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Abstract Tropospheric O3 has been decreasing across much of the eastern U.S. but has remained steady

or even increased in some western regions. Recent increases in VOC and NOx emissions associated with the

production of oil and natural gas (O&NG) may contribute to this trend in some areas. The Northern Front

Range of Colorado has regularly exceeded O3 air quality standards during summertime in recent years. This

region has VOC emissions from a rapidly developing O&NG basin and low concentrations of biogenic VOC in

close proximity to urban-Denver NOx emissions. Here VOCOH reactivity (OHR), O3 production efficiency (OPE),

and an observationally constrained box model are used to quantify the influence of O&NG emissions on

regional summertime O3 production. Analyses are based on measurements acquired over two summers at a

central location within the Northern Front Range that lies between major regional O&NG and urban emission

sectors. Observational analyses suggest that mixing obscures any OPE differences in air primarily influenced

by O&NG or urban emission sector. The box model confirms relatively modest OPE differences that are

within the uncertainties of the field observations. Box model results also indicate that maximum O3 at the

measurement location is sensitive to changes inNOxmixing ratio but also responsive toO&NGVOC reductions.

Combined, these analyses show that O&NG alkanes contribute over 80% to the observed carbonmixing ratio,

roughly 50% to the regional VOC OHR, and approximately 20% to regional photochemical O3 production.

1. Introduction

Tropospheric ozone (O3) is a secondary pollutant that contributes to the degradation of regional air quality.

The only known sources of tropospheric O3 are through the intrusion of O3-rich stratospheric air [Roelofs and

Lelieveld, 1995] and the oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides

(NOx=NO+NO2) [Chameides, 1978;Crutzen, 1970]. In the past twodecades, summertimemaximumO3 at rural

(receptor) sites across much of the U.S. has exhibited a strongly decreasing trend [Cooper et al., 2012], likely in

response to concurrent, declining NOx emissions [e.g., Butler et al., 2011; Cooper et al., 2012; Environmental

Protection Agency, 2016]. Decreasing O3 trends have been most pronounced in the eastern U.S., but generally

moremoderate, or even increasing, at high-elevationwestern sites [Cooper et al., 2012]. Proposed explanations

forupward trends include increases in summer temperatures, contributions fromstratospheric intrusions, long-

range transport of emissions from Asia, western wildfire activity, and/or regional oil and natural gas (O&NG)

emissions [Cooper et al., 2012, 2015]. Herewe focus on summertimeO3 production impacted by O&NG activity

in the Colorado Northern Front Range (NFR) (Figure 1), a region out of compliance with National Ambient Air

Quality Standards (NAAQS) of 75 ppbv for O3 since 2007 and expected to remain so under recently revised

2015 standards of 70 ppbv [Colorado Department of Public Health and Environment (CDPHE), 2016].

The NFR (Figure 1) has urban O3 precursor emissions in close proximity to those from other sectors, principally

agriculture (e.g., animal feedlots) and O&NG production. The NFR’s Wattenberg Gas Field of the greater

Denver-Julesburg Basin has seen significant recent increases in O&NG production, with the number of active
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wells nearly doubling in Weld County between January 2008 and July 2015 to over 27,000 [Colorado Oil and

Gas Conservation Commission (COGCC), 2/2016]. Though O&NG production has increased in multiple U.S.

basins, a relatively small number of these basins lie in close proximity to large urban areas, as is the case with

the Denver-Julesburg. Biogenic VOC mixing ratios (e.g., isoprene) are relatively low in the NFR compared to

other U.S. O&NG producing regions, such as Texas and Pennsylvania [Rutter et al., 2015; Swarthout et al.,

2015]. Lower biogenic mixing ratios may magnify the influence of O&NG emissions on regional O3 produc-

tion. Multiple studies have extensively characterized NFR VOC emissions, including those from O&NG activity

[e.g., Brantley et al., 2015; Gilman et al., 2013; Pétron et al., 2012, 2014; Swarthout et al., 2013], but remain

limited in terms of characterizing their influence on summertime O3 production.

