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Abstract
Volunteered geographical information (VGI) and citizen science have become important

sources data for much scientific research. In the domain of land cover, crowdsourcing can

provide a high temporal resolution data to support different analyses of landscape pro-

cesses. However, the scientists may have little control over what gets recorded by the

crowd, providing a potential source of error and uncertainty. This study compared analyses

of crowdsourced land cover data that were contributed by different groups, based on nation-

ality (labelled Gondor and Non-Gondor) and on domain experience (labelled Expert and

Non-Expert). The analyses used a geographically weighted model to generate maps of land

cover and compared the maps generated by the different groups. The results highlight the

differences between the maps how specific land cover classes were under- and over-esti-

mated. As crowdsourced data and citizen science are increasingly used to replace data col-

lected under the designed experiment, this paper highlights the importance of considering

between group variations and their impacts on the results of analyses. Critically, differences

in the way that landscape features are conceptualised by different groups of contributors

need to be considered when using crowdsourced data in formal scientific analyses. The dis-

cussion considers the potential for variation in crowdsourced data, the relativist nature of

land cover and suggests a number of areas for future research. The key finding is that the

veracity of citizen science data is not the critical issue per se. Rather, it is important to con-

sider the impacts of differences in the semantics, affordances and functions associated with

landscape features held by different groups of crowdsourced data contributors.

Introduction
The scientific community in general is excited by the opportunities afforded by the related
fields of crowdsourcing, volunteered geographical information and citizen science. There has
been an explosion of applications underpinned by crowdsourced data in many areas of scien-
tific investigation: from astronomy [1] to zoology [2]. One key attraction of such data relates to
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high data volumes for relatively low costs. In the domain of land cover and land use, the Euro-
pean Commission has funded a number of projects to evaluate how volunteered or crowd-
sourced data may be used to help manage crises and emergencies [3], to develop Citizen
Observatories for Land Cover and Land Use [4] and to monitor deforestation [5]. The reasons
for these initiatives in the context of land cover are various but include the potential financial
benefits of using crowdsourced data and the advantages of involving citizens more directly in
science. Land cover data collection is expensive: sampling for the LUCAS project [6] cost
€6.42m. As a result a number of crowd-sourced land cover data collection systems have been
initiated with perhaps the best known of these being the Geo-Wiki system developed at IIASA,
Austria [7] although others exist [8, 9, 10]. Geo-Wiki has been used for a number of campaigns
[11] and has seen considerable refinement in interfaces and platforms, the campaigns it has
run and in the applications it supports, as well as increased data volumes and contributor num-
bers. The basic premise of Geo-Wiki is to produce open data by allowing citizens to either pro-
vide feedback on existing data or create entirely new data [12].

Whilst a considerable range of work has considered data quality issues related to the veracity of
Geo-Wiki land cover data [11, 13, 14], as yet little work has examined the impacts of variations in
the data contributed by different groups which may reflect divergent landscape conceptualisations.

This paper considerably extends and refines initial work reported in [15]. It evaluates the
impacts on decision making of variations what gets recorded by contributors from different
countries and with different levels of expertise. It compares inferences about the presence and
spatial distribution of land cover by analysing crowdsourced land cover data contributed by two
sets of groups. The first compared data contributed by volunteers from one country, named Gon-
dor to avoid making inferences based on national stereotypes, and data from all other nationali-
ties. The second compares data contributed by experts with non-experts. The analyses show how
data contributed by different groups of people result in different inferences and highlight the
potential impacts of unintended (and unknown) variations in crowdsourced data.

Background
There are many citizen science and crowdsourced data generation activities, which in the
realm of geographical information science and systems is frequently referred to as ‘VGI’ (vol-
unteered geographical information), a phrase coined by Goodchild [16], and recent develop-
ments are reviewed in [17]. Many contributors provide data for free because of their interest in
a particular topic, although sometimes in return for some token reward through gameification
[18] or electronic money [19]. Concerns over the use of crowdsourced spatial data in formal
scientific analyses remain because of data quality issues [13]. Data quality in this context
encompasses a number of considerations, which, in increasing complexity, relate to:

• Veracity and error. Is the crowdsourced datum correct? Is the land cover present at a given
location correctly identified or labelled?

