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ABSTRACT 

 

Ward’s method is extensively used for clustering chemical structures represented by 2D 

fingerprints.  This paper compares Ward clusterings of 14 datasets (containing between 278 

and 4332 molecules) with those obtained using the Székely-Rizzo clustering method, a 

generalization of Ward’s method.  The clusters resulting from these two methods were 

evaluated by the extent to which the various classifications were able to group active 

molecules together, using a novel criterion of clustering effectiveness.  Analysis of a total of 

1400 classifications (Ward and Székely-Rizzo clustering methods, fourteen different datasets, 

five different fingerprints and ten different distance coefficients) demonstrated the general 

superiority of the Székely-Rizzo method.  The distance coefficient first described by Soergel 

performed extremely well in these experiments, and this was also the case when it was used 

in simulated virtual screening experiments.  
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INTRODUCTION 

Cluster analysis [1-3] is a multivariate technique that has been extensively used in 

chemoinformatics to partition a set of molecules into clusters that exhibit a high degree of both 

intra-cluster similarity and inter-cluster dissimilarity [4-6].  The molecules in such analyses are 

normally represented by 2D fingerprints, an approach that was first suggested over three decades 

ago by Adamson and Bush [7] and that has since been extensively used for applications such as the 

analysis of substructure-search outputs [8], the selection of molecules for biological screening [9], 

property prediction [10], and molecular diversity analysis [11].   

 

There are many different ways in which clustering can be carried out.  This has encouraged 

comparative studies to determine the effectiveness of the various clustering methods that are 

available when they are applied to the clustering of chemical structures.  Early property-prediction 

studies of over 30 hierarchic and non-hierarchic clustering methods [4] highlighted the consistent 

performance of the hierarchical agglomerative method first described by Ward [12], a finding that 

was confirmed in subsequent studies by Brown and Martin [10; 13] and by Downs et al. [14].  

With the advent of efficient implementations based on the reciprocal nearest neighbours algorithm 

[15], Ward’s method is now arguably the method of choice for clustering databases containing up 

to ca. 500K structures (larger files may be clustered using an hierarchic divisive procedure based 

on the well-known k-means relocation clustering method [16; 17]).  

 

Székely and Rizzo have recently described a new hierarchical agglomerative clustering method 

[18].  This method generalizes Ward’s method by defining a cluster distance and objective 

function in terms of a power in the interval (0,2] of the Euclidean distance between cluster centres, 

with Ward’s method being obtained as the limiting case when the power is 2.  Varin et al. have 

applied the Székely-Rizzo method to the clustering of chemical structures as part of a detailed 

study of ligands for the 5-hydroxytryptamine subtype-4 (5-HT4) receptor, and found that this 

method led to better grouping of the actives than did conventional hierarchical agglomerative 

methods, including Ward’s method [19].  In this paper, we report an extended evaluation of the 

Székely-Rizzo method, using a range of different distance metrics and using not just this 5-HT4 

data but also other 5-HT datasets from the Université de Caen and ten public PubChem datasets.   
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THE SZÉKELY-RIZZO CLUSTERING METHOD 

Hierarchical agglomerative methods have been used in a vast range of application domains 

[1; 2].  They generate a classification in a bottom-up manner, by a series of agglomerations in 

which small clusters, initially containing individual molecules, are fused together to form 

progressively larger clusters, with the most similar pair of clusters being fused at each stage 

of the classification.  The various hierarchic agglomerative methods differ only in the 

criterion that is used to select the most similar pair of clusters at each stage; indeed, they can 

all be implemented using a common algorithm first described in detail by Lance and 

Williams [20] (although more efficient algorithms are available for individual clustering 

methods [21]).  

 

The fusion criterion for many hierarchic agglomerative methods focuses on between-cluster 

distances; for example, the single linkage method (or the complete linkage method) fuses that 

pair of clusters for which the distance between two existing clusters is the minimum (or the 

maximum) of all the distances between molecules in one cluster and molecules in the other 

cluster.  Ward’s method differs from other hierarchic agglomerative methods in its use of a 

fusion criterion that results in clusters that are both homogenous (in the sense that the 

criterion minimizes the within-cluster distances) and heterogeneous (in the sense that the 

criterion maximizes the between-cluster distances).  This is achieved by minimising the 

increase in the total within-cluster sum of squared errors when two clusters are fused, an 

increase that is proportional to the squared Euclidean distance between the mean centres of 

the two clusters that are being fused.   

 

Székely and Rizzo have recently described “a joint between-within e-distance between 

clusters” that encompasses both intra-cluster homogeneity and inter-cluster heterogeneity, 

and use this distance as the criterion for a generalized clustering method that includes Ward’s 

method as a limiting case [18].  Specifically, Székely and Rizzo define the between-within 

distance, or e-distance e(A,B), between two clusters A and B , containing na and nb objects 

respectively, as  
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where the exponent α is in the range 0 < α ≤ 2 and where ║X-Y║ is the Euclidean distance 

between two objects X and Y.  Székely and Rizzo focus on two special cases: α = 2 and α = 
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1.  They show that the first of these cases, e2(A,B) is proportional to the weighted squared 

distance between the cluster means for A and B, and that this will accordingly yield a Ward 

hierarchy.  They note that the second of these cases, e1(A,B), has several desirable theoretical 

properties, one of which (that of statistical consistency as defined by Kaufman and 

Rousseeuw [22]) is not exhibited by e2(A,B) (i.e., Ward’s method).  They suggest that clusters 

based on e1(A,B) will be superior to those based on e2(A,B) for separating clusters with the 

same, or close, cluster means but different distributions of points around those means, and 

use dermatological, gene expression and simulated multivariate normal datasets to 

demonstrate that e1(A,B) can indeed out-perform e2(A,B) in some circumstances [18].  The 

Székely-Rizzo clustering method is available as a contributed package, called Energy, in the 

R statistical system (available from http://www.r-project.org/), and this was used for all the 

experiments reported below. 

 

Székely and Rizzo suggest that it is possible to obtain additional clustering methods by 

replacing the Euclidean distance in the formula above with other distance coefficients, but 

note that the resulting methods may not possess the same theoretical properties as those 

obtained using the Euclidean distance.  This suggestion was developed by Varin et al. in their 

study of ligands for the 5-HT4 receptor: they used not just Euclidean distance but also six 

other similarity and distance coefficients [19].  They also used a range of clustering methods 

(single linkage, complete linkage, group average, Ward and energy methods) and structural 

descriptors (ChemAxon JChem fingerprints, Unity fingerprints and ChemAxon 2D 

pharmacophore fingerprints).  They found that the best results were obtained using the energy 

method (i.e., Székely-Rizzo e1(A,B) clustering) with the Canberra distance [23], rather than 

Euclidean distance, as the fusion criterion.  In this paper, we report a more detailed 

comparison of the effectiveness of the energy and Ward methods, using: five different types 

of fingerprint (all of which take account of the frequency of occurrence of the encoded 

fragments substructures, rather than just their presence or absence as with conventional 

binary fingerprints); fourteen different datasets; and ten different distance coefficients.  These 

are detailed in the following sections.  



