoped that the first two or first three 118 

PCs explain around 80-90% of the original data's variance. Data reduction can then 119 

proceed without an undue loss of information, which in turn reduces computational 120 

burden of any subsequent analysis. PC loadings are the linear correlation coefficients 121 

between the PC scores data and the original data. Thus by investigating the loadings, 122 

it is possible to determine which of the original image bands contribute the most to 123 
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each PC. As the PCs are uncorrelated they provide a direct way of addressing image 124 

band collinearity, commonly found in the visible wavelengths.  125 

 126 

PCA has also been used for data reduction to fuse data from multiple sources and 127 

platforms (Pohl and Van Genderen, 1998) and to provide greater insight into 128 

classification results. For example, Richards (1984) used PCA to monitor brushfire 129 

damage and vegetation re-growth in Australia and found that local areas of change 130 

were enhanced in some of the lower PCs and Ingebritsen and Lyon (1985) found the 131 

first two PCs to be strongly related to soil brightness and vegetation greenness. They 132 

have been used in change detection and error analysis and Tewkesbury et al. (2015) 133 

note that transformations of multiple image layers provides a convenient method for 134 

assessing change within a complex set of time series imagery. Doxani et al. (2011) 135 

applied a multivariate alteration detection transformation to identify change objects 136 

in VHR imagery. But some research has found that transformed time series data 137 

results in the loss of temporal change information (Deng et al. 2008; Tsutsumida et 138 

al. 2013).  139 

 140 

PCA in remote sensing has been found to be sensitive to the study area being 141 

considered through the training or validation samples and the variation in the land 142 

cover types that are present (Pohl and Van Genderen, 1998). The implication is that 143 

spatial factors affect the relevance and usefulness of the PCA outputs, which only 144 

ever reflect the non-spatial properties of the inherently spatial, image data. Some 145 

research has sought to address this. Pesaresi and Benediktsson (2001) explored 146 

methods for analysing the morphology of panchromatic image data but their 147 

approach was not scalable to multivariate data (Soille, 2003).  148 
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 149 

A critical issue in remote sensing is the presence and impact of commonly observed 150 

spatial autocorrelation effects in image data (Spiker and Warner, 2007), which for 151 

example results in adjacent pixels being more likely to have similar values 152 

(Woodcock et al., 1988) and spatial heterogeneity in outputs, such as classification 153 

errors (Campbell, 1981). For these reasons, spatially explicit methods have been 154 

applied to improve classification accuracy (Congalton, 1988; Steele et al, 1998). The 155 

geographically weighted (GW) modelling paradigm provides a suite of models, 156 

specifically for spatial heterogeneity  effects (Fotheringham et al., 2002; Lu et al., 157 

2014; Gollini et al., 2015), the most commonly used of which is GW regression 158 

(Brunsdon et al., 1996). Examples of GW models in remote sensing studies can be 159 

found in Atkinson (2004), Wang et al. (2005), Atkinson and Naser (2010), Comber et 160 

al. (2012), Johnson et al. (2012) and Propastin (2012). Examples of studies that have 161 

sought to account for both spatial autocorrelation and spatial heterogeneity in data 162 

include the studies by Car and Miranda (1998) and Chica-Olmo and Abarca-163 

Hernandez (2000). Other work has considered classification accuracy given spatial 164 

effects. Foody (2005) modelled local accuracy by interpolating accuracies calculated 165 

at regular spaced locations. Riemann et al. (2010) suggested spatial indices to 166 

describe classification accuracy and Comber (2013) developed GW approaches to 167 

generate maps of user, producer and overall accuracies. Related GW-based 168 

approaches are found in Comber et al. (2012) and in Tsutsumida and Comber (2015), 169 

where the latter used a PCA to examine the temporal variations in spatial accuracy. 170 

 171 

The PCA method can be adapted to incorporate spatial effects, such as that of 172 

autocorrelation or heterogeneity. For the former, Jombart et al. (2008) adapted PCA 173 
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using Moran's I, whilst for the latter, GWPCA can be used. Spatially-adapted PCA 174 

methods have not as yet been applied in a remote sensing context, but these and 175 

other methods exist, as reviewed in Demšar et al. (2013). GWPCA is just one of many 176 

models based around the GW framework. In this framework, a kernel or moving 177 

window is identified and data under the kernel are weighted by their distance to the 178 

location being considered under the kernel (i.e. the kernel centre). The 179 

geographically weighted data are then passed to whatever analysis is being 180 

undertaken and the localised model's outputs are mapped to provide a useful 181 

investigative tool of spatial heterogeneity. A key challenge in GW modelling is finding 182 

the scale at which each localised model should operate, that is choosing the size of 183 

the kernel bandwidth. The bandwidth can be user-specified, but preferably guided 184 

by some automatic cross-validation routine based on model fit. Similarly, it is not 185 

recommended to treat bandwidth optimisation via cross-validation as a purely black-186 

box approach (Harris et al. 2014a). A number of GW models have been proposed, 187 

including those for summary statistics (Brunsdon et al., 2002), discriminant analysis 188 

(Brunsdon et al., 2007), and variograms (Harris et al., 2010). 189 

 190 

3. Methods 191 

 192 

This section describes the methods used for the application of a GWPCA to the 193 

MODIS image data, with the aim of improving land cover classification accuracy. 194 

Here the case study data is described, the GWPCA technique is formally presented, 195 

the supervised classification algorithms are presented, and finally, the crucial step of 196 

GWPCA bandwidth selection is described that accords to the objectives of this study. 197 
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The Appendix describes the processing times for the computations to provide an 198 

overview of the implementation costs: they are not high.  199 

 200 

3.1. Case Study Area and Data Sets 201 

 202 

The study area was the Tengarang region to the west of Jakarta in Indonesia (Fig.  1). 203 

MODIS surface reflectance from the MOD09A1 product was selected for analysis, 204 

dated from 16th March 2012. This product provides a modified version of the 205 

ground-level atmospheric scattering or absorption computed from MODIS level 1B 206 

product (Vermote et al., 2011). It is an 8-day composite with 7 bands at 464-m 207 

spatial resolution. The 7 bands record surface spectral reflectance with wavelengths 208 

of 620-670nm, 841-876nm, 459-479nm, 545-565nm, 1230-1250nm, 1628-1652nm 209 

and 2105-2155nm. MODI“ ĚĂƚĂ ĐĂŶ ĐŽŶƚĂŝŶ ŶŽŝƐĞ ĚƵĞ ƚŽ ƚŚĞ ĂƚŵŽƐƉŚĞƌŝĐ ďŝĂƐ͕ 210 

ƐƵƌĨĂĐĞ ĂŶŝƐŽƚƌŽƉŝĐ ĂŶĚ ƐĞŶƐŽƌ ƉƌŽďůĞŵƐ ;JƂŶƐƐŽŶ ĂŶĚ Eklundh, 2004) and only data 211 

flagged as good or marginal in the MOD09A1 reliability layer were extracted from 212 

the original time series data. Band 5 captures short wave infrared reflectance and is 213 

sensitive to water vapour. It commonly has a few missing values due to strip noise 214 

(Wang et al., 2011) and so an inverse distance weighting interpolation was used to 215 

predict (or infill) them. Each MODIS band image consisted of 6200 pixel sites. 216 

 217 

Land cover ground data at 494 randomly selected locations was collected by visual 218 

interpretation of the VHR image layers in Google Earth. At each location, the 219 

proportions of different land cover types were recorded for an area the size of the 220 