• Sampling and stratification. Do the data adequately capture the variation in the process
under investigation, in extent as well as spatially and thematically? Is the density of data
points of different classes sufficient to capture the spatial distribution of the land cover pres-
ent on the ground?

• Observation scale and grain. Does the granularity of recording vary, both between individu-
als and with the intended analysis?

In traditional scientific activities, such considerations are addressed by a formal experimen-
tal design which includes activities and protocols to ensure the inferential statistical robustness
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of any data analysis. These may involve staff training, the application of certain measurement
thresholds and instrument calibration, all of which impose control over the epistemology of
data collection, as well as error checking protocols, sampling designs, and quality assurance
procedures. In contrast, for geographical analyses that use crowdsourced data, the scientist has
little control over the spatial distribution of the volunteer locations, has to take the veracity of
observations on trust and can only assume that the perceptions of landscape features held by
the crowd are appropriate for the intended analysis.

Consideration of how landscape feature are conceptualised is critical especially in heavily
socially constructed areas of science such as land cover [20]. This is because different people,
from different backgrounds and cultures or with different experiences (including disciplinary
training) have been frequently found to hold different underlying conceptualisations of land-
scape features and categories. By way of example, consider the concept of a forest. A number of
researchers have discussed the many ways that forest is conceived, from early work by Bennet
[21] through to Comber et al [22]. These are illustrated by the many national definitions of for-
est. Gyde Lund maintains a list of forest definitions [23], with active hyperlinks. These include
descriptions of the minimum physical requirements for areas of tree covered land to be consid-
ered as ‘forest’ in different countries. To illustrate this variation Fig 1 show a k-means classifica-
tion of values for the minimum area, tree height and canopy cover for forest definitions from
different countries, grouped into 5 clusters. The mean rescaled values for each cluster are
shown in Table 1. Notice that the forest class definitions cluster reveals that some countries
have similar definitions (Viet Nam, Pakistan, Sri Lanka, for example) and that some clusters
are nearer to each other in the feature space (Table 1). Fig 1 illustrates how national concepts
associated with land cover vary. It highlights an important consideration if crowdsourced data
are to be used in scientific analyses: the potential for variation in the way that similar landscape
features may be labelled by different groups of crowdsourced data contributors with the result
that different groups may identify different features as being present at the same location.

The importance of considering the potential for such variations is because crowdsourcing
data such as Geo-Wiki are now within mainstream scientific investigation. Geo-Wiki uses an

Fig 1. Clusters countries with similar definitions of ‘forest’ based onminimum area, tree height and
canopy cover.

doi:10.1371/journal.pone.0158329.g001

Table 1. The mean rescaled values of the 5 clusters of forest definitions.

Cluster Area Cover Height

1 -0.110 -1.100 0.691

2 -0.135 0.536 -1.112

3 -0.084 0.611 0.698

4 8.976 -1.100 0.617

5 -0.138 -1.052 -1.274

doi:10.1371/journal.pone.0158329.t001
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interface with Google Earth imagery to collect volunteered land cover data under a nominal
pixel of 250m to 500m depending on the campaign. The data has been used to assess the qual-
ity of existing land cover products [24], to quantify their uncertainties [25] and to generate
hybrid global land cover maps [26]. Some work has examined the sources of variation in Geo-
Wiki data and initial studies found differences between experts and non-experts in identifying
land cover, with experts more accurate than non-experts in class allocation [11]. This was
extended to examine the impacts of expertise on decision making, which were found to be
more profound in some continents than in others [27]. Other work has examined Geo-Wiki
data quality by comparing them with control points [13, 11] and through latency analyses [14,
28]. Little work has directly considered the impacts of conceptual variations, linguistic or cul-
tural factors [29, 30] in Geo-Wiki data that, in other work have been found to result in large
differences in the ways that landscape features are conceptualised [31]. Such ethnophysio-
graphic differences [32, 33] are well known in the context of formal land cover creation [34]
and landscape analyses [29, 35]. As yet no work has considered the potential impacts of varia-
tions in how landscape features are conceived amongst different groups of Geo-Wiki
contributors.