5 
 

EXPERIMENTAL DETAILS 

Fingerprints   

Our experiments have used five different types of fingerprint, these being selected from three 

broad classes, as summarized in Table 1.  The first class contains circular substructure 

fingerprints (specifically those popularized in the Pipeline Pilot system and available from 

Accelrys Software Inc. at http://www.accelrys.com).  The elements of the ECFC_4 

fingerprints contain the counts of fragment occurrences, in which the atoms are encoded by 

their atomic types and in which the circular substructures are of diameter four bonds.  In the 

related FCFC_4 fingerprints, the atoms are encoded by their functional types.  The fragments 

in each molecule were encoded in a vector containing 1024 integer elements.  The second 

class contains 2D pharmacophore fingerprints (specifically those available from ChemAxon 

at http://www.chemaxon.com).  Two of these fingerprints were used here: pharmacophore 

fingerprints (referred to as PFP), in which the elements contain the counts of fragments 

occurrences, and the fragments consist of pairs of atoms encoded by one of six 

pharmacophore types together with their through-bond separations; and the related fuzzy 

pharmacophore fingerprints (referred to as FPFP), in which the counts are smoothed to take 

account of the number of rotatable bonds separating each pair of atoms.  The fragments for 

each molecule were encoded in a vector containing 210 integer (for PFP) or real (for FPFP) 

elements.  The third class contains strings of 4-7 atoms encoded in Unity holograms 

(available from Tripos International Inc. at http://www.tripos.com) using the default 

parameters; the holograms involve a superimposed coding procedure in which a hashing 

procedure is used to associate each specific string with multiple elements in the molecule’s 

hologram.  The fragments for each molecule were encoded in a vector containing 997 integer 

elements.  

 

Datasets   

We have used 14 datasets in our experiments, as detailed in Table 2.  Four of these were 

created by CERMN (Centre d’Etudes de Recherche sur le Médicament de Normandie, see 

http://www.cermn.unicaen.fr/chimiotheque.html) as part of an ongoing project to develop 

ligands for a range of 5-HT receptors [19].  In addition, we have used ten datasets 

downloaded from the PubChem database at http://pubchem.ncbi.nlm.nih.gov/, with the 

bioassays selected to cover not just 5-HT receptors but also a range of other types of 

biological target. For each dataset, we filtered all molecules not definitely active or not 

definitely inactive, duplicate molecules, molecules containing non-organic elements, and 
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molecules with a molecular weight of less than 150.  The remaining molecules were then 

processed to remove salts and to standardize charges and stereochemistry.  These procedures 

yielded datasets containing between 278 and 4332 molecules, with between 3.8% (for E13) 

and 24.8% (for E11) recorded as being active.   

 

Distance coefficients   

Many different types of similarity coefficient have been used in chemoinformatics, most 

commonly association coefficients such as the Tanimoto coefficient [24].  As noted above, 

the Székely-Rizzo method requires the use of a distance, and we have hence used the ten 

distance coefficients listed below, taken from the extensive review of metric coefficients 

presented by Gower and Legendre [25].  Assume that a molecule Xi is represented by a p-

element vector, with the element Xik containing the frequency of occurrence of the k-th 

fragment in Xi (and similarly for another molecule Xj).  Then the coefficients studied here are 

as follows:   
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where Rk and σk are the range and the standard deviation, respectively, for the k-th variable.  

Of these, M1 and M4 are examples of Minkowski metrics and M2, M3, M5 and M6 are 

special cases of it.  A potential problem with many of these coefficients is that both Xik and 

Xjk are frequently zero: this corresponds to a substructural fragment that is absent from both 

of the molecules that are being compared and results in the denominator in the expression for 

the coefficient having a value of zero.  In each such case, we have ignored the k-th fragment 

and reduced the value of p by one, as recommended by Gower and Legendre [25]. 

 

Evaluation of clusterings 

A long-standing problem in cluster analysis is that of evaluating the effectiveness of the 

classification produced by a specific clustering procedure.  One procedure that has been used 

in the chemical context is to determine the extent to which a procedure is able to cluster 

together the active molecules in a dataset, whilst simultaneously separating them from the 

inactives.  This procedure was first applied on a large scale in the much-cited papers of 

Brown and Martin [10; 13] and we have used a development of their procedure in the work 

reported here.  Brown and Martin defined an active cluster as a non-singleton cluster that 

contained at least one active molecule, and the active cluster subset as the set of molecules, 

both active and inactive, in the active clusters; they then evaluated their clustering 

experiments using an index, Pa, describing the fraction of the active cluster subset that were 

active molecules.   

 

A limitation of Pa is that it is severely affected by large clusters containing just a single 

active, a common occurrence even when the bulk of the actives are tightly clustered together.  

Varin et al. hence developed an alternative performance measure in which an active cluster is 

now defined as a non-singleton cluster for which the percentage of active molecules is greater 

than the percentage in the dataset as a whole [19].  Let p be the number of actives in active 

clusters, q the number of inactives in active clusters, r the number of actives in inactive 

clusters (i.e., clusters that are not active clusters) and s the number of singleton actives.  Then 

the quality partition index, QPI, is defined to be 
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srqp
pQPI
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This expression will have its upper-bound value of unity when p is the total number of actives 

and when q, r and s are all zero (i.e., when the actives are clustered tightly together on their 

own) and its lower-bound value of zero when none of the actives are in active clusters.  These 

would seem to be appropriate characteristics for a measure of clustering effectiveness.  

However, assume that, e.g., p=12 for a dataset; then, other things being equal, the value of 

QPI will be the same irrespective of whether there is a single active cluster containing all 

twelve actives or whether there are three active clusters each containing four actives, despite 

the fact that one would, arguably prefer the former situation (i.e., a single, large cluster rather 

than multiple smaller clusters).  A modified form, of QPIw, was hence employed in which the 

QPIw value at level l in the hierarchy was weighted by:   
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lncQPIQPIw

−+
∗=

1  

where nc is the number of compounds.  The –l term in the penalty function means that we 

focus attention towards the top of the hierarchy, so as to summarize the dataset in a small 

number of clusters.  Similar results to those presented below were obtained when QPIw was 

defined with other weights based on 
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The QPIw value can be computed at each level of a cluster hierarchy and the result displayed 

as in Figure 1.  The operation of the QPIw approach is illustrated in Figure 1, which shows the 

variation of QPIw, QPI and Pa with the level of the hierarchy.  This figure is based on 

clustering the 995 molecules comprising dataset E12, and using the D1 descriptor (i.e., 

ECFC_4 fingerprints), the M9 distance coefficient and the energy (i.e., Székely-Rizzo 

e1(A,B)) clustering method.  The hierarchy level (on the X axis) has been plotted as a natural 

logarithm to focus attention on the maxima in the QPI and QPIw curves at low numbers of 

clusters.  It will be seen that Pa (shown in green) increases with cluster level, whereas both 

QPI (shown in blue) and QPIw (shown in red) reach a maximum value, with the latter 

achieving its maximum at a much lower level in the hierarchy.  The index was developed for 

the analysis of hierarchic clusterings, but is also applicable to non-hierarchic clusterings, such 

as the partitions produced by a single-pass or a k-means method, by letting l denote the 

number of partitions in the classification. 
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The maximum QPIw value corresponds to that level in the hierarchy for which the 

corresponding partition results in the best possible separation of the active and inactive 

molecules in the dataset.  It would be possible to use this maximum value as a performance 

criterion to compare different classifications and to give an upper-bound to clustering 

performance, in the same way that the optimal cluster approach has been used to set an 

upper-bound for the evaluation of hierarchic document clustering methods in information 

retrieval (where the aim is to cluster together textual documents relevant to the same query, 

rather than to cluster together molecules with the same bioactivity as here) [26; 27].  

However, while the maximum value highlights the best possible partition, it may not be 

representative of the effectiveness of the hierarchy as a whole; our chosen performance 

criterion is hence based on the QPIw values at each level.  Specifically, we define the Quality 

Hierarchy Index, QHI, by:  

.
1

1

2∑
−

=

=
n

l
wQPIQHI  

where n is the number of compounds in the dataset, and hence n-1 the number of levels in the 

hierarchy. 