MOD09A1 grid cell. Eight land cover types were recorded (Urban, Settlement, 221 

Paddyfield, Cultivated, Trees, Grass, Bare and Water) and the land cover with the 222 
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largest area in each cell was used to label that cell. This ground data was then 223 

associated with its corresponding imagery data. 224 

 225 

 226 

Fig. 1. the study area to the west of Jakarta, Indonesia with the 494 land cover 227 

ground data, with a transparency term to show their density, and an OpenStreetMap 228 

backdrop. 229 

 230 

In order to objectively assess classification accuracy of ƚŚŝƐ ƐƚƵĚǇ͛Ɛ ŵĞƚŚŽĚƐ, the 231 

combined ground/imagery data were randomly divided into training and validation 232 

subsets using a class-stratified 80/20 split. These 80/20 splits were repeated 100 233 

times and the classification procedures applied to the 100 different splits. The 234 

distribution of land cover classes for the described training/validation split is given in 235 

0 5 10
km
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Table 1. Observe that the training data set size is relatively small, and as such, will 236 

ƉƌŽǀŝĚĞ Ă ĨƵƌƚŚĞƌ ĐŚĂůůĞŶŐĞ ƚŽ ƚŚŝƐ ƐƚƵĚǇ͛Ɛ ŵĞƚŚŽĚƐ͘ 237 

 238 

Table 1. Class-stratified training/validation split for land cover ground data. 239 

 

Urban Settlement Paddyfield Cultivated Trees Grass Bare Water 

Training 26 96 190 22 11 32 15 4 

Validation 6 24 47 5 3 8 4 1 

 240 

3.2. GWPCA 241 

 242 

For GWPCA, a localised PCA is computed at target locations, allowing a local 243 

identification of any change in the structure of a multivariate data set. Formally, if 244 

spatial location  has coordinates , then GWPCA involves a vector of observed 245 

variables  being conceptualised as having a certain dependence on its location , 246 

where  and  are the local mean vector and the local variance-247 

covariance matrix, respectively. The local variance-covariance matrix is 248 

 249 

, (1) 

 250 

ǁŚĞƌĞ  ŝƐ ƚŚĞ ĚĂƚĂ ŵĂƚƌŝǆ ;ǁŝƚŚ  ƌŽǁƐ ĨŽƌ ƚŚĞ ŽďƐĞƌǀĂƚŝŽŶƐ͕ ĂŶĚ  ĐŽůƵŵŶƐ ĨŽƌ 251 

ƚŚĞ ǀĂƌŝĂďůĞƐͿ͕ ĂŶĚ  ŝƐ Ă ĚŝĂŐŽŶĂů ŵĂƚƌŝǆ ŽĨ ŐĞŽŐƌĂƉŚŝĐ ǁĞŝŐŚƚƐ͘ FŽƌ ƚŚŝƐ 252 

ƐƚƵĚǇ ƚŚĞƐĞ ǁĞƌĞ ŐĞŶĞƌĂƚĞĚ ƵƐŝŶŐ Ă ďŝ-ƐƋƵĂƌĞ ŬĞƌŶĞů ĨƵŶĐƚŝŽŶ 253 

 254 

 if   otherwise, (2) 

 255 

i  vu,

ix i

 ii vu ,ȝ  ii vu ,Ȉ

   XWXȈ iiii vuvu ,, T

X n m

 ii vu ,W

  221 rdw ijij  rdij  0ijw
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where the bandwidth is the geographic distance , and  is the distance between 256 

spatial locations of the  and  rows in . As with any GW model, other kernel 257 

shapes are possible (Gollini et al., 2015). To find the local PCs at location , the 258 

decomposition of the local variance-covariance matrix provides the local eigenvalues 259 

and local eigenvectors (or loading vectors) with 260 

 261 

, (3) 

 262 

ǁŚĞƌĞ  ŝƐ Ă ŵĂƚƌŝǆ ŽĨ ůŽĐĂů ĞŝŐĞŶǀĞĐƚŽƌƐ͕ ĂŶĚ  ŝƐ Ă ĚŝĂŐŽŶĂů ŵĂƚƌŝǆ ŽĨ 263 

ůŽĐĂů ĞŝŐĞŶǀĂůƵĞƐ͘ A ŵĂƚƌŝǆ ŽĨ ůŽĐĂů ĐŽŵƉŽŶĞŶƚ ƐĐŽƌĞƐ  ĐĂŶ ďĞ ĨŽƵŶĚ ƵƐŝŶŐ 264 

 265 

, (4) 

 266 

ǁŚĞƌĞ ƚŚĞ ƉƌŽĚƵĐƚ ŽĨ ƚŚĞ  ƌŽǁ ŽĨ ƚŚĞ ĚĂƚĂ ŵĂƚƌŝǆ ǁŝƚŚ ƚŚĞ ůŽĐĂů ĞŝŐĞŶǀĞĐƚŽƌƐ ĨŽƌ 267 

ƚŚĞ  ůŽĐĂƚŝŽŶ ƉƌŽǀŝĚĞƐ ƚŚĞ  ƌŽǁ ŽĨ ůŽĐĂů ĐŽŵƉŽŶĞŶƚ ƐĐŽƌĞƐ͘ IĨ ĞĂĐŚ ůŽĐĂů 268 

ĞŝŐĞŶǀĂůƵĞ ŝƐ ĚŝǀŝĚĞĚ ďǇ ͕ ƚŚĞŶ ůŽĐĂůŝƐĞĚ ǀĞƌƐŝŽŶƐ ŽĨ ƚŚĞ ƉƌŽƉŽƌƚŝŽŶ ŽĨ ƚŚĞ 269 

ƚŽƚĂů ǀĂƌŝĂŶĐĞ ŝŶ ƚŚĞ ŽƌŝŐŝŶĂů ĚĂƚĂ ĂĐĐŽƵŶƚĞĚ ĨŽƌ ďǇ ĞĂĐŚ ĐŽŵƉŽŶĞŶƚ ĂƌĞ ĨŽƵŶĚ ;ƐĞĞ 270 

ƐĞĐƚŝŽŶ ϰ͘ϭͿ͘ 271 

 272 

TŚƵƐ Ăƚ ĞĂĐŚ ŽďƐĞƌǀĞĚ ůŽĐĂƚŝŽŶ ĨŽƌ Ă GWPCA ǁŝƚŚ  ǀĂƌŝĂďůĞƐ͕ ƚŚĞƌĞ ĂƌĞ  273 

ĐŽŵƉŽŶĞŶƚƐ͕  ĞŝŐĞŶǀĂůƵĞƐ͕  ƐĞƚƐ ŽĨ ĐŽŵƉŽŶĞŶƚ ůŽĂĚŝŶŐƐ ;ĞĂĐŚ ŽĨ ƐŝǌĞ Ϳ͕ 274 

ĂŶĚ  ƐĞƚƐ ŽĨ ĐŽŵƉŽŶĞŶƚ ƐĐŽƌĞƐ ;ĞĂĐŚ ŽĨ ƐŝǌĞ Ϳ͘ EŝŐĞŶǀĂůƵĞƐ ĂŶĚ ƚŚĞŝƌ 275 

ĂƐƐŽĐŝĂƚĞĚ ĞŝŐĞŶǀĞĐƚŽƌƐ Ăƚ ƵŶŽďƐĞƌǀĞĚ ůŽĐĂƚŝŽŶƐ ĐĂŶ ďĞ ŽďƚĂŝŶĞĚ͕ ĂůƚŚŽƵŐŚ ĂƐ ŶŽ 276 