To date, relatively few studies have specifically assessed the influence of emissions associated with O&NG

activity on regional summertime O3 production. Several recent papers have focused on wintertime O3 in

O&NG producing regions in both the Upper Green River Basin of Wyoming [Field et al., 2015; Oltmans

et al., 2014; Rappenglück et al., 2014; Schnell et al., 2009] and the Uintah Basin in Utah [Ahmadov et al.,

2015; Carter and Seinfeld, 2012; Edwards et al., 2014, 2013; Helmig et al., 2014; Oltmans et al., 2014]. Winter

O3, however, is distinct from summertime urban-influenced O3 and has so far only occurred in remote areas

with low population densities and urban emissions. Winter O3 is also specific to highly stable inversion con-

ditions that cause an accumulation of VOC emissions from O&NG activity. The influence of O&NG emissions

on summer O3 near urban areas is not well characterized and is a potentially complex issue arising from the

interaction of a variety of emissions.

Previous summertime O3 analyses include two initial studies that used regional models to determine that O3

production was positively influenced by emissions associated with O&NG activity in the Haynesville region in

Texas [Kemball-Cook et al., 2010] and across multiple western U.S. locations [Rodriguez et al., 2009]. More

recent work has suggested that O&NG-associated NOx emissions, relative to those of VOCs, contribute dispro-

portionally to summertime O3 production. For example, O&NG-associated VOC emissions only contribute 8%

Figure 1. Elevation map of the Northern Front Range (NFR) region of Colorado showing the O3 nonattainment area, Weld
County (dashed lines), major roads, rivers, urban regions, power plants (scaled by relative NOx emissions), large agricultural
facilities (feedlots sized by animal capacity), and active O&NG wells [Colorado Oil and Gas Conservation Commission

(COGCC), 1/2016]. The red diamond indicates the location of the BAO measurement site.
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to O3 precursors in California’s San Joaquin Valley [Gentner et al., 2014] and less than 20% and 7%, respec-

tively, to the O3 forming potential in the Barnett Basin near Fort Worth, Texas [Rutter et al., 2015] and

Pennsylvania’s Marcellus Basin [Swarthout et al., 2015]. Similarly, regional modeling of the Eagle Ford Basin

in Texas showed that changes in regional summertimeO3 concentrationswerenot drivenbyO&NG-associated

VOCs but rather by emissions of NOx [Pacsi et al., 2015]. As observed from space, NOx levels associated with

O&NG activity (e.g., flaring and combustion from O&NG extraction machinery and transport vehicles) have

recently increased over three O&NG producing regions in the central U.S. [Duncan et al., 2016]. In other states

such as Pennsylvania, the influence of O&NG activity onO3may be underestimated or obscured due to (1) NOx

trendsmasked by surrounding urban emission reductions [Duncan et al., 2016] and/or (2) gaps in themonitor-

ing network for Environmental Protection Agency (EPA) criteria pollutants, such as NO2 [Carlton et al., 2014].

Here we apply three methods to characterize the influence of VOC and/or NOx emissions on O3 production in

the NFR. These include VOCOH reactivity (OHR), O3 production efficiency (OPE), and photochemical boxmod-

eling. The VOCOH reactivity (OHR) [e.g.,Gilman et al., 2013] is ameasure of the kinetic oxidation of VOCs by the

OH radical and is often the rate limiting step in photochemical O3 production. A number of O&NG-focused stu-

dies have used thismetric to highlight the potential contribution of O&NGVOCs toO3production in both sum-

mer and winter months [Field et al., 2015; Gilman et al., 2013; Rutter et al., 2015; Swarthout et al., 2013, 2015].

