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Abstract

Phenotypic information derived from visual characteristics of colorectal cancer (CRC) is routinely used for 
diagnosis and recommendations for treatment. Previously published studies show that the ratio of tissue types within 
CRC is prognostic. Such studies generate large amounts of data, combining expert classifications with x-y
coordinates, which has previously been used to train image analysis algorithms. This paper describes extensions to
algorithms employed in previously published work, using pixel clustering as a pre-processing step before 
normalised cuts in order to reduce the size of the graph for unsupervised segmentation. Image segments are 
processed for features and given a candidate classification which is weighted by neighbouring segment classes. 
Global slide features are incorporated to mitigate inconsistencies in overall appearance caused by histological and 
biological differences. The proposed algorithm increases agreement with the ground truth from 75% to 79% on a
dataset of 7,159 images across 157 digital slides.

© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Organizing Committee of MIUA 2016.

Keywords: digital pathology; colorectal cancer; automated analysis; unsupervised segmentation; contextual analysis;

1. Introduction

With over 40,000 new cases and 16,000 deaths per year, colorectal cancer (CRC) is currently the second highest 
cause of cancer mortality in the UK1. Histopathological examination of cancer tissue provides pathologists with 
phenotypic information from visual characteristics of the disease2 which is used to predict response to therapies. 
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These predictions facilitate the provision of appropriate treatments for individual patients, possibly avoiding 
exposure to toxic radiotherapies and expensive drugs. This visual information is traditionally acquired via a glass 
slide tissue sample and microscope, but the rise of high resolution digital pathology scanners allows pathologists to 
inspect tissue using standard computer screens and software tools for more consistent and quantifiable manual 
analysis. The RandomSpot stereology tool3 is used routinely at a number of institutions and has been used by 
pathologists to help identify the prognostic capabilities of the ratio of tumour to stroma within a patient’s cancer 
(T:S)4. This is a time consuming and laborious task which requires pathologists to classify several hundred points on 
a single slide in order to obtain an appropriate sample size, and therefore automation of the task is highly desirable. 
Previous work used existing clinical data to extract regular sized image patches at specific co-ordinates, with the
associated pathologist-classified ground truth label5. Results showed that the automated analysis of the images was 
more accurate on smaller patches (64x64px), which was inconsistent with pathologist scoring, yielding significantly 
higher human agreement on larger im

1) Algorithm accuracy was lower on larger image patches because they were more likely to contain multiple 
classes of tissue within them

2) Pathologist accuracy was lower on smaller images because the visual information surrounding the patch 
(context) is important for making decisions

This paper reports on work undertaken in order to compensate for these two issues by applying unsupervised 
segmentation in larger image patches, and including contextual information to assist with machine learning. 
Normalised cuts6 is a graph based segmentation algorithm which uses both similarity and dissimilarity metrics to 
partition a graph into two or more sub-graphs. Images are treated as regular graphs which can be segmented with 
globally optimised clustering, but requires computationally expensive per-pixel, pairwise comparisons. Tao et al7

propose a weighted mean-shift algorithm to reduce the colourspace of images before the application of normalised 
cuts. By clustering the image into similar coloured areas, the size of the graph (and complexity of the affinity 
matrix) is greatly reduced, facilitating the application of the algorithm to complex histological slide images8. This 
work has been extended further by its application to a hierarchical pyramid for the analysis of ovarian cancer tissue 
microarrays9. The normalised cuts algorithm has also been modified for use in this field by include adding extra 
features to improve accuracy of segmentation on gastroeneterology images10. Other approaches to segmentation in 
colorectal histology images include weakly supervised algorithms for learning gland or nuclear shape11 and sparse 
dictionary based representations of structures12. In most cases, approaches involve either pixel level clustering or 
model fitting13. Due to the ground truth data relating to single x-y coordinates rather than objects and structures, 
there is a need for unsupervised segmentation so that these co-ordinates can be expanded into tissue regions before 
analysis of features.