ĚĂƚĂ ĞǆŝƐƚ ĨŽƌ ƚŚĞƐĞ ůŽĐĂƚŝŽŶƐ ĐŽŵƉŽŶĞŶƚ ƐĐŽƌĞƐ ĐĂŶŶŽƚ ďĞ ŽďƚĂŝŶĞĚ͘ 277 

r ijd

thi thj X
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 278 

A GWPCA was used to generate spatially-varying PCAs for the image data. A GWPCA 279 

loadings data set for a given image band, for a given PC, reflects a spatially-280 

distributed set of correlations between the observations of the original band and the 281 

GWPCA scores for the chosen PC. GWPCA loadings provide a local summary of each 282 

band's local variance together with the local covariances, and because of this they 283 

succinctly encapsulate the multivariate spatial structure in the image data. This is the 284 

prime reason why they are considered worthy as input variables to improve land 285 

cover classification accuracy. For the case study data (and for a given GWPCA 286 

bandwidth),  GWPCA loadings data sets are generated, together with 287 

 GWPCA scores data sets. Thus a considerable amount of data is 288 

generated. 289 

 290 

Both PCA and GWPCA results are presented, where for the PCA the image bands 291 

were standardised to specify the covariance matrix. The same globally standardised 292 

data were also used in the GWPCA, which is similarly specified with (localised) 293 

covariance matrices. As with any PCA-based study there are consequences of these 294 

data pre-processing decisions and different results may occur (e.g. Eklundh and 295 

Singh 1993). Furthermore, for GWPCA, data that are globally standardised does not 296 

guarantee that the data will retain their associated properties at the scale of each 297 

localised PCA. A detailed presentation on the consequences of these data pre-298 

processing decisions when applying (PCA and) GWPCA, together with a list of 299 

pragmatic data checks, is given in Harris et al. (2015).  300 

 301 

3.3. Supervised Classification 302 

4977 

4340076200 
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 303 

In remote sensing, supervised classification proceeds by examining the 304 

characteristics of the training data (image and ground data) to be used in the 305 

classification and allocates image objects to classes based on their characteristics at 306 

the validation sites. In this study, the image input data was supplemented with the 307 

GWPCA loadings and then with the GWPCA scores of the image data itself. 308 

 309 

Three classification algorithms were applied: (a) a latent discriminant analysis (LDA) 310 

implementation of maximum likelihood, (b) a logistic regression (LR), and (c) support 311 

vector machines (SVM). These were implemented using the following functions and 312 

associated R packages, respectively: lda in MASS (Venables and Ripley, 2002), 313 

multinom in nnet (Ripley, 2013) and svm in e1071 (Meyer et al., 2012). In all cases, 314 

the default arguments for the parameterisation of the classifiers were retained. For 315 

details, please refer to the R package manuals. 316 

 317 

Classification algorithms were chosen according to their common usage and the fact 318 

that each classifier could be reliably run without additional manipulation or input 319 

parameters. Furthermore, the LDA and LR classifiers (which are broadly similar) 320 

provide a useful contrast to SVM which takes a quite different (machine learning) 321 

approach to classification. This rather naïve selection of algorithms provides some 322 

objectivity to this study, as it provides a focus to the performance of GWPCA-derived 323 

input variables, not the classification algorithms themselves. Future work could 324 

expend the choice of algorithms and more accurately assess whether a given 325 

algorithm is particularly suited to GWPCA-derived input variables. 326 

 327 
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3.4. Bandwidth Selection for GWPCA 328 

 329 

Bandwidth choice is of great importance to any GW approach. Small bandwidths 330 

result in greater spatial variation in the local outputs and the results of using large 331 

bandwidths get increasingly close to the global metric. Bandwidths can be found in 332 

an adaptive form, where the number of nearest neighbours is fixed, or in a fixed 333 

form, where the distance is fixed. In this study, only adaptive bandwidths were 334 

specified. For a standard implementation of GWPCA, an automatic bandwidth can be 335 

found using a cross-validation procedure as detailed in Harris et al. (2011; 2015). This 336 

procedure optimally selects the bandwidth according to a minimised fit between the 337 

raw data and the scores data. 338 

 339 

The aim was to use GWPCA outputs as inputs to improve land cover classification 340 

accuracy. As such, it made sense to find a GWPCA calibration (i.e. its bandwidth) 341 

whose outputs provided the most accurate classification. Only the GWPCA loadings 342 

needed to be considered in this exercise as the GWPCA scores data should be found 343 

from a small, user-specified bandwidth reflecting their use for anomaly detection. 344 

The bandwidth selection procedure used in this study is described as follows: 345 

 346 

i. GWPCA ůŽĂĚŝŶŐƐ ĚĂƚĂ ǁĞƌĞ ŐĞŶĞƌĂƚĞĚ Ăƚ Ăůů ϲϮϬϬ ƉŝǆĞů ƐŝƚĞƐ ŽĨ ƚŚĞ ĨƵůů ŝŵĂŐĞ ƵƐŝŶŐ 347 

GWPCAƐ ĐĂůŝďƌĂƚĞĚ ǁŝƚŚ ĂĚĂƉƚŝǀĞ ďĂŶĚǁŝĚƚŚƐ ŽĨ ϭй͕ ϱй͕ ϭϬй͕ ϭϱй͕ ĂŶĚ 348 

ĐŽŶƚŝŶƵŝŶŐ ŝŶ ŝŶĐƌĞŵĞŶƚƐ ŽĨ ϱй͕ ƚŽ Ă ŵĂǆŝŵƵŵ ŽĨ ϭϬϬй͘ TŚƵƐ ĨŽƌ Ă ďĂŶĚǁŝĚƚŚ ŽĨ 349 

ϭй͕ ůŽĐĂůŝƐĞĚ PCAƐ ǁĞƌĞ ĨŽƵŶĚ ƵƐŝŶŐ ŽŶůǇ their nearest 62 neighbours. FŽƌ Ă 350 

ďĂŶĚǁŝĚƚŚ ŽĨ ϱй͕ ůŽĐĂůŝƐĞĚ PCAƐ ǁĞƌĞ ĨŽƵŶĚ ƵƐŝŶŐ their nearest 310 neighbours, 351 

and so on. This results in 21 instances of GWPCA loadings data sets. 352 
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ii. The ǁŚŽůĞ 80/20 ƚƌĂŝŶŝŶŐͬǀĂůŝĚĂƚŝŽŶ classification assessment (i.e. now at the 494 353 

ground data sites) was repeatedly re-run using the same raw image data, but for 354 

each run a different set of GWPCA loadings data was used from step (i). Here it 355 

soon became apparent that GWPCA loadings data via a 20% bandwidth would 356 

provide the most accurate classification results (at least on average for each 357 

classifier over the 100 runs). Thus for clarity, the accuracies in Table 3 were found 358 

21 times corresponding to the most accurate results. 359 

 360 

Observe that step (ii) of this procedure is sub-optimal in that a more accurate set of 361 

results would be possible if an optimal bandwidth was retained for: (a) each 362 

individual training/validation data split and (b) each classifier (i.e. LDA, LR and SVM). 363 