Although VOC OHR provides a simple assessment of the relative contribution of different VOCs to poten-

tial O3 production, it does not incorporate information about radical propagation or its NOx dependence,

both of which are important for predicting the efficiency of O3 production. Ozone production efficiency

(OPE) [e.g., Trainer et al., 1993] is a measure of the number of O3molecules produced, or number of NOx inter-

conversion cycles completed, before NOx is lost through termination reactions (e.g., nitric acid (HNO3) or

organic nitrate production). The OPE is defined as the slope of odd oxygen (Ox=NO2+O3) plotted against

NOz (NOz=NOy�NOx, where NOy is total oxidized reactive nitrogen). OPE analyses have been used to

characterize urban and rural regions across the U.S. as documented in Table 1 of Griffin et al. [2004], but to

our knowledge, havenot beenapplied specifically toO3production in anO&NGbasin. Theprinciple advantage

to OPE is that it is an observable quantity that should differentiate between air parcels of different VOC com-

position andNOxmixing ratios, for example, those influenced byO&NG versus urban emissions. However, OPE

derived from field observations is an upper limit as it suffers from artifacts such as depositional NOy loss.

Box model analyses are a common tool used to assess the sensitivity of O3 production to NOx and VOC emis-

sions within air parcels of known composition. They have been used recently to model O3 production in wes-

tern U.S. O&NG basins during winter months [Carter and Seinfeld, 2012; Edwards et al., 2013, 2014]. To our

knowledge, a box model analysis has not been previously reported for summertime O3 production in an

O&NG basin. Box models have the advantage of a fully explicit chemical mechanism, but they parameterize

transport as a highly simplified, single dilution term. They therefore do not represent heterogeneity in the spa-

tial distribution of emissions. They also do not rely on emission inventories, which can be an important source

of uncertainty in three-dimensional chemical transport models [e.g., Ahmadov et al., 2015], but parameterize

emissions so as to match observations or constrain primary species to observed values. Box model analyses

are useful in assessing the NOx and VOC sensitivities of O3 and other secondary products (e.g., acetone, MEK,

and RONO2) for averaged data, in which chemical and meteorological variabilities average to typical values

[Edwards et al., 2013], or in simulations of air parcel evolution along a known trajectory [Washenfelder et al.,

2011b]. In these cases, box models provide a simple alternative to 3-D chemical transport models.

Wepresent a combination of VOCOHRandOPE analyses alongwith an observationally constrainedboxmodel

to (1) quantify the impacts of O&NG emissions on summertimemaximumO3 and its production efficiency at a

specific locationwithin theNFR and (2) evaluate theO3 sensitivity toNOx and VOCemissions. This analysis indi-

cates that the influence of O&NG VOCs on regionally produced O3 is small relative to their contribution to total

VOC mass and OHR, but not negligible on the scale relevant to attainment of regional air quality standards.

2. Experimental and Analysis Methods

2.1. Measurement Site

The Boulder Atmospheric Observatory (BAO; 40.05°N, 105.01°W, 1584m above sea level) [Kaimal and Gaynor,

1983] lies roughly 35 km north of Denver and 25 km east of Boulder in the southwest corner of the
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WattenbergGas Field (Figure 1). The site has a tall (300m) towerwith south facing stationaryplatforms (booms)

at 10, 100, and 300m for meteorological measurements of temperature, relative humidity, wind speed, and

direction. An external carriage mounted on the southwest side of the tower provides a platform for vertically

resolved chemical measurements as described further in section S1 in the supporting information.

2.2. Field Campaigns

Measurements at BAO were made in July–August 2012 and July–August 2014, months when the NFR experi-

ences O3 levels in exceedance of the EPA 8 h O3 standard [Colorado Department of Public Health and

Environment (CDPHE), 2015]. During these two summers, the NFR was studied by three major field campaigns

that contributed data to this analysis. Campaign and measurement descriptions can be found below and as a

complete list in Table S1 in the supporting information.