 

We have used the QHI values as the performance criterion to compare the very large numbers 

of different clusterings that can be obtained by combining the various parameters listed 

previously.  Specifically, we generated a total of 100 different classifications (resulting from 

the combination of two different clustering methods, ten different distance coefficients and 

five different structure representations) for each of the 14 datasets listed in Table 2.  The QHI 

value was recorded for each of the 1400 resulting classifications, and then this data (or 

subsets thereof) was analyzed to determine the effect of the various factors (clustering 

method, distance coefficient and structure representation) on clustering performance.   

 

RESULTS AND DISCUSSION 

Analysis of results 

The QHI values (rounded to two decimal places) for the classifications are listed in Table 3.  

The values for all 1400 combinations of descriptor (D1-D5), distance coefficient (M1-M10), 

clustering method (Ward or Energy) and experimental dataset (E1-E14) are listed in the 

Supplementary Material; in the published paper, Table 3 contains just 10% of this Material, 

specifically the ten top-ranked combinations of descriptor, distance coefficient and clustering 
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method.  The final column in each row of the Table gives the overall mean rank for that 

particular combination of descriptor, metric and clustering method when analysed using 

Kendall’s coefficient of concordance, W.  This is a non-parametric statistic that is used to 

evaluate the consistency of k different sets of ranked judgments of the same set of N different 

objects [28].  The basic form of the W statistic is: 

NN

RR
N

i
i

−

−∑
=

3
1

)(12
 

where Ri is the mean of the ranks assigned to the i-th object and R is the grand mean of the 

ranks assigned to all N objects (there is a more complex form, used here, that takes account of 

ties in the rankings).   

 

To illustrate its use in the present context, we consider the analysis of Table 3, i.e., the 

problem of comparing the 100 different classifications (each representing one particular 

combination of clustering method, distance coefficient and structure representation) that can 

be generated for each of the fourteen datasets.  We consider each of the datasets as a judge 

ranking the different classifications in order of decreasing effectiveness (as measured by the 

QHI value), i.e., k=14 and N=100.  The first step is hence to convert the data in Table 3 (QHI 

values) to ranks, so that each column contains 100 integers in the range 1-100 (although not 

all of these values may be present if, as is normally the case, there are tied rank positions).  

The ranks are used to compute the Kendall statistic, for which the observed value is 0.54.  

The statistical significance of this W value can be tested using the χ² distribution since for 

N>7,  

WNk )1(2 −=χ  

with N-1 degrees of freedom (alternatively, Siegel and Castellan provide a table of critical 

values for W when N<=7 [28]).  The value is significant (p < 0.001).  Given that a significant 

level of agreement has been achieved, Siegel and Castellan suggest that the best overall 

ranking of the N objects can be obtained using their mean ranks averaged over the k judges, 

i.e., the Ri values in the expression for W.  This analysis shows that the best single 

combination is that used in Figure 1, i.e., D1/M9/Energy (the ECFC_4 descriptor, the M9 

distance coefficient, and the energy clustering method), a fact that we shall discuss in more 

detail below.  The mean rank for this combination is 17.5, as listed in the right-hand column 
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of Table 3, the rows of which have been arranged in order of increasing mean rank, i.e., 

decreasing effectiveness of clustering. 

 

An exactly comparable procedure can be used for alternative analyses (e.g., enabling one to 

compare the different descriptors using each combination of dataset, distance metric and 

clustering method) or to use subsets of the data by holding one factor constant (e.g., enabling 

one to compare the distance metrics when used for energy clustering of the 5HT datasets).  

 

Comparison of descriptors 

When we compared the five different descriptors, the computed value of W was 0.25, which 

is statistically significant (p < 0.01) and which identified the D1 descriptor (ECFC_4) as the 

best, with a mean rank of 2.14 when averaged over the 280 classifications involving it.  

Similar statistically significant (p < 0.01) conclusions were obtained when the two different 

clustering methods were considered separately and when the ten different coefficients were 

considered separately. 

 

Comparison of distance coefficients 

A similar situation pertains when we consider the ten different distance coefficients.  Here, 

W=0.54; this value is highly significant (p < 0.001) and we can hence rank the coefficients, 

as shown in Table 4, which lists the mean ranks when averaged over the 140 different 

classifications involving each coefficient.  The best results were obtained with M9, followed 

by M10, M7 and M8.  It is noticeable that all the Minkowski-related metrics perform 

relatively poorly here (except M2 with an overall mean rank of 4.92), despite their frequent 

use for clustering applications.  This result is particularly surprising since Euclidean distance 

(coefficient M1) is the basis for the generalized Székely-Rizzo method.  The same, highly 

significant correlations (p < 0.001) were also obtained when the two different clustering 

methods were considered separately.  There was some variation when the five different 

descriptors were considered separately, as shown in Table 4, although all the W values were 

again highly significant (p < 0.001): M9 was the best coefficient with D1 (ECFC_4), D4 

(FPFP) and D5 (holograms) but was second-best to M7 for D2 (FCFC_4) and to M10 for D3 

(PFP). 

 

In view of the very high level of performance achieved by the M9 coefficient, which uses the 

Max{Xik,Xjk} normalisation first described by Soergel [29], we have carried out additional 
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experiments to assess its suitability for virtual screening applications.  This study builds on 

earlier work by Fechner and Schneider who noted the excellent screening performance of the 

Soergel distance in experiments using a small file from the COBRA database [30]: our 

experiments are on a much larger scale and are discussed below in the section Additional 

comparison of distance coefficients. 

 

Comparison of clustering methods 

The Kendall W analysis is not appropriate for comparing just two objects, i.e., the energy and 

Ward clustering methods in the present context.  Instead, we have used the large-sample 

version of the Wilcoxon signed ranks test: this is used to analyse paired observations in 

which one notes the magnitude and the direction of the difference between the two 

observations that are being compared [28].  The difference between each pair of observations 

is noted and these differences ranked.  Let T be the sum of the ranks for the positive 

differences; then, for large N, T is normally distributed with a mean of  

4
)1( +NN

 

and a variance of 

24
)12)(1( ++ NNN

, 

and the significance of T can hence be determined using the Z statistical test. 

 

The two clustering methods gave different results for every single one of the 700 

combinations of dataset, distance metric and descriptor.  The mean ranks for the two methods 

are listed in Table 5 where it will be seen that the energy method was notably superior to 

Ward’s method.  The computed value for Z in the Wilcoxon test is 19.50: this value is highly 

significant (p < 0.001) and this was again the case when the five descriptors were considered 

separately (mean ranks also shown in Table 5) and when the ten distance metrics were 

considered separately (data not shown). 

 

Comparison of all combinations 

We have discussed previously the analysis of the complete data (i.e., 100 combinations of 

clustering method, descriptor and distance coefficient for each of the 14 datasets), and noted 

that a highly significant value of 0.54 was obtained for W.  The best single combination was 
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D1 (the ECFC_4 descriptor), M9 (the Soergel coefficient) and the energy method, with a 

mean rank position of 17.50 when averaged across the complete set of 1400 classifications.   

 

We can make some further general observations when the 100 combinations are sorted into 

decreasing order of mean rank, as shown in Table 3.  Thus, if we consider the top-20 

combinations in the sorted list (from the top row down to and including the combination 

D1/M4/Energy), then noteworthy appearances (or non-appearances) include: the descriptors 

D1 and D2 appear 10 and 9 times, with no other descriptor appearing more than once; 

distance coefficient M9 appears five times, M7 and M8 both appear four times, with no other 

metric appearing more than twice; energy appears twelve times and Ward appears eight 

times, with the former out-performing the latter for all cases where the combination of 

descriptor and metric was the same.  Conversely, if we consider the last-20 combinations 

(from the bottom row up to and including the combination D1/M3/Ward in the 

Supplementary Material), then: the descriptors D4, D3, D2 and D1 appear eight, five, four 

and three times, respectively, with no appearances of D5; the coefficients M6 and M3 appear 

eight and seven times, respectively, with no other coefficient appearing more than once; 

Ward appears thirteen times and energy appears seven times.  Based on such observations, a 

high-performing combination might be expected to involve D1 or D2, M7, M8 or M9 and 

Energy, and the highest ranked combination is indeed found to be D1/M9/Energy.   