However, such level of detail would distract ĨƌŽŵ ƚŚŝƐ ƉĂƉĞƌ͛Ɛ ŶĂƌƌĂƚŝǀĞ. It was also 364 

considered useful to have a broad understanding of the spatial scale at which the 365 

image-derived GWPCA loadings were best able to discriminate between land cover 366 

classes. A single bandwidth allows this, where a 20% bandwidth uses the nearest 367 

1240 neighbouring pixels. Thus in summary, a 20% bandwidth was user-specified but 368 

was strongly guided by the given validation exercise in step (ii) above. 369 

 370 

Also observe that the bandwidth selection procedure is potentially compromised in 371 

step (i) in that any given set of ground data validation sites (always some class-372 

stratified random allocation of 98 sites from 494 sites) is always included in the 373 

bandwidth selection procedure. That is, each set of GWPCA loadings data was in part 374 

derived from image information at the 98 validation sites, where the extent of 375 

contamination at any one of 6200 pixels accorded to its proximity to a validation site. 376 
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The question then arises - is this a serious oversight and if so, should all validation 377 

data sets be entirely unseen until the final accuracy assessment? 378 

 379 

Although, it would have been possible to remove such validation sites from step (i), 380 

and still provide GWPCA loadings data at these now unobserved sites in step (ii) (see 381 

the GWPCA algorithm in section 3.2) ʹ thus negating this issue altogether, a revision 382 

was not undertaken for the following three reasons: 383 

 384 

a. It would have entailed that in step (i), the GWPCA algorithm would have had to 385 

run 21x100 =2100 times to reflect the 21 bandwidth choices together with the 386 

100 training/validation data splits. 387 

b. It was likely that each set of GWPCA loadings data would change little if the image 388 

data at the 98 validation sites (1.6% of the image) were included or not. In turn, 389 

the final selection of a 20% bandwidth would still be likely. 390 

c. The chosen 20% bandwidth was itself a (deliberately) sub-optimal selection. 391 

 392 

Thus in the interest of parsimony and pragmatism, such a revision was not followed. 393 

All further results of this study were considered similarly unaffected by this decision. 394 

 395 

Furthermore, this issue is only concerned with the creation of variables for input into 396 

a classification algorithm. It is not concerned about the testing of the classification 397 

itself, as is usually the case in a training/validation exercise ʹ and here, in step (ii), 398 

the validation data still remained unseen in this sense. A final point worth noting is 399 

that there would be no advantage to only focus on the 494 ground data sites (i.e. 400 

ignore the full 6200 image data altogether) for bandwidth selection, say to save 401 
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computationally. A bandwidth found using this relatively sparse data (see Fig. 1b) 402 

would not directly transfer to that which is required for the full image data. 403 

 404 

4. Results 405 

 406 

4.1. PCA  407 

 408 

For any GW model application, it is informative to consider its global counterpart for 409 

reference. The PCA results are shown in Table 2 and indicate that a subsequent 410 

analysis could justifiably proceed retaining only the first (PC1) and second (PC2) 411 

components as both have eigenvalues that are greater than 1 and together they 412 

account for 87.4% of the total variance. This level of explained variance amongst 413 

only the first two PCs reflects strong levels of collinearity amongst the MODIS bands, 414 

which is not unexpected with this type of data. Interrogation of a simple correlation 415 

matrix confirms this, with strong correlations (p > 0.85) between Bands 1 and 3, 416 

Bands 1 and 4, Bands 2 and 5, Bands 3 and 4, Bands 5 and 6, Bands 6 and 7. The PCA 417 

loadings indicate that Band 6 contributes most to PC1 and that Bands 2 and 5 equally 418 

contribute the most to PC2. 419 

 420 

Table 2. PCA outputs from the 7-band MODIS data. 421 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Eigenvalues 4.082 2.036 0.695 0.090 0.046 0.036 0.015 

Variance % 58.3 29.1 9.9 1.3 0.7 0.5 0.2 

Cumulative variance % 58.3 87.4 97.3 98.6 99.3 99.8 100 

Band 1 loadings 0.388 0.415 0.030 0.344 0.493 -0.561 0.001 

Band 2 loadings 0.284 -0.491 0.484 -0.024 -0.380 -0.490 -0.241 

Band 3 loadings 0.390 0.389 0.126 -0.820 -0.059 0.010 0.072 

Band 4 loadings 0.392 0.334 0.406 0.428 -0.296 0.542 -0.079 

Band 5 loadings 0.340 -0.491 0.119 -0.111 0.659 0.389 -0.178 

Band 6 loadings 0.435 -0.286 -0.269 0.111 -0.160 0.004 0.787 

Band 7 loadings 0.398 -0.032 -0.705 0.038 -0.249 0.017 -0.529 
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 422 

4.2. GWPCA 423 

 424 

A GWPCA was then applied to the same data, generating local eigenvalues, local 425 

variance proportions, local cumulative variance proportions, local loadings data sets 426 

and local scores data sets, across the 6200 image sites. The GWPCA can assess how 427 

the dimensionality in the imagery can vary across the study region via the local 428 

variances and how the multivariate structure of the imagery can vary via the local 429 

loadings data sets. Fig.  2a shows the spatial distribution of the variance proportions 430 

accounted for by PC1 and how they vary geographically from the global value of 431 

58.3%.  Fig.  2b shows the distribution of cumulative variance proportions for PC1 432 

and PC2 combined, which was 87.4% globally. It is evident that PC1 explains much 433 

more of the variance in the north eastern corner of the study region (Fig.  2a), whilst 434 

together PC1 and PC2 explain more of the cumulative variance in the northern and 435 

eastern areas of the study region (Fig.  2b). These areas are also most likely to exhibit 436 

the strongest levels of (local) collinearity amongst the image bands. Image 437 

dimensionality clearly varies across the study region, where for all areas the 438 

ƌĞƚĞŶƚŝŽŶ ŽĨ ƚŚĞ ĨŝƌƐƚ ƚǁŽ PC͛Ɛ ǁŝůů Ăƚ ůĞĂƐƚ ĂĐĐŽƵŶƚ ĨŽƌ ϳϴй ŽĨ ƚŚĞ ƚŽƚĂů ǀĂƌŝĂŶĐĞ͘ 439 

 440 

Investigating and visualising the loadings data from GWPCA is a challenge, and in this 441 

respect, various visualisation tools can be found in Harris et al. (2011; 2015). The 442 

difficulty lies in the fact that at every local PCA location, the loadings data for each 443 

band and PC needs to be somehow viewed and related to each other. For this study, 444 

a simple visualisation is adopted where the image bands with the largest (absolute) 445 

loadings for the first two PCs only are mapped (Fig.  3). It is clear that different bands 446 
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dominate PC1 within the study region and that Band 6, which dominates globally, 447 

only dominates in a north western and a north eastern area (Fig.  3a). Locally, it now 448 

appears that Bands 1 and 4 contribute more to PC1, than Band 6 does. Similarly, 449 

Bands 2 and 5 that contributed the most to PC2, do not dominate PC2 throughout 450 

the study region (Fig. 3b). Although in this instance, Band 2 displays a degree of 451 

homogeneity - as it provides the highest absolute loading for over 50% of the region. 452 