Methods
An analysis of Geo-Wiki data was used to infer the land cover at each location on a 50km grid
covering North and South America, with 22,730 cells in total. The approach was to use a mov-
ing window or kernel to extract Geo-Wiki data near to each location. The data were weighted
by their distance to the kernel centre and a geographically weighted regression was then used
to infer the land cover at each location. The land cover type with the highest coefficient esti-
mate was used allocated as the class at that location.

Data and Case study
The analysis used data collected through the Geo-Wiki project [7, 36]. It has web and smart-
phone app interfaces and is open to anyone. There have been different campaigns targeted at
specific land related processes and phenomenon, including bio-fuels, forest biomass and more
recently livestock distributions. As part of the Geo-Wiki registration process, volunteers are
asked to describe their level of expertise and the country they are from. Once registered, volun-
teers can contribute to different campaigns in which they allocate what they observe from Goo-
gle Earth imagery at a series of randomly selected locations, to one of a predefined set of
classes. NB The Geo-Wiki classification has 10 classes but theMosaic class was excluded from
this analysis because of its inherent ambiguity. Instructions explain the operation of Geo-Wiki
but little detail is provided about the land cover classes. In this research, data from three Geo-
Wiki campaigns were combined. One dataset contained data from contributors from one
country (‘Gondor’), the other two contained data from a mix of contributors mostly of other
nationalities, but with some from Gondor. They were chosen because each campaign had simi-
lar objectives. These were combined and a subset of data covering North and South America
was extracted. The selection of this study area was simply to provide a case study whose land-
scapes are familiar, with a broad sequence of arctic, tundra, grass plains, desert areas, tropical
forest, grass plains running from North to South. The distributions of the data amongst the
classes for Gondor and Non-Gondor and Expert / Non-Expert, with combinations thereof in
the study area, are summarised in Table 2. Of the contributors, 20 were from Gondor, 119 peo-
ple were of other nationalities, 76 declared themselves to be experts in land cover and remote
sensing and 64 as Non-Experts. The 30,303 points in the study area are shown in Fig 2. The
combinations are included for illustrative purposes only–the differences in the number of data
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points contributed for example by Gondor-Expert and Non-Gondor-Non-Expert are too few
to develop any meaningful spatial comparisons.

It is evident from Table 2 that despite a random sample of locations, for some classes there
are large differences of the number of points allocated to each class by Gondor and Non-Gon-
dor groups, with less difference between Expert and Non-Expert groups. For example, there
are large differences in the number of locations classified as Shrub by Gondor and Non-Gondor
and as Forest by Experts and Non-Experts. In contrast there is a much greater degree of homo-
geneity in the identification of Grass and Crop classes. The spatial implications of these differ-
ences can be visualised using a Kernel Density Estimation. The KDE bandwidth was derived
automatically from the heuristic suggested by Venables and Ripley ([37], p127) and imple-
mented in the bandwidth.nrd function included in theMASS package for R, the open source
statistical software. The KDE surfaces arising from different groups are shown in Fig 3. It illus-
trates the differences in the spatial distributions of Shrub data between Gondor and Non-Gon-
dor and Forest between Experts and Non-Expert. The general distributions of these classes are

Table 2. The distributions of the land cover data points collected by contributors with different backgrounds.

Class Total Non-Gondor Gondor Non-Expert Expert Non-Gondor Expert Gondor Expert Non-Gondor Non-Expert Gondor Non-Expert

Forest 10754 33 40.2 38.4 32.5 32.6 31.8 33.7 42.6

Shrub 3407 7.7 18.1 10.7 11.8 8.1 33 7.1 14

Grass 4925 16.9 15.1 16.7 15.8 16.5 11.6 17.4 16.1

Crop 5334 20.8 11.4 16.3 18.9 20.1 12.6 22 11.1

Wetland 1325 5.4 2.4 3.6 5.2 5.7 2.3 4.9 2.4

Urban 331 1.1 1 1 1.2 1.2 1.3 1 1

Snow 969 3.6 2.5 2.8 3.6 4.1 1.2 2.7 2.8

Barren 2193 8 5.8 7.1 7.4 8.2 3.1 7.7 6.5

Water 1065 3.5 3.5 3.5 3.6 3.6 3.2 3.3 3.6

Total 30303 20004 10299 15445 14858 12643 2215 7361 8084

doi:10.1371/journal.pone.0158329.t002

Fig 2. The distribution of the data a) in the case study area and b) local detail showing the density of the data points
shaded with a transparency term and the 50km analysis grid.