Contextual information can be incorporated at different resolutions in order to provide a more complete 
description of the visual space. In histopathology, local context typically relates to neighbouring tissue classes and 
the pattern that the tissue forms (or lack thereof). Global context describes the overall condition of the tissue and/or 
slide, the level of staining and the type of cancer being analysed, which helps the pathologist to understand the 
visual information at a microscopic level. These relationships between resolutions have previously been mapped in
automated solutions using Bayesian networks14, label regularisation15, rotationally invariant contextual analysis 
(spin-context)16, or simply providing a ‘context vector’ as a set of features in order to pre-analyse images17.

2. Methods

2.1 Data
The experiments reported in this paper use a subset of an existing dataset from one colorectal cancer trial18. The 
dataset contains image data from 2,214 cases, which comprises of mostly of stage II cancer patients, with the 
remaining cases being stage III. Half of the patients received chemotherapy and the other half did not. Most cases 
had only one glass slide digitally scanned, using an Aperio AT scanner at 20x magnification (0.5 µm per pixel), 
stained with haematoxylin and eosin stains (H&E). For this study, the subset was comprised of 157 cases, which had 
been preselected by a pathologist in order to provide a dataset representative of typical workload), and each case had 
been analysed using the RandomSpot stereology tool, using a target number of 50 spots per digital slide (with a 
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fitting tolerance of 15%). These cases contained a total of 7,159 pre-scored co-ordinates, which were extracted as 
images whereby the co-ordinate was at the centre of the image. All images were classified into one of eight types: 
tumour; lumen; necrosis; mucin; stroma; muscle; inflammation; blood vessels.

2.2 Processing Overview
Based on the conclusions of a previous study5, image patches were extracted at 256x256 pixels in order to 

preserve surrounding contextual information. Initial attempts used colour normalisation19 in order to compensate for 
variation in staining intensities, but was removed so that staining information could be preserved for analysis using 
global context (see section 2.6). An implementation of the colour deconvolution algorithm20 was used to separate 
stains before unsupervised segmentation. Once segmented, features were extracted from the centre segment (where 
the pathologist classification had been applied to), and a random forest21 algorithm was trained on the feature set
(see machine learning section). Once trained, the algorithm was then applied to all segments, which were used for 
surrounding contextual analysis.

2.3 Unsupervised Segmentation
Oversegmentation using simple linear iterative clustering (SLIC)22 was applied to each image (Figure 1 c), 

dividing into approximately 168 superpixels, which resulted in each superpixel being approximately the size of one 
nucleus (10µm2, given that the slides were scanned at 0.5µm per pixel). For every superpixel pair, a similarity 
metric was computed. This metric consisted of Euclidean distance, median intensity difference, mean absolute 
difference of intensity, texture difference (comparing textons23) and maximum intervening contours. Similarity 
metrics were used to create a symmetric affinity matrix, and normalised graph cuts was applied in order to cluster 
the superpixels into image segments. A fixed number of sixteen segments was chosen in order to create images
approximately 64x64px in size, which yielded the highest accuracy result using the original algorithm.

Figure 1 - The SLIC and normalized graph cut process with segment classification (a) original image patch (256x256px), (b) Haematoxylin 
channel after colour deconvolution, (c) SLIC superpixel segmentation (d) affinity matrix depicting similarity of superpixel pairs, (e) image 
segments comprised of clustered superpixels, using normalised cuts, (f) segment at the centre of the image that the pathologist score applies to.