 

Characteristics of clusters 

Thus far, we have considered the clusters only by means of the QPIw values associated with 

the optimal classifications for each combination of parameters.  Here, we look briefly at the 

composition of these clusters for each of the datasets.  We have chosen to illustrate the 

clusters with three combinations: D1/M9/Energy (the best overall combination), 

D1/M9/Ward (differing from the best combination only in the clustering method) and 

D1/M1/Energy (differing from the best combination only in the distance coefficient).   

 

Table 6 details the make-up of the optimal classifications for these three combinations for 

each of the datasets, listing the level of the best partition, the number of active clusters (as 

defined previously), the mean size of the active clusters, and the values of p, q, r, s and QPIw.  

It will be seen that the Energy and Ward methods normally result in similar optimal partitions 

in terms of the level in the hierarchy and the number of active clusters.  The one obvious 

exception to this general behaviour is with dataset-E6 where Energy identified just a single 
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active cluster in the optimal partition, as against 23 for the Ward classification: this is 

explained by Figure 2, which shows an extended plateau for Energy with the very highest 

value at the extreme left-hand end.  The comparison between D1/M9/Energy and 

D1/M1/Energy reveals a greater difference in behaviour.  For ten of the datasets – the 

exceptions are E6 and E11-13 - the best partition for M1 is at a lower level (i.e., a smaller 

number of clusters) than for M9 with a lesser number of active clusters.  For eleven of the 

datasets, the M9 p values are greater than the M1 p values: the exceptions are E13 (where the 

two are equal) and E6, E11 and E12 (where the M1 value is greater).   

 

Analysis of dataset types 

A referee noted that eight of the 14 datasets considered in this study are associated with 5-HT 

receptors, and wondered whether similarities between these sets of ligands might have 

affected the results.  Two further sets of experiments were hence carried out to investigate 

this possibility: clustering the datasets on the basis of their constituent molecules; and 

repeating the analyses described above but omitting all but the largest of the eight 5-HT 

datasets, i.e., E5.  

 

Given two datasets A and B, the similarity between A and B was computed as the sum of the 

pair-wise inter-molecular similarities, where one molecule of each pair was in A and the other 

in B.  These inter-molecular similarities were computed using either Unity or ECFP_4 

fingerprints with the cosine coefficient, and the resulting matrix of inter-dataset similarities 

clustered using the complete link hierarchic agglomerative clustering method.  Both types of 

fingerprint yielded a classification with three well-marked clusters: one containing E10 on its 

own, one containing E6 and E11-14, and the third containing the eight remaining datasets 

(E1-5, E7-9).  Thus, rather than clustering together in a single group, the eight 5-HT datasets 

have split so that there are four of them in each of the two non-singleton clusters, i.e., they do 

not form a single group that is structurally distinct from the other datasets.    

 

When the experiments are repeated with seven datasets (i.e., the six non-5-HT datasets and 

E5) the important conclusions from above remain largely unchanged.  Thus, the energy 

clustering method is significantly superior to Ward’s method: the mean ranks for energy and 

Ward’s from Table 5 are 1.86 and 1.14, respectively, whereas with just the seven datasets, the 

corresponding figures are 1.85 and 1.15.  The best-performing distance coefficient is again 

M9 with very little change in the significant rankings in the two cases: when all datasets are 
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used the ordering is M9>M10>M7>M8>M2>M4>M1>M5>M3>M6, and when just the 

seven datasets are used the ordering is M9>M10>M8>M7>M2>M4>M5>M1>M3>M6.  The 

best-performing descriptor is now D5: when all datasets are used the ordering is 

D1>D2>D5>D3>D4, and when just the seven datasets are used the ordering 

D5>D2>D1>D3>D4.  That said, the differences between D1, D2 and D5 in these later 

experiments are very small, and an analysis using just these three descriptors, i.e., discarding 

the D3 and D4 data, reveals no significant difference between them.  Given that D5 now 

ranks above D1, it is hardly surprising that D5 figures more prominently than previously 

when all the combinations are considered.  Consider the top-ten combinations: when all 

datasets are used, both D1 and D2 appear five times; when just the seven datasets are used, 

D5 appears seven times and D2 three times.  Consider the next-ten combinations: the same 

result is obtained whether all or just seven of the datasets are used, with D1 appearing five 

times, D2 four times and D5 once.   

 

We hence conclude that the choice of datasets has had only a slight effect on the overall 

results, and none on our conclusions regarding the effectiveness of the energy method and of 

coefficient M9.  

 

Additional comparison of distance coefficients 

As its title makes clear, the principal focus of this paper has been the comparison of the 

Ward and energy clustering methods.  However, the consistently high level of effectiveness 

of the M9 distance coefficient encouraged us to investigate the effectiveness of this 

coefficient in a different application area, that of simulated virtual screening experiments.  

Specifically, we used the M1, M4 and M7-M10 coefficients (i.e., all but the standardised 

versions of M1 and M4, none of which performed particularly well in the experiments 

discussed thus far) for similarity-based virtual screening of the MDL Drug Data Report 

(MDDR) and World of Molecular Bioactivity (WOMBAT) databases.  For comparison with the 

M1, M4 and M7-M10 coefficients, we also used the cosine (COS) and Tanimoto (TAN) 

coefficients [31]: 
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We also used the binary version of the Tanimoto coefficient (TAN-B), i.e., a fingerprint 

denoting merely the presence or absence of each fragment rather than its frequency of 

occurrence.  This coefficient was included since it has been used previously in very many 

studies of virtual screening: indeed, it is arguable the standard coefficient for this purpose 

[32].  Note that the Tanimoto and Soergel coefficients are identical if processing binary 

data; however, they are not identical if processing non-binary data. 

 

The version of MDDR used here contained 102,514 molecules, and searches were carried 

out for eleven classes of active compounds described by Hert et al. [33]; searches were also 

carried out for a set of ten activity classes chosen to be as structurally homogeneous as 

possible (MDDR-HOM) and another set of ten activity classes chosen to be as structurally 

heterogeneous as possible (MDDR-HET) [34].  The version of WOMBAT used here contained 

138,127 molecules, and searches were carried out for the fourteen activity classes 

described by Gardiner et al. [35].  The molecules were represented by ECFC_6 fingerprints, 

analogous to the ECFC_4 fingerprints (i.e. D1) used in some of the clustering experiments 

but here encoding circular substructures of diameter six bonds.  Twenty molecules were 

chosen from each activity class in turn and used as a reference structure for a similarity 

search, in which all the molecules in a database were ranked in decreasing similarity order 

and the top-1% of the molecules returned as the output of the search (the relative 

performance of the different coefficients - as discussed below - was unaffected when an 

alternative cut-off of 5% was used).  Search effectiveness was measured by the recall, i.e., 

the percentage of the active molecules retrieved above the 1% cut-off.  The mean recall was 

averaged over all of the reference molecules for each activity class, and then these mean 

values averaged over all of the activity classes for a dataset. 