doi:10.1371/journal.pone.0158329.g002
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similar–that is they have the same broad regions of different land covers–but with interesting
and potentially important local variations. It is possible that the mapped differences may be
simply due to different data point locations which some a sensitivity analysis could quantify,
but the locations were randomly sampled (Fig 2). In this case, when a group (i.e Gondor or
Expert) is randomly split into two subsets and KDEs are generated from that data, the models
are similar (Fig 3).

Analysis
A Geographically Weighted Regression (GWR) [38, 39] was used to infer the land cover at
each location in a 50km grid from the Geo-Wiki data subsets. A geographically weighted kernel
generated geographically weighted averages for each class, at each grid location under the
assumption that the land cover at any given location can be determined by examining values at
nearby locations (i.e. that land cover exhibits spatial autocorrelation). The class with the great-
est coefficient was inferred as the class at that location. Then the land cover maps from Gondor
vs. Non-Gondor data and Expert vs. Non-Expert data were compared.

Geographically Weighted (GW) models have been used in many Geo-Wiki applications as
they provide a framework for integrating and analysing data that accommodates the well-
known spatial autocorrelation of many landscape processes and features [40, 41]. In the con-
text of Geo-Wiki, Lesiv et al [42] used a GW framework to create a hybrid forest map, Comber
et al [13] used geographically weighted kernels to generate local measures of Geo-Wiki accu-
racy and Schepaschenko et al [43, 44] used a GW regression approach to integrate different
data related to forestry. Comber et al [45] evaluated the GW approach against other models of
spatial inference, belief and evidence combination and found the GW framework to produce
the most accurate results.

Fig 3. Kernel Density Estimation surfaces of the distributions of a) Shrub cover comparing Gondor and Non-Gondor
groups and b) Forest cover comparing Expert and Non-Expert groups. Darker areas indicate a greater density of data
points and in both cases the Expert and Gondor groups were randomly split and mapped.

doi:10.1371/journal.pone.0158329.g003
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In an ideal experimental design a large number of classifications of the same area by differ-
ent groups would be compared against some reference data. Theoretically one or some of the
many global land cover datasets could have been used to do this. However, there are many
well-recognised and long-standing problems when using any of the global land cover datasets
as a referent: they have different nomenclatures, spatial scales and thematic granularities and
as a result describe the world in very different ways [46]. They have profound disagreements of
the amount and distribution of land covers as documented by numerous authors, [26, 47, 48],
they do not correspond to official land cover statistics at national or regional levels [49]. Indeed
global land cover datasets are so unreliable that Geo-Wiki has been used to determine which of
them best describes the land cover in different places in order to suggest a the composition of
hybrid dataset [26]. For these reasons, this analysis sought to identify the nature and direction
of any differences in the land cover generated using a GW averaging approach, rather than to
compare the class labels with a referent.

GWR is similar to an ordinary regression but computes a series of local regressions. A mov-
ing window or kernel is passed over the study area. Data under the kernel are weighted by their
distance to the kernel centre and then used to calibrate a local regression model. In this way the
outputs of GWR allow regression coefficients to vary spatially compared to a single global coef-
ficient estimate using standard regression. In this analysis local, GWmodels were computed
over a grid of locations spaced at 50km, a portion of which is shown in Fig 2. The shape and
size of the GW kernel affect the degree of smoothing [50]. Here data points were weighted
using a tri-cube function with a 50km bandwidth. This bandwidth reflected an acceptable
degree of spatial aggregation and the tri-cube shape provided an appropriate distance weight-
ing function. The distribution of the Geo-Wiki data points under the kernel was as follows:
1,547 of the 50km cells had no data; of the 28,756 cells that did contain Geo-Wiki data, the 1st

quartile, median and 3rd quartile were 1, 2 and data points respectively.
The GWR model was parameterised to compute geographically weighted means (y) for

each class c at each location i as follows:

ycðui ;viÞ
¼ b0ðui ;viÞ

ð1Þ

where (ui, vi) is a vector of two dimensional co-ordinates describing the location of i over
which the coefficient estimates are assumed to vary. In this way the outputs provide a geo-
graphically weighted mean estimate with a value in the range [0, 1] at each grid location, for
each class. The class with the highest value was used to label the location. This is a smoothing
approach similar to that used by Comber et al (2012) to determine fuzzy accuracy
distributions.