2.4 Machine Learning
After segmentation, image segments were processed individually to generate features, to be used in machine 

learning based classification. Features used were median hue, saturation and intensity values after converting the 
RGB image to HSV colour space, median intensity of haematoxylin and eosin staining channels after colour
deconvolution, median staining values after removing background pixels (value = 240 set by the digital slide 
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scanning software), percentage foreground intensity for H&E channels, standard deviation of intensity, textural 
properties (energy and homogeneity) using gray level co-occurrence matrices24, and nuclear count, detection and 
mean area25. For training, features were extracted on the center segment of each image, so that it could be associated 
with pathologist classification at that co-ordinate. A random forest was trained using the features and a binary 
classification of tumour or stroma, whereby each of the possible eight classifications were grouped into the parent 
class. The random forest algorithm used 500 trees with three predictors sampled for splitting at each node. Cases 
were randomly grouped for ten-fold cross validation (as opposed to randomly grouping individual images) in order 
to test the accuracy of the algorithm using unsupervised segmentation alone.

2.5 Local Context
In order to improve predictions made by the random forest algorithm in segments where confidence was low, the 

trained algorithm was then applied to all segments within a given image patch, providing a probability of tumour
(see heatmap in Figure 2 b). Neighbouring segment classification probabilities were then used to weight the 
classification probability of the centre segment, based on the assumption that a single segment is more likely to be 
the same class as the majority of its neighbors. By using the product of the surrounding tissue class probabilities, 
weighted by the length of the adjacent perimeter length as a percentage, artefacts from oversegmented regions are 
avoided. It is important to note that more complex contextual cues and biological spatial rules could be included at 
this stage, if using more tissue classes.

Figure 2 – Local contextual information surrounding centre segment (a) image segments comprised of clustered superpixels, using normalised 
cuts (b) colour heatmap of tumour segment probability (c) centre segment with neighbouring segment probabilities

2.6 Global Context
There are many factors involved when considering the global appearance of histological tissue samples. Most 

notable is the inconsistency in colour, which can be attributed to issues such as section thickness, variations in 
staining chemical compounds, application of the stains, quality of the glass slides and cover slips, length of time 
between slide generation and digital slide scanning, slide scanning hardware, and colour profiles of the digital 
scanners to name a few. The clinical dataset used was designed to provide five year survival data, and as such, has 
large variation in appearance (see Figure 3a).

This variation becomes problematic when using image and stain intensities as training features, and therefore 
must be compensated for in the algorithm. Colour normalisation provides a robust method for correcting for 
inconsistent staining in tissue, however overcompensates in areas that do not require normalising, such as larger 
areas of mucin, lumen, tissue tearing or retraction artefact. Figure 3 (b) plots the average (mean) median intensity of 
tumour and stroma images patches (y axis) against the median intensity of their parent whole slide (x axis) at low 
power (scaled to 3x objective zoom). This indicates that the visual information derived from local features can be 
enhanced when combined with global features. It is therefore proposed that using visual features of global 
contextual information in conjunction with the local image features will give a reliable comparative measure, with 
respect to colour variation. The global features used were median intensity, median haematoxylin and eosin staining 
channel intensity and median haematoxylin staining channel intensity after applying a simple threshold to remove 
background pixels (mean intensity minus half of one standard deviation intensity). These global features were 
calculated prior to image patch analysis, then added to the feature vector for each image patch respectively before 
training and testing. 
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Figure 3 - (a) examples of different levels of staining in the clinical dataset (b) plot of median slide intensity compared to median tumour and 

stroma intensity within that slide

3. Results

To provide a comparable metric, the algorithm from the previous work was run on the new subset of data (see 
2.1 Data), in order to assess improvements in accuracy. The dataset of 7,159 images from 157 slides was processed 
using ten-fold cross validation for training and testing the random forest algorithm, and agreement between the 
original pathologist score and algorithm was recorded per image. Once trained, the algorithm took approximately 
9.2 minutes to analyse one case containing 50 spots (11 seconds per image). Figure 4 (a) shows the accuracy of the 
context based algorithm compared to the baseline algorithm, using boxplots of both of the ten folds. The increase in 
accuracy of .75 to .79 was shown to be statistically significant using a Wilcoxon rank sum test (p < .01).