 

The results of the screening experiments, in terms of the overall mean recall for each 

coefficient for each of the four datasets (MDDR, MDDR-HET, MDDR-HOM and WOMBAT), 

are shown in Table 7.  It will be seen that the coefficients M7-M9 provide a high level of 

performance across all of the datasets, and that M1 (and M4) performs well for the 
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structurally diverse MDDR-HET.  If the sets of recall values for the activity classes are 

analysed using the W test, then statistically significant correlations are obtained in all cases 

(p < 0.001 for all bar MDDR-HET, where p <= 0.05).  It is hence appropriate to rank the 

coefficients, as shown in Table 8 where it will be seen that M9 gives the best overall 

screening performance.  It is noteworthy that it is superior to both TAN, COS and TAN-B, all 

of which have been used in previous studies of similarity searching.  We note also that TAN-

B is superior to TAN, despite the fact that several previous studies have suggested that 

weighted-searching is superior to binary searching [10; 36; 37]; however, our results here 

are in accord with recent work by Bender et al.  [38].   

 

These experiments hence suggest that M9, the Soergel coefficient, is well suited for the 

processing of molecular fingerprints that encode fragments’ frequencies of occurrence; it is 

already known (since it is then identical to TAN-B) to be well suited for processing their 

binary equivalents.  

 

CONCLUSIONS 

Clustering sets of chemical structures represented by fragment substructures is a common and 

important application in chemoinformatics.  One of the most extensively used clustering 

methods is the minimum variance method first described by Ward.  Székely and Rizzo have 

recently described a class of clustering methods that includes Ward’s method as a limiting 

case.  They suggest that one specific member of this class of methods, called the energy 

method, may be superior to Ward’s method in some cases, and in this paper we have 

described an extensive series of experiments that demonstrates that this is certainly the case 

when the two methods are used to generate chemical classifications.  Specifically, our results 

show that the energy method out-performs Ward’s method across a range of types of 

substructural descriptor, of dataset and of distance metric.  Our results also show the 

consistently high level of performance of the Soergel distance coefficient.  We hence 

conclude that this method and this distance coefficient merit consideration in future studies of 

the classification of chemical structure databases. 
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Code Name Source Atom abstraction Fragment type Elements  
D1 ECFC_4 Pipeline Pilot Elemental type Circular substructures 1024 integers 
D2 FCFC_4 Pipeline Pilot Functional class Circular substructures 1024 integers 
D3 PFP Chemaxon Functional class Atom pairs  210 integers 
D4 FPFP Chemaxon Functional class Atom pairs  210 reals 
D5 Holograms Tripos SYBYL atom type Atom chains 997 integers 

 

Table 1.  Fingerprints used in the clustering experiments 

 

 

Code Target Molecules Active molecules 
E1 5-HT1E 3080 442 
E2 5-HT1A 2048 365 
E3 Thyroid stimulating hormone receptor 2303 343 
E4 Protein kinase D 727 109 
E5 5-HT1E 4322 634 
E6 Acetylcholine muscarinic M1 receptor  701 136 
E7 ras and ras-related GTPase 1489 225 
E8 5-HT1A 2908 413 
E9 Prostaglandin EP2 receptor 1313 139 
E10 Hydroxyprostaglandin dehydrogenase 945 91 
E11 5-HT1A 278 69 
E12 5-HT4 995 170 
E13 5-HT6 1020 39 
E14 5-HT7 992 166 

 

Table 2.  Datasets used in the clustering experiments 
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Combination Dataset Mean  
Rank  E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 

D1 M9 Energy 11.97 9.88 9.88 5.42 16.79 8.43 9.98 14.21 6.06 5.02 6.51 13.26 7.31 10.08 17.50 
D2 M7 Energy 11.98 9.94 9.89 5.32 16.84 8.81 10.05 14.04 6.22 5.21 6.33 12.92 7.16 9.48 19.36 
D2 M10 Energy 11.71 9.80 9.86 5.28 17.19 8.82 10.00 14.28 6.24 5.49 6.49 12.53 7.11 9.54 19.93 
D2 M9 Energy 11.77 9.66 10.02 5.11 16.56 8.92 9.43 14.64 6.09 4.83 6.37 13.28 7.53 9.94 20.07 
D2 M8 Energy 11.83 9.96 9.88 5.37 16.99 8.78 9.92 14.19 6.24 5.50 6.47 12.47 7.05 9.37 20.14 
D1 M7 Energy 11.84 9.91 9.84 5.33 16.79 8.48 10.11 14.11 6.25 5.07 6.51 13.04 6.44 9.75 21.43 
D1 M8 Energy 11.76 9.76 9.76 5.33 17.01 8.30 10.09 14.17 6.20 4.87 6.74 12.86 6.76 9.61 22.14 
D2 M7 Ward 11.83 9.88 9.89 5.23 16.97 9.01 10.00 14.04 6.18 5.22 6.37 12.55 6.98 9.25 22.36 
D1 M7 Ward 11.70 9.92 9.93 5.29 16.89 8.38 10.24 14.04 6.16 5.09 6.69 12.85 6.40 9.77 22.43 
D1 M10 Energy 11.85 9.75 9.93 5.20 17.01 8.32 9.92 14.01 6.17 5.00 6.78 12.82 6.76 9.60 22.50 

 
Table 3.  QHI values (rounded to two decimal places) for combinations of descriptor (D1-D5), distance coefficient (M1-M10), clustering method 
(Ward or Energy) and experimental dataset (E1-E14).  The final column in each row gives the overall mean rank for that particular combination 
of descriptor, metric and clustering method in the Kendall W analysis.  The reader should note that this table contains the E1-E14 data for just 
the ten top-ranked combinations of descriptor, distance coefficient and clustering method: the full table, containing all 100 such combinations is 
provided in the Supplementary Material.  
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Coefficient All D1 D2 D3 D4 D5 
M1 6.19 7.04 6.86 7.89 3.68 5.46 
M2 4.92 4.96 4.46 5.32 4.75 5.11 
M3 8.46 8.79 8.86 8.93 8.25 7.46 
M4 5.10 5.43 5.39 5.36 3.36 5.96 
M5 6.40 6.07 5.96 6.68 6.54 6.75 
M6 9.67 9.82 9.93 9.79 10.00 8.82 
M7 4.11 3.00 3.11 3.57 7.07 3.79 
M8 4.19 3.46 3.68 3.11 5.96 4.71 
M9 2.54 2.61 3.21 2.61 1.82 2.46 
M10 3.43 3.82 3.54 1.75 3.57 4.46 
 
Table 4.  Mean rank for distance metrics using all descriptors and using each of the five 
individual descriptors.  The best performing (lowest mean rank) metric in each case is 
shaded.  
 
 

Method All D1 D2 D3 D4 D5 
Ward 1.86 1.76 1.82 1.92 1.92 1.89 
Energy 1.14 1.24 1.18 1.08 1.08 1.11 
 
Table 5.  Mean rank for clustering methods using all descriptors and using each of the five 
individual descriptors.  The energy method always performs better (lower mean rank) than 
the Ward method. 
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Dataset Combination Best partition 

Level  Active 
clusters 

Mean 
size 

p q r s QPIw 

E1 
D1/M9/Ward 1072 296 3.3 433 548 3 6 0.29 
D1/M9/Energy 979 290 3.5 434 572 6 2 0.29 
D1/M1/Energy 812 252 4.2 409 638 29 4 0.28 

E2 
D1/M9/Ward 387 151 5.1 306 466 59 0 0.30 
D1/M9/Energy 424 162 4.7 308 451 57 0 0.30 
D1/M1/Energy 401 146 4.9 288 428 75 2 0.29 

E3 
D1/M9/Ward 708 214 3.8 333 480 7 3 0.28 
D1/M9/Energy 750 226 3.6 337 468 4 2 0.28 
D1/M1/Energy 710 206 3.7 306 456 17 20 0.27 

E4 
D1/M9/Ward 242 76 3.2 104 140 3 2 0.28 
D1/M9/Energy 229 71 3.4 103 135 5 1 0.29 
D1/M1/Energy 157 52 5.3 94 182 13 2 0.25 