To illustrate the operation of the GW kernel, Table 3 shows some hypothetical Geo-Wiki
data, with distances to the sample point (kernel centre, grid cell location) being considered and
the weights derived from the tri-cube function. Fig 4A shows data centred around the sample
point within a 50km buffer. Fig 4B shows how the tri-cube function generates weights for each
data point based on their distance to the kernel centre.

The weighted data were then analysed on a class-by-class basis using Eq 1 to determine the
land cover class with highest coefficient. In the example above the coefficients from the analysis
are shown in Table 4 and in this case the class of ‘Forest’ would be allocated to the sample
point under consideration. This method was used to generate surfaces of land cover from
crowdsourced data using the whole dataset and specific subsets reflecting different expertise
and nationality.
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Table 3. The hypothetical Geo-Wiki data used to exemplify the geographical weightingmethod used as inputs to the geographically weighted
average.

ID Land Cover Class X Y Distance (km) Geographic Weight

1 Forest -3 3 4.7 0.997

2 Forest 7 -7 9.4 0.980

3 Shrub -3 -10 10.5 0.972

4 Forest -13 0 13.3 0.944

5 Forest 17 10 19.4 0.834

6 Crop -20 -7 21.1 0.792

7 Shrub 13 20 24.0 0.702

8 Forest 20 -20 28.3 0.549

9 Forest 0 30 30.0 0.482

10 Forest 30 -3 30.2 0.475

11 Forest 30 -10 31.6 0.417

12 Forest 33 0 33.3 0.348

13 Forest -33 -3 33.5 0.342

14 Forest 7 -33 34.0 0.322

15 Shrub -20 -30 36.1 0.244

16 Forest 33 -20 38.9 0.149

17 Grass 17 -37 40.3 0.109

18 Shrub 37 -17 40.3 0.109

19 Grass 40 7 40.6 0.102

20 Shrub -40 10 41.2 0.085

21 Forest -40 -13 42.2 0.064

22 Crop -40 -17 43.3 0.043

23 Forest 37 33 49.6 0.000

doi:10.1371/journal.pone.0158329.t003

Fig 4. a) An example of Geo-Wiki crowdsourced data points within a 50km buffer under a kernel centred on coordinates
(0,0) and b) the weighting function used in the geographically weighted average approach.

doi:10.1371/journal.pone.0158329.g004
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Results
The crowdsourced Geo-Wiki data for North and South America was analysed using the GW
averaging approach described above to determine local means for each class, for each cell in a
50km grid. The land cover class with the highest mean was assigned as the class for each cell.
Fig 5 shows the land cover map generated in this way using data from all contributors, with the
same detail as in Fig 2.

Gondor vs Non-Gondor
The maps in Fig 6 are those generated by All Contributors, by the Gondor and Non-Gondor
subsets and a map of difference, showing the locations where different land cover classes were
assigned from the analysis of Gondor and Non-Gondor data. A visual inspection of the maps
suggests that the Non-Gondormap is similar to All Contributors map. The main areas of simi-
larity between the Gondormap and the All Contributors map are the agricultural areas
(labelled as Crop) in the great plains of North America and in the Pampas lowlands in South
America, and the Forest areas in Amazonia. Interesting and potentially significant differences
are the subtle but important differences in the distributions of theWetland class in the north,
Shrub and Barren in western North America and the Northeast Region of Brazil.