Figure 4 – Results for both baseline and context-based algorithm (a) box plots comparing accuracy of both algorithms ten-fold cross validation
(b) ROC curves for baseline algorithm tumour AUC = .82, stroma AUC = .82 (c) ROC curves for context based algorithm tumour AUC = .86, 
stroma = .86

Table 1 (left) and Table 2 (right) - Confusion matrices showing mean pathologist – baseline algorithm agreement. Baseline algorithm: Accuracy 
= .75, sensitivity = .75, specificity = .75, Kappa = .5 (moderate agreement). Context algorithm: Accuracy = .79, sensitivity = .79, specificity = 
.79, Kappa = .57 (moderate agreement).

Baseline Algorithm

Tumour Stroma

Pathologist
Tumour 2132 833

Stroma 573 2111

Context Algorithm

Tumour Stroma

Pathologist
Tumour 2410 555

Stroma 661 2023
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Table 1 and 2 show confusion matrices, illustrating the baseline algorithm over-estimates the presence of stroma, 
and the context-based algorithm overestimates tumour. The context-based algorithm improves agreement (kappa = 
.5 increased to .57). Figure 4 (b) and (c) show ROC curves for the baseline and context-based algorithms, which 
show area under the curve of .82 and .86 respectively. It should be noted that these results are not directly 
comparable to previous work as a smaller dataset was used.

4. Discussion and Conclusion

Automated analysis of colorectal cancer is non-trivial due to the many biological, histological and technical 
considerations that affect the variation in appearance of tissue on digital slides. This variation affects the appearance 
of slides in terms of colour, texture and shape, and so model based segmentation may only be appropriate for certain 
types or grades of cancer, where appearances are similar. Unsupervised segmentation allows for images to be split 
into regions that are similar in appearance and can be classified based on their visual characteristics, which provides 
more flexibility for the variable appearance of cancer tissue. The current algorithm shows an improvement over 
previous work, which used smaller patch sizes instead of unsupervised segmentation, and did not allow for 
surrounding contextual information to be included. The inclusion of unsupervised segmentation meant that training 
images were much less likely to include more than one tissue class per segment, thus reducing ambiguity in the 
feature set. Unsupervised segmentation was applied by initially discretising the pixel data of each image patch into a 
much smaller set of superpixels, which roughly represented the size of one nucleus. This resulted in a graph cut 
problem which is less computationally expensive than calculating similarities per-pixel, whilst maintaining segment 
boundaries at a nuclear level. By applying segmentation to the image patches, the surrounding segment classes 
provide contextual information which was used to weight the probability of the random forest prediction. In 
previous work, this local contextual information has been shown to be important to pathologists for scoring images, 
and therefore should be a consideration when developing image analysis solutions to automate the pathologist task. 
Currently the algorithm uses the assumption that higher amounts of surrounding tissue increase the likelihood of that 
same classification. This could be extended to include important biological structural rules, for example, lumen must 
be surrounded by tumour, or that a candidate lumen segment lying between stroma and tumour is more likely to be a 
retraction artefact. Contextual information was also applied at the macro level, on order to provide information 
about the slide as a whole. This global information is important when considering sets of data that have been stained 
inconsistently, or in this case, as part of a five year longitudinal study, where the fading of stains before digital slide 
scanning was inevitable. By combining the features of the slide with the feature set for each image patch, the 
algorithm is able to learn that the relationships between tumour and stroma features will change, based upon such 
global features. This work could be extended to incorporate a prediction of the type of cancer being analysed, which 
could help improve classification accuracy. For example, mucinous adenocarcinomas are considered mostly tumour, 
but the light appearance of the mucin is likely to be classified as weakly stained stroma at the microscopic level. 
Finally, it is worth noting that the algorithm was trained and tested on a subset of one clinical trial dataset, and 
therefore accuracy of the algorithm is likely to increase with the expanded dataset.
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