E5 
D1/M9/Ward 808 239 5.2 565 672 69 0 0.35 
D1/M9/Energy 845 248 4.9 571 648 63 0 0.36 
D1/M1/Energy 631 212 6.5 549 830 85 0 0.32 

E6 
D1/M9/Ward 74 22 9.9 119 98 17 0 0.46 
D1/M9/Energy 4 1 168 100 68 36 0 0.49 
D1/M1/Energy 2 1 258 90 168 46 0 0.30 

E7 
D1/M9/Ward 352 106 4.2 210 231 14 1 0.35 
D1/M9/Energy 332 103 4.2 206 226 18 1 0.36 
D1/M1/Energy 285 92 5.1 197 272 26 2 0.32 

E8 
D1/M9/Ward 968 216 3.4 404 322 0 9 0.37 
D1/M9/Energy 922 218 3.5 408 355 0 5 0.36 
D1/M1/Energy 773 201 4.0 377 420 20 16 0.33 

E9 
D1/M9/Ward 528 106 3.3 134 211 0 5 0.23 
D1/M9/Energy 494 107 3.2 135 208 0 4 0.24 
D1/M1/Energy 434 102 3.9 134 268 1 4 0.22 

E10 
D1/M9/Ward 427 85 2.3 90 103 0 1 0.25 
D1/M9/Energy 427 85 2.3 90 104 0 1 0.25 
D1/M1/Energy 402 49 3.5 56 114 12 23 0.16 

E11 
D1/M9/Ward 22 6 14.0 63 22 6 0 0.64 
D1/M9/Energy 20 6 14.0 62 21 7 0 0.64 
D1/M1/Energy 29 9 9.9 64 25 5 0 0.61 

E12 
D1/M9/Ward 12 2 86.0 138 34 32 0 0.67 
D1/M9/Energy 12 2 86.0 138 34 32 0 0.67 
D1/M1/Energy 108 17 12.0 158 46 12 0 0.65 

E13 
D1/M9/Ward 232 19 4.6 39 48 0 0 0.35 
D1/M9/Energy 256 18 4.4 39 40 0 0 0.37 
D1/M1/Energy 272 22 3.6 39 41 0 0 0.36 

E14 
D1/M9/Ward 130 32 8.4 154 114 12 0 0.48 
D1/M9/Energy 133 35 7.7 154 114 12 0 0.48 
D1/M1/Energy 78 21 11.0 140 86 26 0 0.51 

 
Table 6. Comparison of the best partition (i.e., that with the maximum value for QPIw) for 
each dataset using the combinations D1/M9/Ward, D1/M9/Energy and D1/M1/Energy.  The 
table also lists the p, q, r and s values, and the number and the mean size of the active clusters 
in the best partition.  
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Coefficient All MDDR MDDR-HOM MDDR-HET WOMBAT 

M1 28.74 16.85 62.27 15.60 23.52 
M4 28.16 14.86 64.98 15.18 21.58 
M7 37.20 22.84 84.84 12.54 32.06 
M8 37.39 22.98 85.09 12.61 32.34 
M9 37.16 23.06 84.65 13.05 31.53 

M10 34.99 21.82 80.13 11.78 29.68 
COS 29.99 18.39 71.08 8.10 25.38 
TAN 31.78 19.27 73.11 11.86 26.32 

TAN-B 36.66 22.39 84.47 12.07 31.29 
 
Table 7.  Percentage recall averaged over 20 searches for each activity class and over the 
eleven activity classes for MDDR, the ten activity classes for MDDR-HOM and MDDR-
HET, and the fourteen activity classes for WOMBAT.  The recall is calculated using the top-
1% of the databases when ranked using the coefficient in the left-hand column.   
 
 

Coefficient All MDDR MDDR-HOM MDDR-HET WOMBAT 
M1 7.09 7.27 8.60 4.20 7.93 
M4 7.68 8.50 8.10 5.30 8.43 
M7 3.06 2.68 2.75 4.25 2.71 
M8 2.77 2.82 2.45 3.90 2.14 
M9 2.71 2.05 2.90 3.35 2.64 

M10 4.62 4.73 4.30 5.20 4.36 
COS 6.98 6.73 6.40 7.90 6.93 
TAN 5.78 5.91 6.40 5.10 5.71 

TAN-B 4.32 4.32 3.10 5.80 4.14 
W 0.51 0.68 0.79 0.24 0.74 

 
Table 8.  Kendall W analysis for percentage recall figures listed in Table 7.  The figures listed 
for each coefficient is the rank of that coefficient when the coefficients are ranked in 
decreasing order of screening effectiveness for each dataset.   
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Figure 1. QPIw (red), QPI (blue) and Pa (green) curves for E12, with the parameter 
combination D1/M9/Energy. 
 

 
Figure 2. QPIw curves for E6 with D1, M9, and Energy (red) or Ward (blue) clustering.  The 
vertical lines indicates the best partition for each method. 
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Combination Dataset Mean  
Rank  E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 