 453 

Although this has intentionally been only a brief demonstration of GWPCA, it has 454 

highlighted that both dimensionality and structure in the image data can vary across 455 

the study region. In particular, as image-band structure (via the loadings) clearly 456 

exhibits spatial variation then this information has the potential to act as a useful 457 

discriminator of land cover, which is now assessed. 458 
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b) 

Fig. 2. Spatial distribution of the local variances proportions explained by a) PC1 and 459 

b) PC1 and PC2 combined, from a GWPCA. Global variance proportion for PC1 was 460 

58.3%. Global cumulative variance proportion for PC1 and PC2 combined was 87.4%. 461 
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b) 

Fig. 3. Spatial distribution of the image bands with largest (absolute) local loadings 462 

for a) PC1 and b) PC2, from a GWPCA. Corresponding global PCA results were 463 

respectively Band 6, and Bands 2 and 5, jointly. 464 

 465 

4.3. Land Cover Classification  466 

 467 

A series of supervised classifications were undertaken with four groups of input 468 

variables: (1) the seven image bands only (2) the image-derived GWPCA loadings for 469 

PC1 and PC2 only, (3) the image data plus the GWPCA loadings, and (4) the image 470 

data plus the GWPCA loadings plus the GWPCA ranked scores. As the global PCA 471 

indicated that the first two PCs were the most important, then this was assumed to 472 

be true for the GWPCA with respect to the loadings. To provide some spatial context 473 

to the different input data and how they vary across the study region, Figures 4, 5 474 

and 6 shows in their full form the MODIS imagery and the GWPCA image band 475 

loadings for PC1 and for PC2. 476 

 477 
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For input variable group 4, the GWPCA ranked scores data capture local multi-band 478 

outlier information. Harris et al. (2014b) found that the most promising outlier 479 

detection method resulted from observations with extreme local scores values from 480 

either the first PC or from the last PC. Thus two additional texture input variables 481 

were constructed to reflect the ranking of the local scores data for each of PC1 and 482 

for PC7, where the lower the ranking, the more likely that the MODIS pixel is locally 483 

anomalous in a multi-band (or multivariate) sense. These extra input variables 484 

(simply termed GWPCA ranked scores) may help classify a land cover that is 485 

somewhat obscure, or occurs in an unexpected location/setting. In this instance, the 486 

GWPCA run was calibrated with a much smaller (user-specified) bandwidth of 2.5%, 487 

as GWPCA was now being used to detect anomalies. 488 

 489 

  490 
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Fig. 4. Inputs into land cover classifications: the MODIS imagery  492 
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Fig. 5. Inputs into land cover classifications: the GWPCA band loadings for PC1  493 

 494 

  

Band 1

−700000

−690000

−680000

−670000

650000 660000 670000 680000 690000

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Band 2

−700000

−690000

−680000

−670000

650000 660000 670000 680000 690000

−0.4

−0.2

0.0

0.2

0.4

0.6

Band 3

−700000

−690000

−680000

−670000

650000 660000 670000 680000 690000

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Band 4

−700000

−690000

−680000

−670000

650000 660000 670000 680000 690000

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Band 5

−700000

−690000

−680000

−670000

650000 660000 670000 680000 690000

−0.4

−0.2

0.0

0.2

0.4

0.6

Band 6

−700000

−690000

−680000

−670000

650000 660000 670000 680000 690000

−0.4

−0.2

0.0

0.2

0.4

0.6

Band 7

−700000

−690000

−680000

−670000

650000 660000 670000 680000 690000

−0.4

−0.2

0.0

0.2

0.4



 26 

  

  

  

 

 

Fig. 6. Inputs into land cover classifications: the GWPCA band loadings for PC2  495 
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Following the procedures described in section 3, LDA, LR and SVM classifiers were 497 

run 100 times across 494 ground data sites using class-stratified 80/20 498 

training/validation data splits (see Table 1) with the four input variable groups 499 

described. For each run, the overall accuracy percentage for each classifier was 500 

determined from the diagonal of a standard correspondence matrix, comparing the 501 

class of the validation data with the predicted class. The resultant mean overall 502 

accuracies for 100 runs are presented in Table 3, indicating that classification 503 

accuracy is broadly similar for each of the three classifiers when just the image data 504 

are used, and also when just the GWPCA loadings are used. However when the 505 

image data are combined with the GWPCA loadings, the accuracies increase 506 

markedly. This suggests that including variables that describe the spatial multivariate 507 

structure of the imagery improves classification predictive strength.  There are only 508 

slight improvements in accuracy when the GWPCA ranked scores data were included 509 

as inputs. However, these marginal improvements were entirely expected given that 510 

the focus was on anomalies and by definition, they should be fairly rare. On average 511 

over the 100 runs, LR is consistently the most accurate classifier, in this instance. 512 

 513 

Table 3. The mean overall accuracy percentages for four different input variable 514 

groups to a set of three different classification algorithms. Corresponding standard 515 

errors of the means (SEMs) are in brackets.  The number of input variables per group 516 

were 7, 14, 21 and 23, respectively. 517 

 518 

 

Image 

GWPCA 

loadings 

Image 

+ 

GWPCA loadings 

Image 

+ 

GWPCA loadings 

+ 

GWPCA ranked 

scores 

LDA 63.6 (0.39) 61.9 (0.36) 68.7 (0.38) 70.4 (0.38) 

LR 66.0 (0.37) 65.5 (0.40) 75.5 (0.40) 77.4 (0.38) 

SVM 65.3 (0.25) 64.3 (0.25) 69.4 (0.30) 74.9 (0.34) 

 519 
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 520 

To provide a fuller understanding of the results of Table 3, Table 4 describes the 521 

results per land cover class. It show the improvement from using the image data only 522 

(input variable group 1) to using the image data plus the GWPCA loadings plus the 523 

GWPCA ranked scores (input variable group 4). These results need to be viewed in 524 

context of the training/validation data splits given in Table 1, where for land cover 525 

classes that are poorly represented (or rare), the classification improvement is often 526 

quite marked, whereas for land cover classes that are relatively well represented 527 

(Settlement and Paddyfield), classification accuracy is sometimes marginally 528 

reduced. These results provide clear value in the GWPCA-based methodology to 529 

accurately classify land cover across the full spectrum of possible classes, and in 530 

doing so, goes someway in justifying the extra complexity that the new methodology 531 

introduces into the classification procedure. 532 

 533 

Table 4. Changes in mean overall accuracy for each land cover class, comparing the 534 

͚IŵĂŐĞ͛ ŝŶƉƵƚ ŐƌŽƵƉ ƚŽ ƚŚĞ  ͚IŵĂŐĞнGWPCA ůŽĂĚŝŶŐƐнGWPCA ƌĂŶŬĞĚ ƐĐŽƌĞƐ͛ ŝŶƉƵƚ 535 

group. 536 

 

Urban Settlement Paddyfield Cultivated Trees Grass Bare Water 

LDA 38.2 to 68.0 71.2 to 68.1 86.2 to 79.3 8.2 to 75.4 20.0 to 20.0 18.6 to 54.5 1.2 to 35.5 0 to 68 

LR 42.5 to 63.5 74.0 to 78.0 88.9 to 84.8 6.6 to 80.2 19.3 to 20.7 16.6 to 59.9 1.5 to 62.5 0 to 99 

SVM 1.8 to 45.5 83.4 to 82.9 92.5 to 92.8 0 to 48.6 1.3 to 13.3 7.4 to 45.5 0 to 22.8 0 to 0 