The origins of these differences and how they relate to specific classes can be examined
through a contingency table summarising the per grid cell correspondence between the
mapped datasets. A correspondence matrix allows the degree and nature of differences in the
way that different groups classify land cover to be quantified, under the assumption of spatial-
autocorrelation of land cover. The correspondences between the Gondor and Non-Gondor
maps are shown in Fig 7. These summarise the intersection of the maps shown in Fig 6 and the
shading indicates the relative off diagonal differences. Reading across the rows, the table values
indicate the number of grid cells allocated to each class by each group. For example, out of the
18,737 grid cells allocated to the class of Forest by Non-Gondor contributors, 2,267 were given
the label Grass by contributors from Gondor. It is evident that there are high levels of differ-
ences in the interpretation of Grass and Shrub classes between the Gondor and Non-Gondor
contributors. Fig 7 suggests that contributors from Gondor differ from the general trend partic-
ularly in their allocation and interpretation of these land cover classes and the Forest, Barren
andWater classes.

If the analysis of data from All Contributors (Fig 6A) is considered as some kind of reference
dataset then the correspondence matrix can be used to construct class specific measures of
Omission and Commission. These are derived from the row and column marginal totals. The
full correspondence matrices comparing land cover maps derived from All Contributors
against the Gondor and Non-Gondor subsets and the derived measures of Omission and Com-
mission are included in S1 Table, S2 Table, S3 Table and S4 Table and are summarised in
Table 5.

Considering first the Omissions, these indicate the proportions of each reference class that
were allocated to a different class. They are calculated from 1 minus the diagonal element in
the full correspondence matrix in S1 Table, S2 Table, S3 Table and S4 Table, divided by the
row total. There are large differences between Gondor and Non-Gondor in Shrub, Grass, Crop,
Wetland, Urban, Snow, Barren andWater. These Omission values indicate that contributors

Table 4. Coefficient estimates arising from the geographically weighted regression example.

Forest Shrub Crop Grass

0.300 0.092 0.036 0.009

doi:10.1371/journal.pone.0158329.t004
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Fig 5. The land cover data over a 50km grid a) generated from all contributors in the study area and b) with
some local detail.

doi:10.1371/journal.pone.0158329.g005
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from Gondor under-estimate Grass, Crop,Wetland, Urban, Barren, Snow andWater when
compared to all contributors and that Non-Gondor contributors under-estimate Shrub.

The Commissions indicate the proportions of each class derived from analysis of the group
data (Gondor or Non-Gondor) that were a different class in the reference data. Commission
values are calculated from 1 minus the diagonal element in the full correspondence matrix in
S1 Table, S2 Table, S3 Table and S4 Table divided by the column total. There are large differ-
ences evident in the Forest, Shrub,Wetland, Urban and Barren classes with all of these classes
over-estimated by the contributors from Gondor.

Expert vs Non-Expert
The land cover maps derived from Expert and Non-Expert data were compared in the same
way. Fig 8 shows the mappings and Fig 9 shows the correspondence matrix. The map of

Fig 6. The land cover maps generated by data from a) all contributors, b) contributors from Gondor, c) Non-Gondor
and d) a map of difference, with differences in red.

doi:10.1371/journal.pone.0158329.g006
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difference in Fig 8D) and the off-diagonal values in Fig 9 indicate] that there are fewer differ-
ences between Experts and Non-Experts than between Gondor and Non-Gondor. The largest
differences are in the way that Forest and Grass land covers are interpreted.

Table 6 summarises the marginal Omission and Commission rates calculated from the full
correspondence matrices between All Contributors and Expert and Non-Expert groups. The
large differences between Experts and Non-Expert mappings are as follows: there are greater
Omissions associated with Expert mappings of Shrub andWater and with Non-Expert map-
pings ofWetland. The Commissions indicate large differences associated with the Expert map-
pings of Shrub, Grass, Urban, Barren andWater. So differences exist between Experts and
Non-Experts for some classes: Experts are more likely miss (omit) Shrub, Grass andWater
compared to all contributors and Non-Experts to include (commit) Barren for example.