D1 M9 Energy 11.97 9.88 9.88 5.42 16.79 8.43 9.98 14.21 6.06 5.02 6.51 13.26 7.31 10.08 17.50 
D2 M7 Energy 11.98 9.94 9.89 5.32 16.84 8.81 10.05 14.04 6.22 5.21 6.33 12.92 7.16 9.48 19.36 
D2 M10 Energy 11.71 9.80 9.86 5.28 17.19 8.82 10.00 14.28 6.24 5.49 6.49 12.53 7.11 9.54 19.93 
D2 M9 Energy 11.77 9.66 10.02 5.11 16.56 8.92 9.43 14.64 6.09 4.83 6.37 13.28 7.53 9.94 20.07 
D2 M8 Energy 11.83 9.96 9.88 5.37 16.99 8.78 9.92 14.19 6.24 5.50 6.47 12.47 7.05 9.37 20.14 
D1 M7 Energy 11.84 9.91 9.84 5.33 16.79 8.48 10.11 14.11 6.25 5.07 6.51 13.04 6.44 9.75 21.43 
D1 M8 Energy 11.76 9.76 9.76 5.33 17.01 8.30 10.09 14.17 6.20 4.87 6.74 12.86 6.76 9.61 22.14 
D2 M7 Ward 11.83 9.88 9.89 5.23 16.97 9.01 10.00 14.04 6.18 5.22 6.37 12.55 6.98 9.25 22.36 
D1 M7 Ward 11.70 9.92 9.93 5.29 16.89 8.38 10.24 14.04 6.16 5.09 6.69 12.85 6.40 9.77 22.43 
D1 M10 Energy 11.85 9.75 9.93 5.20 17.01 8.32 9.92 14.01 6.17 5.00 6.78 12.82 6.76 9.60 22.50 
D1 M9 Ward 11.80 9.76 9.86 5.32 16.60 8.33 9.88 14.17 5.89 5.03 6.46 13.07 6.97 10.04 23.07 
D2 M2 Energy 11.42 9.59 9.57 4.95 16.35 9.15 9.32 14.34 6.07 6.56 6.58 12.67 7.02 9.84 23.07 
D1 M8 Ward 11.65 9.75 9.74 5.51 17.11 8.63 10.02 14.17 6.16 4.93 6.57 12.78 6.55 9.59 23.50 
D1 M10 Ward 11.73 9.75 9.83 5.17 17.08 8.55 9.83 13.92 6.11 5.00 6.55 12.73 6.65 9.63 25.50 
D5 M9 Energy 11.37 9.41 10.87 5.34 16.68 10.10 9.43 13.73 6.08 10.92 6.56 12.36 5.86 8.89 26.93 
D2 M9 Ward 11.70 9.60 9.90 5.15 16.45 8.93 9.33 14.44 5.88 4.85 6.28 12.79 7.24 9.74 27.50 
D2 M10 Ward 11.71 9.69 9.81 5.46 16.97 8.66 9.69 13.92 6.02 5.52 6.38 12.21 6.66 9.20 28.00 
D2 M8 Ward 11.77 9.84 9.87 5.31 16.91 8.67 9.76 14.04 5.99 5.46 6.33 12.11 6.63 9.18 28.43 
D1 M2 Energy 11.53 9.26 9.21 5.21 16.55 8.00 9.45 13.82 5.83 6.06 6.62 13.20 6.77 10.01 29.36 
D1 M4 Energy 11.71 9.62 9.56 4.96 16.60 8.33 9.39 13.76 5.89 2.95 6.50 12.98 6.92 10.08 30.50 
D2 M2 Ward 11.23 9.57 9.40 4.90 16.41 8.61 9.15 14.21 5.83 6.25 6.63 12.66 6.73 9.72 30.57 
D3 M10 Energy 11.71 8.29 9.52 4.86 15.37 8.85 9.14 12.92 6.16 6.85 6.22 13.34 7.65 9.83 30.57 
D2 M4 Energy 11.54 9.55 9.87 4.85 16.35 8.46 9.62 14.41 5.92 3.31 6.20 13.00 7.14 9.79 31.21 
D5 M7 Energy 11.27 9.52 10.06 5.28 16.59 9.94 9.67 13.32 6.09 8.77 6.49 12.60 5.23 8.33 31.29 
D3 M9 Energy 11.10 7.98 9.63 5.32 14.83 9.08 8.80 13.12 6.05 6.36 6.18 13.34 7.81 10.11 31.79 
D2 M5 Energy 11.39 9.45 9.51 4.88 16.38 8.57 9.75 13.95 5.84 6.62 6.61 12.14 6.61 9.63 32.14 
D1 M2 Ward 11.53 9.27 9.19 5.14 16.58 7.92 9.35 13.77 5.65 5.62 6.65 13.06 6.59 10.02 33.00 
D3 M10 Ward 11.36 8.21 9.42 4.82 15.22 9.08 9.13 12.82 6.10 6.72 6.17 13.37 7.42 9.63 33.57 
D5 M10 Energy 11.14 9.51 10.20 5.18 16.50 10.32 9.39 13.48 5.96 9.02 6.56 12.12 4.89 8.36 33.93 
D5 M8 Energy 11.22 9.47 10.22 5.29 16.55 10.37 9.53 13.44 5.94 8.56 6.54 12.05 4.80 8.21 34.14 
D5 M9 Ward 11.28 9.33 10.61 5.17 16.48 10.24 9.36 13.48 5.94 10.79 6.49 12.01 5.27 8.61 34.14 
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D5 M7 Ward 11.10 9.45 10.11 5.16 16.53 10.04 9.46 13.40 5.90 9.48 6.59 12.19 4.74 8.24 35.71 
D3 M8 Energy 11.34 8.09 9.26 4.71 15.45 8.82 9.29 12.67 6.08 6.69 6.11 12.94 7.57 9.71 36.29 
D2 M4 Ward 11.54 9.45 9.75 4.75 16.18 8.56 9.53 14.37 5.85 3.30 6.24 12.66 6.50 9.82 36.57 
D1 M5 Energy 11.27 9.43 9.41 4.60 16.82 8.11 9.33 13.56 5.90 6.11 6.70 12.72 6.20 9.57 36.86 
D3 M7 Energy 11.13 8.02 9.37 4.85 14.91 8.69 8.93 12.48 6.17 6.19 6.00 13.39 7.66 9.68 37.79 
D3 M9 Ward 11.00 7.93 9.34 5.16 14.63 8.99 8.81 12.84 5.86 6.17 6.15 13.06 7.54 9.86 38.79 
D1 M4 Ward 11.53 9.54 9.33 4.91 16.07 8.03 9.22 13.75 5.81 2.80 6.35 13.21 6.34 9.93 39.64 
D5 M10 Ward 10.99 9.40 10.08 5.18 16.45 10.11 9.35 13.47 5.86 8.96 6.44 11.84 4.45 8.20 40.21 
D5 M8 Ward 11.07 9.25 10.12 5.25 16.53 10.08 9.52 13.20 5.83 8.84 6.46 11.84 4.40 8.03 40.36 
D3 M8 Ward 11.10 7.98 9.13 4.66 15.10 8.70 8.98 12.60 5.94 6.61 6.18 13.40 7.30 9.52 40.64 
D5 M2 Energy 10.51 8.86 9.78 4.45 16.19 9.05 8.71 13.72 5.71 10.13 6.54 12.48 5.93 9.01 42.50 
D2 M5 Ward 11.11 9.40 9.42 4.63 16.32 8.41 9.49 13.97 5.69 6.45 6.62 11.77 6.06 8.98 42.71 
D1 M5 Ward 11.13 9.35 9.02 4.60 16.69 8.25 9.23 13.45 5.61 6.15 6.62 12.43 6.06 9.60 42.79 
D3 M7 Ward 10.94 7.89 9.18 4.77 14.87 8.80 8.90 12.27 6.07 6.25 5.97 13.17 7.30 9.45 43.14 
D2 M1 Energy 11.06 9.27 9.45 4.76 15.22 8.51 8.59 13.88 5.87 3.77 6.33 12.94 6.23 9.91 43.64 
D1 M1 Energy 11.33 9.41 9.12 4.81 15.38 7.84 9.01 13.11 5.65 3.13 6.31 12.94 6.67 10.26 45.79 
D2 M1 Ward 10.92 9.17 9.40 4.66 15.10 8.63 8.47 13.57 5.72 3.79 6.23 12.74 6.47 10.01 46.21 
D5 M5 Energy 10.49 9.10 9.65 4.37 16.02 9.14 9.15 13.39 5.43 10.05 6.50 11.95 5.32 8.73 47.79 
D5 M1 Energy 10.61 8.83 4.61 4.39 15.78 9.52 8.59 13.73 5.66 10.16 6.32 12.87 6.05 9.06 47.93 
D1 M1 Ward 11.18 9.37 8.88 4.74 15.30 7.85 9.12 12.94 5.50 3.19 6.34 13.06 6.53 10.26 48.21 
D4 M9 Energy 10.60 7.93 9.25 5.01 13.79 8.68 8.51 12.20 5.93 6.12 5.75 12.65 7.28 9.58 48.50 