 537 

Fig.7 shows the full distributions of the accuracy results as summarised in Table 3, 538 

from all 100 of the class-stratified 80/20 training/validation data splits. The boxplots 539 

of the accuracy distributions clearly shows that the use of GWPCA-derived inputs 540 

improves classification accuracy. The greatest improvements were found with the LR 541 

classifier, where for some training/validation data splits, land cover classification 542 

accuracy exceeds 80%. The boxplots also confirm that the SVM classifier consistently 543 

has lower variance in the results than the LDA or LR classifiers. Paired t-tests were 544 
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used to test for significance differences in the means of selected accuracy 545 

distributions and are summarised in Table 5. All of the key differences that have 546 

been reported are highly significant. 547 

 548 

 549 

Fig. 7. Distributions of classification accuracy data from 100 runs of the 550 

training/validation data splits. Classifiers (LDA, LR, SVM) denoted with input groups 551 

(1-Image, 2-GWPCA loadings, 3-Image+GWPCA loadings, 4-Image+GWPCA 552 

loadings+GWPCA ranked scores). Given with an 80% accuracy line for context. 553 

 554 

Table 5. Paired t-test results for differences in mean overall accuracies, with input 555 

groups as follows: 1-Image, 2-GWPCA loadings, 3-Image+GWPCA loadings, 4-556 

Image+GWPCA loadings+GWPCA ranked scores. 557 

 

Groups 1 vs. 2 Groups 1 vs. 3 Groups 1 vs. 4 Groups 3 vs. 4 

LDA p < 0.0019 p < 0.0000 p < 0.0000 p < 0.0018 

LR p < 0.2945 p < 0.0000 p < 0.0000 p < 0.0005 

SVM p < 0.0083 p < 0.0000 p < 0.0000 p < 0.0000 

 558 

 559 

5. Discussion 560 

 561 

The results of Table 3 indicate that use of the MODIS image data alone (Fig. 4) or the 562 

GWPCA loadings alone (Fig. 5 and 6) result in similar land cover classification 563 

accuracies. However, accuracy improves when the image data is supplemented with 564 
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the GWPCA loadings as texture variables. This improvement is because the local 565 

loadings arising from GWPCA capture important spatial heterogenic effects in the 566 

multi-band structure of the image data via variances and covariances. This 567 

information reflects spatially-distributed sets of correlations between the 568 

observations of the original bands and the GWPCA scores and describes the local 569 

contribution of each band to each PC. The results imply that if a loadings structure 570 

were to be associated with  each land cover class it would not be fixed, but instead 571 

would vary geographically placing land cover in context with its locality. Further, but 572 

more marginal improvements in accuracy were found when the GWPCA ranked 573 

scores were included as inputs. Here only slight improvements were expected given 574 

that these inputs should only help classify a land cover that is somewhat obscure, or 575 

occurs in an unexpected location/setting.  The results of Tables 4 and 5 and Fig. 7 576 

were given to provide clarity and detail to those summarised in Table 3, providing 577 

added value to the GWPCA-based land cover classification methodology. 578 

 579 

In this study the classifications were undertaken from a standpoint of naivety. It is 580 

well known that collinearity might be expected between certain image bands and 581 

this was the case here. Furthermore, many of the 14 different GWPCA loadings 582 

datasets are themselves highly collinear. Evidence of this can be seen in Fig. 5 and 6 583 

and is not surprising given the collinearity of the image bands. Collinearity can result 584 

in a loss of model precision and a loss of power in a classification model's parameter 585 

estimates. There are a number of ways to reduce such global collinearities.  An initial 586 

step of image band selection could be applied to help identify specific types of 587 

features, for example, red and infra-red bands to support biomass analyses. Also, the 588 

image bands and GWPCA loadings data that are highly collinear could be removed, 589 
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the first two global PCs of the image data could be used with the GWPCA loadings, or 590 

a classification technique could be specifically designed to accommodate collinear 591 

variables such as a penalised or shrinkage approach (see Tibshirani, 1996). Removal 592 

of collinear image bands and GWPCA loadings data and using only the first two 593 

global PCs of the image data were experimented with, but found to make little 594 

difference to the classification results. This was not surprising given that collinearity 595 

tends to have more of an effect on model inference rather than the model's ability 596 

to provide accurate predictions. 597 

 598 

Of note however, is that of the three classifiers, SVM is itself a penalised or shrinkage 599 

method in that it has a regularisation term. This may in part explain why the SVM 600 

classifier consistently performed better than the LDA or LR classifiers with respect to 601 

its spread of results (see Table 3 and Fig. 7). This is because the standard error of the 602 

means (SEMs) are consistently smaller than that found with LDA and LR. However, as 603 

only the default arguments for the optimisation of its parameters were used, the 604 

SVM classifier would still require some user-input to check that the regularisation 605 

term and any kernel parameters were correctly calibrated. 606 

 607 

IŶ ĂŶǇ ůĂŶĚ ĐŽǀĞƌ ĐůĂƐƐŝĨŝĐĂƚŝŽŶ ƐƚƵĚǇ ƚŚĞ ƌĞƐƵůƚƐ ĂƌĞ ŽŶůǇ ĞǀĞƌ ƐƉĞĐŝĨŝĐ ƚŽ ƚŚĞ 608 

ƉĂƌƚŝĐƵůĂƌ ƉƌŽƉĞƌƚŝĞƐ ŽĨ ĚĂƚĂ ĂŶĚ ƚŚĞ ƌĞŐŝŽŶ ŝƚ ĐŽǀĞƌƐ͘ AƐ Ă ĐŽŶƐĞƋƵĞŶĐĞ͕ ŝƚ ĐĂŶ ďĞ 609 

ĚŝĨĨŝĐƵůƚ ƚŽ ŝŶĨĞƌ ƚŚĞ ƚƌĂŶƐĨĞƌĂďŝůŝƚǇ ĂŶǇ ŵĞƚŚŽĚŽůŽŐǇ ƚŽ ŽƚŚĞƌ ƐƚƵĚŝĞƐ͕ ĞƐƉĞĐŝĂůůǇ ƚŚŽƐĞ 610 

ǁŝƚŚ ǀĞƌǇ ĚŝĨĨĞƌĞŶƚ ƐƉĂƚŝĂů ĂŶĚ ĂƚƚƌŝďƵƚĞ ƉƌŽƉĞƌƚŝĞƐ͘ IŶ ƚŚŝƐ ǁŽƌŬ Ă ĐĂƐĞ ƐƚƵĚǇ ǁĂƐ 611 

ĐŚŽƐĞŶ ŝŶ ǁŚŝĐŚ ƚŚĞ ƐƉĂƚŝĂů ƌĞƐŽůƵƚŝŽŶ ŽĨ ƚŚĞ ŝŵĂŐĞƌǇ ǁĂƐ ĐŽĂƌƐĞ ƌĞůĂƚŝǀĞ ƚŽ ƚŚĞ ƐƚƵĚǇ 612 

ĂƌĞĂ ĂƐ Ă ŵĞĂŶƐ ƚŽ ĚĞŵŽŶƐƚƌĂƚĞ ƚŚŝƐ ƉĂƉĞƌ Ɛ͛ ŵĞƚŚŽĚŽůŽŐǇ͘  There is no reason why 613 

the ŵĞƚŚŽĚŽůŽŐǇ would not perform similarly well if applied to data at a much finer 614 
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spatial resolution or over a much larger area.  Thus issues of scale should not unduly 615 

compromise this new classification method. What is important to local techniques is 616 

that sufficient information is available so that important spatial heterogeneities can 617 

be reliably captured. Future work will ĂƉƉůǇ ƚŚĞ ŵĞƚŚŽĚŽůŽŐǇ ǁŝƚŚŝŶ Ă ƐŝŵƵůĂƚŝŽŶ 618 