Discussion
The land cover maps indicate analyses using crowdsourced data contributed people from dif-
ferent national groups will vary. A comparison of Gondor and Non-Gondor land cover maps
suggested large differences in the allocation of Forest, Shrub and Grass classes (Fig 7) and in
the allocation of Snow, Barren andWater, although these classes were less frequent. In contrast,
much less variation was found when Expert and Non-Expert groups were compared, with large
differences only in the mappings of Forest and Grass land cover. The analysis used a GW
model to infer a spatial distribution of land cover from Geo-Wiki data points which operates
under the well-known assumption of the spatial autocorrelation of land cover. If this assump-
tion is correct and the data sampling has no effect (see Fig 3), then the variation in land cover

Fig 7. The correspondence matrix of the land cover maps generated from data contributed by Gondor
and Non-Gondor subsets.Diagonal agreement and low levels of off-diagonal disagreement are indicated in
white, with increasing levels of off-diagonal disagreement shaded from light to dark orange.

doi:10.1371/journal.pone.0158329.g007

Table 5. Omission and Commission differences betweenmaps generated from all data and fromGondor and Non-Gondor groups.

Forest Shrub Grass Crop Wetland Urban Snow Barren Water

Omission Gondor 0.20 0.10 0.43 0.39 0.70 0.43 0.41 0.63 0.39

Non-Gondor 0.17 0.70 0.29 0.09 0.13 0.19 0.16 0.13 0.13

Commission Gondor 0.23 0.59 0.41 0.22 0.43 0.46 0.19 0.49 0.37

Non-Gondor 0.12 0.22 0.35 0.15 0.27 0.17 0.21 0.14 0.29

doi:10.1371/journal.pone.0158329.t005
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maps is due to differences in the labelling by different groups of contributors. Gondor interpret
the landscape in different ways to those from other countries and the mapping variations
reflect group conceptualisations of landscape features and processes with significant epistemo-
logical and ontological differences. Alternatively, these variations may be due to simple
linguistics.

However, it is well known that different contributors, with different experiences, training
and backgrounds have varying perspectives on the world, orWeltanschauung. Even people
from the same region or with the same level of expertise will disagree about the land cover pres-
ent. To illustrate this point, consider 3 of the Geo-Wiki locations and the land cover classes
that were assigned to them by different groups in Tables 7, 8 and 9. These show how the same
points were similarly classified by individuals in different groups (Table 7 and partially in
Table 8) and how other locations are classified in very different ways (Table 9). This may be
due to the inherent heterogeneity of the land cover present but it may be due to different group

Fig 8. The land cover maps generated by data from a) All Contributors, b) Expert contributors, c) Non-Experts and
d) a map of difference, with differences in red.

doi:10.1371/journal.pone.0158329.g008
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conceptualisations of the landscape. What is certain is that such variations can have profound
implications for scientific analyses that incorporate crowdsourced data.

The existence of such variations has implications for the use of Geo-Wiki land cover data,
which are currently being used to provide robust inputs to climate change models [26], for
improved forest monitoring [43], to validate other datasets [51], to create hybrid global land
cover datasets from existing (but uncertain) land cover data [13] and to support food security
initiatives through agricultural land use mapping [52]. As yet none of these activities have
sought to quantify or accounted for any variation between different groups of contributors and
the uncertainties that such variations may have on the analytical outputs.

Consideration of inferential uncertainty is an important issue as the use of crowdsourced
data in formal scientific analyses increases. Crowdsourced data are increasingly being used to
replace data collected under formal experimental designs. Scientists are becoming more disen-
gaged from the environments they study. Thus there is a need to consider the uncertainty asso-
ciated with analysing such data. These issues were raised more than 20 years ago [53]. The
context then was the relative nature of much geographical information and the associated
uncertainties of using data that could be instantly downloaded via data portals rather than
acquired through negotiation with a gatekeeper [54]. More recently these debates and the need
to consider uncertainty have re-emerged in relation to Volunteered Geographical Information
(VGI) and crowdsourced data [55]. This is especially relevant in the context of digital divides
and their impact on the nature of the information that is contributed via citizen science activi-
ties, where there is an inherent potential for biases towards landscape concepts that are
grounded in more developed countries using a particular and even biased set of landscape con-
structs and perceptions.