D5 M4 Energy 10.56 9.06 4.61 4.43 16.15 9.38 9.14 13.47 5.70 9.37 6.50 12.11 5.64 8.90 48.86 
D3 M4 Energy 10.64 7.63 8.89 4.70 14.21 8.51 8.07 12.49 5.55 5.34 6.20 13.22 6.69 10.02 51.00 
D3 M2 Energy 10.55 7.50 9.09 4.66 14.22 8.81 8.15 12.76 5.56 5.37 6.09 13.15 6.30 9.85 51.14 
D5 M2 Ward 10.45 8.82 9.64 4.32 15.76 8.76 8.68 13.52 5.31 10.32 6.49 12.07 5.74 8.71 51.71 
D5 M1 Ward 10.47 8.82 4.60 4.21 15.42 9.40 8.43 13.88 5.45 10.00 6.33 12.68 5.86 8.90 53.29 
D4 M4 Energy 10.38 7.56 9.11 4.95 13.68 8.39 8.32 12.24 5.68 5.51 5.61 12.67 6.77 9.72 55.29 
D5 M3 Energy 10.21 8.83 4.61 4.47 16.07 8.94 9.01 13.29 5.49 8.99 6.28 12.36 5.50 8.71 55.36 
D5 M5 Ward 10.23 9.04 9.42 4.17 15.96 8.83 8.95 13.18 5.15 11.08 6.37 11.72 5.01 8.46 56.43 
D4 M9 Ward 10.42 7.72 8.93 4.89 13.54 8.55 8.11 11.80 5.72 6.23 5.66 12.37 6.73 9.50 57.21 
D5 M4 Ward 10.30 8.97 4.53 4.22 15.79 8.99 8.90 13.06 5.46 10.39 6.38 12.01 5.44 8.50 57.50 
D4 M10 Energy 10.39 7.65 8.92 4.56 13.48 8.53 8.33 11.58 5.80 6.44 5.54 12.70 6.80 9.39 57.64 
D3 M5 Energy 10.55 7.48 8.91 4.58 14.22 8.54 8.21 12.37 5.29 5.46 5.89 13.26 6.41 9.42 57.71 
D5 M6 Energy 10.28 8.92 4.60 4.28 16.22 8.94 9.31 13.00 5.54 8.54 6.31 11.81 4.91 8.25 58.86 
D3 M2 Ward 10.38 7.38 8.93 4.50 13.88 8.80 8.19 12.48 5.29 5.37 5.93 12.81 6.19 9.67 59.29 
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D4 M1 Energy 10.33 7.56 8.97 4.63 13.37 8.29 8.40 12.48 5.55 5.38 5.86 12.71 6.74 9.23 59.71 
D3 M4 Ward 10.35 7.35 8.82 4.50 14.00 8.32 7.98 12.50 5.27 5.33 5.98 13.09 6.45 9.60 61.36 
D5 M3 Ward 10.14 8.74 4.60 4.26 15.88 8.93 8.83 13.30 5.25 9.08 6.23 11.97 5.00 8.57 62.00 
D4 M2 Energy 10.49 7.50 8.88 4.58 13.48 8.55 8.29 12.12 5.53 5.15 5.44 12.35 7.16 9.35 62.64 
D4 M10 Ward 10.15 7.48 8.65 4.33 13.24 8.61 7.99 11.46 5.65 6.07 5.58 12.30 6.74 9.18 65.79 
D1 M3 Energy 10.50 8.96 8.90 4.14 16.05 7.52 9.25 13.08 5.57 3.52 5.60 11.34 5.73 8.69 66.00 
D4 M4 Ward 10.13 7.34 8.91 4.63 13.35 8.13 8.07 12.00 5.43 5.16 5.62 12.51 6.30 9.78 66.43 
D3 M1 Energy 10.02 7.42 8.65 4.35 13.88 7.95 7.96 12.35 5.48 5.00 5.87 12.77 6.63 9.36 67.36 
D3 M5 Ward 10.45 7.28 8.82 4.42 13.49 8.26 7.85 12.09 5.10 5.23 5.90 13.12 5.98 9.20 67.64 
D4 M1 Ward 10.07 7.43 8.77 4.47 13.24 8.12 8.29 12.28 5.43 5.10 5.82 12.69 6.29 9.34 68.14 
D4 M8 Energy 10.25 7.49 8.57 4.25 13.07 8.55 7.97 11.20 5.70 6.05 5.51 12.40 6.61 9.09 68.14 
D5 M6 Ward 9.90 8.77 4.49 4.04 16.02 8.51 9.01 12.85 5.04 8.77 6.04 11.72 4.64 7.98 70.00 
D4 M5 Energy 10.10 7.21 8.82 4.56 12.70 8.53 7.76 11.94 5.32 5.33 5.37 12.43 6.51 9.12 71.14 
D4 M7 Energy 9.98 7.27 8.48 4.07 12.41 8.58 7.90 10.75 5.51 5.65 5.55 12.39 6.61 8.97 71.57 
D1 M3 Ward 10.41 8.89 8.71 4.04 15.92 7.71 9.20 12.99 5.21 3.41 5.53 10.60 5.55 8.24 72.21 
D4 M2 Ward 10.17 7.31 8.65 4.48 13.16 8.31 8.17 11.94 5.39 4.96 5.51 12.39 6.35 9.14 72.64 
D1 M6 Energy 10.48 8.98 8.84 4.06 16.06 7.42 8.83 12.40 5.47 2.73 5.55 10.78 5.40 8.14 72.86 
D4 M8 Ward 9.84 7.24 8.35 4.04 12.58 8.58 7.80 10.98 5.37 5.72 5.50 12.49 6.25 8.92 74.79 
D3 M1 Ward 9.83 7.32 8.54 4.25 13.70 7.65 7.85 12.14 5.17 4.87 5.84 12.67 5.68 9.28 75.43 
D3 M3 Energy 9.95 6.90 8.26 4.19 13.13 8.38 7.62 11.55 5.15 5.12 5.66 12.72 5.52 9.14 76.71 
D4 M5 Ward 9.90 6.96 8.80 4.40 12.29 8.61 7.66 11.63 5.11 5.04 5.35 12.19 6.21 8.68 77.29 
D2 M3 Energy 9.74 8.53 8.62 4.40 15.26 6.72 8.72 12.20 5.28 3.43 5.39 11.35 5.36 8.33 78.00 
D4 M3 Energy 9.74 7.00 8.63 4.28 12.26 8.25 7.72 11.65 5.06 5.31 5.49 12.42 6.11 9.06 78.14 
D4 M7 Ward 9.73 6.97 8.11 4.00 12.18 8.41 7.60 10.41 5.33 5.37 5.45 12.23 6.33 8.63 80.07 
D1 M6 Ward 10.19 9.10 8.41 3.86 15.81 6.57 8.48 12.43 5.19 2.64 5.12 9.71 5.15 7.64 81.00 
D2 M3 Ward 9.61 8.43 8.43 3.78 14.92 6.78 8.53 12.07 4.98 3.73 5.54 10.39 5.01 7.91 83.43 
D3 M3 Ward 9.61 6.62 8.10 3.93 12.28 7.95 7.32 11.15 4.80 4.67 5.40 12.69 5.07 9.16 84.71 
D2 M6 Energy 9.51 8.36 8.42 3.93 15.03 6.39 8.66 11.83 4.84 3.24 5.46 10.20 4.80 7.61 85.43 
D4 M3 Ward 9.56 6.81 8.33 4.19 11.93 7.96 7.39 11.22 4.84 5.02 5.35 11.90 5.19 8.64 87.07 
D3 M6 Energy 9.20 6.42 7.49 3.63 11.94 7.17 6.75 10.48 4.71 4.70 5.34 12.94 5.18 8.49 87.14 
D2 M6 Ward 9.05 8.13 8.11 3.69 14.42 5.66 8.43 11.40 4.63 3.09 5.03 8.78 4.57 6.84 90.00 
D3 M6 Ward 8.74 6.20 7.14 3.51 11.42 6.85 6.55 9.98 4.43 4.35 5.21 12.84 4.64 8.14 90.79 
D4 M6 Energy 8.88 6.35 7.48 3.86 10.92 6.90 6.33 9.90 4.35 4.13 4.83 11.25 5.05 8.40 93.86 
D4 M6 Ward 8.39 6.01 7.10 3.77 10.41 6.59 6.10 9.20 4.06 3.73 4.71 10.80 4.60 7.92 97.07 
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Table 3 Supplementary material.  QHI values (rounded to two decimal places) for all 1400 combinations of descriptor (D1-D5), distance 
coefficient (M1-M10), clustering method (Ward or Energy) and experimental dataset (E1-E14).  The final column in each row gives the overall 
mean rank for that particular combination of descriptor, metric and clustering method in the Kendall W analysis. 
 
 
 


	1.pdf
	Willett_clustering