ĞǆƉĞƌŝŵĞŶƚ ƚŽ ĚĂƚĂ ŐĞŶĞƌĂƚĞĚ ǁŝƚŚ ŬŶŽǁŶ ĂŶĚ ƵƐĞƌ-ĐŽŶƚƌŽůůĞĚ ƉƌŽƉĞƌƚŝĞƐ͘ 619 

 620 

Unlike many moving window or partitioned-based methods, a GW approach makes 621 

much better use of available information, as it is still possible to use all the data 622 

whilst still modelling local effects. For example, a 100% bandwidth of this study was 623 

still able to provide localised PCAs because a distance-decay (bi-square) kernel was 624 

specified. Similarly, much attention in GW modelling is placed in finding optimal 625 

kernel bandwidths so that the scale at which each localised model operates is 626 

appropriately determined. Future work will compare similarly localised classification 627 

methods to the one demonstrated here, providing further context to the GWPCA-628 

based method. 629 

 630 

IŶ ƚŚŝƐ ƐƚƵĚǇ GWPCA ǁĂƐ ƵƐĞĚ ƚŽ ŝŵƉƌŽǀĞ ůĂŶĚ ĐŽǀĞƌ ĐůĂƐƐŝĨŝĐĂƚŝŽŶ ĂĐĐƵƌĂĐǇ͘  631 

HŽǁĞǀĞƌ͕  GWPCA ŵĂǇ ĂůƐŽ ƉƌŽǀŝĚĞ ůŽĐĂů ƐŽůƵƚŝŽŶƐ ƚŽ ŽƚŚĞƌ ŵŽĚĞůůŝŶŐ ŝƐƐƵĞƐ ŽĨ 632 

ŝŶƚĞƌĞƐƚ ƚŽ ƚŚĞ ƌĞŵŽƚĞ ƐĞŶƐŝŶŐ ĐŽŵŵƵŶŝƚǇ͘  GWPCA could be applied for an 633 

optimisation of the image data collection, or the detection of image band outliers 634 

(e.g. Harris et al., 2014a; b). Iƚ ĐŽƵůĚ ĂůƐŽ ďĞ ĂƉƉůŝĞĚ ĂƐ Ă ůŽĐĂů ĚĂƚĂ ƌĞĚƵĐƚŝŽŶ 635 

ƚĞĐŚŶŝƋƵĞ ƚŽ  ŚǇƉĞƌƐƉĞĐƚƌĂů ŝŵĂŐĞƌǇ Žƌ ŝŶ Ă ĚĂƚĂ ĨƵƐŝŽŶ ĞǆĞƌĐŝƐĞ ǁŝƚŚ ŝŶƉƵƚƐ ŽƉĞƌĂƚŝŶŐ 636 

Ăƚ ǀĂƌǇŝŶŐ ƐƉĂƚŝĂů ƐĐĂůĞƐ͘ This study adds to a growing body of work that has used 637 

GWPCA to provide a greater understanding on how dimensionality and structure in 638 

multivariate data can vary spatially including research in the social sciences 639 
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(Fotheringham et al., 2002; Lloyd, 2010, Harris et al., 2011) and the environmental 640 

sciences (Kumar et al., 2012; Harris et al., 2015). 641 

 642 

TŚĞ ƌĞƐƵůƚƐ ĨƌŽŵ ƚŚŝƐ ƐƚƵĚǇ ƐƚƌŽŶŐůǇ ƐƵŐŐĞƐƚ ƚŚĂƚ ůĂŶĚ ĐŽǀĞƌ ĐůĂƐƐĞƐ ŚĂǀĞ ĚŝĨĨĞƌĞŶƚ 643 

ŝŵĂŐĞ ƉƌŽƉĞƌƚŝĞƐ ŝŶ ĚŝĨĨĞƌĞŶƚ ƉŽƌƚŝŽŶƐ ŽĨ ƚŚĞ ŝŵĂŐĞ ƐĐĞŶĞ͘ HŽǁĞǀĞƌ ƚŚĞ GWPCA-644 

ďĂƐĞĚ ŵĞƚŚŽĚŽůŽŐǇ ŝƐ ƐƵĐŚ ƚŚĂƚ ƚŚŝƐ ƌĞůĂƚŝŽŶƐŚŝƉ ŚĞƚĞƌŽŐĞŶĞŝƚǇ ŝƐ ŽŶůǇ ŝŶĚŝƌĞĐƚůǇ 645 

ĂĐĐŽƵŶƚĞĚ ĨŽƌ ƐŝŶĐĞ ƵůƚŝŵĂƚĞůǇ͕  ŽŶůǇ ŶŽŶ-ƐƉĂƚŝĂů ĐůĂƐƐŝĨŝĞƌƐ ĂƌĞ ƵƐĞĚ͘ TŚƵƐ Ă GW 646 

ůŽŐŝƐƚŝĐ ƌĞŐƌĞƐƐŝŽŶ Žƌ GW ĚŝƐĐƌŝŵŝŶĂŶƚ ĂŶĂůǇƐŝƐ ĐŽƵůĚ ďĞ ĂƉƉůŝĞĚ ǁŝƚŚ ůĂŶĚ ĐŽǀĞƌ ĂƐ 647 

ƚŚĞ ƌĞƐƉŽŶƐĞ ǀĂƌŝĂďůĞ ĂŶĚ ƚŚĞ ŝŵĂŐĞ ďĂŶĚƐ ĂƐ ƚŚĞ ƉƌĞĚŝĐƚŽƌƐ͘ TŚŝƐ ǁŽƵůĚ ĞŶĂďůĞ Ă 648 

ĚŝƌĞĐƚ ĂŶĚ ƐƉĂƚŝĂůůǇ-ŝŶĨŽƌŵĂƚŝǀĞ ŝŶǀĞƐƚŝŐĂƚŝŽŶ ŽĨ ƐƵĐŚ ŚĞƚĞƌŽŐĞŶĞŽƵƐ ƌĞůĂƚŝŽŶƐŚŝƉƐ͘ 649 

HŽǁĞǀĞƌ ĂƐ ƚŚĞ ŝŵĂŐĞ ďĂŶĚƐ ĂƌĞ ŶŽƚ ŽŶůǇ ŚŝŐŚůǇ ĐŽůůŝŶĞĂƌ ŐůŽďĂůůǇ͕  ďƵƚ ĂůƐŽ ůŽĐĂůůǇ͕  650 

ƚŚĞŶ ƚŚĞƐĞ GW ŵŽĚĞůƐ ŵĂǇ ďĞ ƐŽŵĞǁŚĂƚ ĐŽŵƉƌŽŵŝƐĞĚ ;Ğ͘Ő͘ Páez Ğƚ Ăů͕͘ ϮϬϭϭͿ͕ ĂŶĚ 651 

ŝĨ ƐŽ͕ ŽŶĞ ǁĂǇ ƚŽ ĂĚĚƌĞƐƐ ƚŚŝƐ ǁŽƵůĚ ďĞ ƚŽ ƌĞƉůĂĐĞ ƚŚĞ ƌĂǁ ŝŵĂŐĞ ĚĂƚĂ ǁŝƚŚ ƚŚĞŝƌ 652 