Fig 9. The correspondence matrix of the land cover maps generated from data contributed by Expert
and Non-Expert subsets.Diagonal agreement and low levels of off-diagonal disagreement are indicated in
white, with increasing levels of off-diagonal disagreement shaded from light to dark orange.

doi:10.1371/journal.pone.0158329.g009

Table 6. Omission and Commission differences betweenmaps generated from all data and from Expert and Non-Expert groups.

Forest Shrub Grass Crop Wetland Urban Snow Barren Water

Omission Expert 0.22 0.46 0.40 0.21 0.20 0.22 0.24 0.32 0.37

Non-Expert 0.15 0.35 0.35 0.24 0.60 0.22 0.25 0.26 0.28

Commission Expert 0.16 0.53 0.43 0.22 0.36 0.40 0.25 0.22 0.38

Non-Expert 0.19 0.40 0.32 0.16 0.42 0.29 0.21 0.36 0.26

doi:10.1371/journal.pone.0158329.t006
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There are a number of areas for potential further work. First, there may be a need to refine
how Geo-Wiki volunteers are recruited and whether this can be done in a more representative
or even a targeted way. For example, data contributed by an individual who fails to meet some
criteria may be excluded from analysis or perhaps their data re-interpreted via semantic trans-
lators. Second, Tables 7,8 and 9 suggest that considerable within group heterogeneity also
exists, with likely impacts on data analyses. Further research is needed to explore the impacts
of and to manage within group variation. This would help to determine whether local patterns
of variation reflect within or between group differences / similarities for specific classes, in spe-
cific locations. One possibility is to take a mixed modelling approach to handle some of the
independence issues relating to data being collected at different times, by different individuals,
from different countries, from different images at different locations. Third, many of the Geo-
Wiki datasets include measures of contributor confidence in the class labels for each point.
These may provide a route to quantify uncertainties and label mismatches relative to the
intended use of the data in analyses. Fourth, the ideal analysis would be one which compared a
large number of classifications of the same locations by Expert / Non-Expert and Gondor /
Non-Gondor users. Here a GWmodel was used to infer a spatial distribution of land cover
from the Geo-Wiki point data, under the assumption that a degree of spatial autocorrelation
exists. While much previous work has used similar approach there is a need to test this assump-
tion at different scales of analysis. Additionally, understanding the sensitivity of the GWmajor-
ity class assignment, particularly how these vary spatially, may provide insights into the
differences observed between groups. Finally, Geo-wiki users register limited information
about their background and experience. It would be useful to capture more structured informa-
tion about the underlying semantics held by contributors relating to landscape processes. This

Table 7. An example of the land cover classes indicated a Geo-Wiki location, with low variation in
opinion between Gondor and Non-Gondor groups.

Non-Gondor Gondor

Grass 1 1

Crop 1 0

Barren 24 18

doi:10.1371/journal.pone.0158329.t007

Table 8. An example of the land cover classes indicated a Geo-Wiki location, with some variation in
opinion between Gondor and Non-Gondor groups.

Non-Gondor Gondor

Forest 11 2

Shrub 13 17

Wetland 2 0

doi:10.1371/journal.pone.0158329.t008

Table 9. An example of the land cover classes indicated a Geo-Wiki location, a high level of variation
in opinion between Gondor and Non-Gondor groups.

Non-Gondor Gondor

Forest 1 1

Shrub 1 8

Grass 5 1

Crop 16 5

Barren 3 3

doi:10.1371/journal.pone.0158329.t009
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could be extended to evaluate significant linguistic, epistemological and ontological differences
among different groups, perhaps by allowing contributors to develop their own land cover cat-
egories. Identifying any cultural differences in this inductive way would allow contributors to
classify data using their own knowledge base and language.

Conclusions
The critical message arising from this research is that it is important to consider and test for
potential variations in the way that landscape features are labelled and conceptualised by differ-
ent groups of contributors when analysing crowdsourced data. It is not a question of the verac-
ity of the citizen science data per se because that is dealt with by other research in this domain
(see for example, [13, 28]). Rather, the issue is how to deal with and quantify the magnitude
and direction of variations of crowdsourced data contributed by different groups. These
include differences in the way that landscape features are described as well as the affordances
and functions that they are associated with. Overcoming these issues is essential if crowd-
sourced data are to be robustly used in scientific analyses.
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