;ůŽĐĂůůǇ ŽƌƚŚŽŐŽŶĂůͿ GWPCA ƐĐŽƌĞƐ ĚĂƚĂ͘ TŚĞƐĞ ŽďƐĞƌǀĂƚŝŽŶƐ ƉƌĞƐĞŶƚ ĂŶ ŝŶƚĞƌĞƐƚŝŶŐ 653 

ƉŚŝůŽƐŽƉŚŝĐĂů ĐŚĂůůĞŶŐĞ ŝŶ ƌĞŵŽƚĞ ƐĞŶƐŝŶŐ ĂƐ ŝƚ ŝŵƉůŝĞƐ ƚŚĂƚ ƚŚĞ ĚĞĨŝŶŝƚŝŽŶ ŽĨ ĂŶǇ 654 

ŐŝǀĞŶ ůĂŶĚ ĐŽǀĞƌ ĐůĂƐƐ ĂƐ Ă ƉŽƐŝƚŝŽŶ ŝŶ ŵƵůƚŝǀĂƌŝĂƚĞ ĨĞĂƚƵƌĞ ͬ ŝŵĂŐĞ ƐƉĂĐĞ͕ ĂĐƚƵĂůůǇ 655 

ǀĂƌŝĞƐ ŐĞŽŐƌĂƉŚŝĐĂůůǇ͘ Iƚ ĂůƐŽ ŚĂƐ ƉŽƚĞŶƚŝĂůůǇ ŝŶƚĞƌĞƐƚŝŶŐ ĂƉƉůŝĐĂƚŝŽŶƐ ĂŶĚ ŝŵƉůŝĐĂƚŝŽŶƐ 656 

ĨŽƌ ƐŽĐŝŽ-ĞĐŽŶŽŵŝĐ ĐůĂƐƐŝĨŝĐĂƚŝŽŶƐ ƐƵĐŚ ĂƐ ůĂŶĚ ƵƐĞ ǁŚŝĐŚ ĂƌĞ ŚĂƌĚ ƚŽ ĚĞƚĞĐƚ ĚŝƌĞĐƚůǇ 657 

ĨƌŽŵ ƌĞŵŽƚĞ ƐĞŶƐŝŶŐ ŝŵĂŐĞƌǇ ĂůŽŶĞ͘ 658 

 659 

6. Conclusions 660 

 661 

This research has found that the ƵƐĞ ŽĨ ƐƉĂƚŝĂů ŵĞĂƐƵƌĞƐ ŽĨ ŝŵĂŐĞƌǇ ƐƚƌƵĐƚƵƌĞ ĂŶĚ 662 

ĂŶŽŵĂůŝĞƐ ŝŶ ƚŚĞ ĨŽƌŵ ŽĨ GWPCA ůŽĂĚŝŶŐƐ ĂŶĚ GWPCA ƌĂŶŬĞĚ ƐĐŽƌĞƐ ĐĂŶ ƉƌŽǀŝĚĞ 663 

ƐŝŐŶŝĨŝĐĂŶƚ ŝŵƉƌŽǀĞŵĞŶƚƐ ŝŶ ůĂŶĚ ĐŽǀĞƌ ĐůĂƐƐŝĨŝĐĂƚŝŽŶ ĂĐĐƵƌĂĐǇ͘ “ƵĐŚ ŝŵƉƌŽǀĞŵĞŶƚƐ 664 
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ŚĂǀĞ ƚŚĞ ƉŽƚĞŶƚŝĂů ƚŽ ƉƌŽǀŝĚĞ ŝŵŵĞĚŝĂƚĞ ďĞŶĞĨŝƚƐ ĂŶĚ ƚŚĞƌĞďǇ ŵĂǇ ŽĨĨĞƌ ŐƌĞĂƚĞƌ 665 

ŝŶĨŽƌŵĂƚŝŽŶ ǀĂůƵĞ ƚŚĂŶ ŵĂŶǇ ƚĞĐŚŶŽůŽŐǇ-ůĞĚ ĚĞǀĞůŽƉŵĞŶƚƐ ;ŶĞǁ ƐĞŶƐŽƌƐ͕ ĨŝŶĞƌ ƐĐĂůĞƐ 666 

ĞƚĐ͘Ϳ͘ IŶ ƚŚŝƐ ǁĂǇ͕  ƌĞŵŽƚĞ ƐĞŶƐŝŶŐ ĂƐ Ă ĚŝƐĐŝƉůŝŶĞ ĐŽƵůĚ ďĞŶĞĨŝƚ ĨƌŽŵ Ă ŐƌĞĂƚĞƌ ĨŽĐƵƐ ŽŶ 667 

ƚŚĞ ŵĂŶǇ ĞǆŝƐƚŝŶŐ ĂƐ ǁĞůů ĞŵĞƌŐĞŶƚ ƚĞĐŚŶŝƋƵĞƐ ĂƌŝƐŝŶŐ ĨƌŽŵ ƐƉĂƚŝĂů ƐĐŝĞŶĐĞ͘ 668 
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 871 

Appendix: Computation times 872 

The main computational cost associated with GWPCA-derived input variables in the 873 

classification is in selecting the GWPCA bandwidth. For this study, we investigated 21 874 

bandwidths, as detailed in SĞĐƚŝŽŶ ϯ͘ϰ͘  OŶ Ă ŵĞĚŝƵŵ ƐƉĞĐƐ ůĂƉƚŽƉ ;IŶƚĞůΠ ĐŽƌĞ Ρ ŝϳ-875 

4600U CPU @ 2.10Ghz to 2.70GHz with 16.0 GB using a 64-bit OS), bandwidth 876 

selection took 54 minutes and 47 seconds. Each of the 21 runs took from 142 to 175 877 

seconds to complete, where longer runs tended to be for the larger bandwidths. The 878 

run with the chosen bandwidth of 20% took 149 seconds to output all ŽĨ ƚŚŝƐ ƐƚƵĚǇ͛Ɛ 879 
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results. Breaking this particular run down further, the classification comparisons 880 

took: (i) 27 seconds using only input variable group 1 (image data), and (ii) 95 881 

seconds, using only input variable group 4 (image plus all GWPCA-derived input 882 

variables), where 60 of the 95 seconds were used to calculate the GWPCA-derived 883 

input variables. Thus, for this particular case study, additional computational 884 

complexity is not an issue. To transfer the GWPCA-based classification methodology 885 

to larger data sets, immediate computational costs could be reduced by not 886 

ĐŽŶĚƵĐƚŝŶŐ Ăůů ŽĨ ƚŚŝƐ ƐƚƵĚǇ͛Ɛ ĐŽŵƉĂƌŝƐŽŶƐ ;ŝ͘Ğ͘ ĐŚŽŽƐĞ ŽŶůǇ ŽŶĞ ĐůĂƐƐŝĨŝĞƌ ĂŶĚ ŽŶůǇ ƚŚĞ 887 

fourth input variable group).  Furthermore, work is at an advanced stage in 888 

developing more efficient GWPCA code, incorporating both mathematical and 889 

hardware solutions. Judged short-cuts in the key step of bandwidth selection could 890 

also be employed, for example using thinned but spatially-representative image 891 

data. 892 

 893 