2.2.1. SONNE: 2012

The Summer Ozone Near Natural gas Emissions (SONNE) field campaign was conducted at BAO between 27

July and 12 August 2012. Chemical measurements were acquired via inlets mounted 8m above ground

level (agl) on a walkup tower ~10m south of the main tower. Continuous in situ measurements of a full

suite of C2-C10 hydrocarbons, C2-C4 oxygenated VOCs, aromatics, C2-C3 alkyl nitrates, and dimethyl sulfide

were collected via a custom-built, two-channel gas chromatograph-mass spectrometer (GC-MS) [Gilman

et al., 2010]. Samples were acquired (5min) and analyzed (25min) on a repeating cycle every 30min. The

accuracy and detection limits are compound-dependent but less than 25% and 10 parts per trillion by

volume (pptv), respectively [Gilman et al., 2010]. NOx and NO2 were measured with a custom-built,

multichannel cavity ring-down (CRD) instrument. NO2 was measured by direct absorption at 405 nm, while

NOx was simultaneously measured in a second channel after conversion of ambient NO to NO2 via an

addition of excess O3 [Fuchs et al., 2009]. The accuracy and limit of detection for both species were <5%

and <30 pptv, respectively. O3 was measured via UV absorbance by a commercial instrument (Thermo

Environmental Instruments, Inc., Model 49c). Methane (CH4) was measured via CRD spectroscopy using a

wavelength-scanned CRD instrument (Picarro, model 1301m) [Peischl et al., 2012]. Carbon monoxide

(CO) was measured by a vacuum ultraviolet fluorescence instrument [Gerbig et al., 1999]. All chemical

measurements were collected at a 1 Hz time resolution and averaged to the GC-MS acquisition period of

5min every half hour.

2.2.2. FRAPPÉ/DISCOVER-AQ: 2014

In July–August 2014 the NSF Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) and the

NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations

Relevant to Air Quality (DISCOVER-AQ) field campaigns conducted aircraft, mobile, and ground-based mea-

surements at over 15 locations across the Front Range. Measurements at BAO took place between 16 July

and 15 August 2014 and included surface and vertically resolved observations. CH4 and CO were measured

from the instrument carriage with a commercial CRD instrument (Picarro, model 2401) [Chen et al., 2010,

2013; Crosson, 2008]. Gas-phase ammonia (NH3) was measured from the carriage via infrared absorption with

a quantum-cascade laser instrument (QC-TILDAS) [McManus et al., 2008]. NOx and NO2 were measured with

the same CRD instrument described in section 2.2.1, which also measured O3 and NOy. O3 was measured by

conversion to NO2 in excess NO and subsequent subtraction of ambient NO2 from the resulting total Ox

[Washenfelder et al., 2011a]. NOy was thermally converted to NO or NO2 with a quartz heater (650°C) and

quantitatively converted to NO2 via an addition of O3 [Wild et al., 2014]. The accuracy and detection limit

of NOx, NO2, and O3 in 2014 were <5% and<50 pptv, respectively. The NOy channel had a limit of detection

of<200 pptv and an accuracy of 12% based on recent field comparisons to other NOy instruments [Wild et al.,

2014]. Conversion of NOy in a 650°C quartz oven may have also suffered interference from the unintended

conversion of a small fraction (~6%) of NH3 in the presence of O3. Uncertainty associated with this artifact

is estimated for the NOy data based on co-located NH3 and O3 measurements, but data are not corrected

for this potential interference.

In addition to carriage instruments, O3 lidar (NOAA TOPAZ) [Alvarez et al., 2011; Langford et al., 2015]

measurements were made at a ground site ~0.5 km south of the main tower and j(NO2) photolysis frequen-

cies (National Center for Atmospheric Research (NCAR) filter radiometer [Shetter et al., 2003]) were measured

from a trailer parked at the tower base. Lastly, spectral surface albedo measurements derived from a visible

(415–1625 nm) Multi-Filter Rotating Shadowband Radiometer [Harrison et al., 1994; Michalsky and Hodges,
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2013] were made from a NOAA Surface and Radiation Budget Monitoring mobile laboratory [Augustine et al.,

2000] parked at BAO for the duration of the campaign.

2.3. Ozone Production Efficiency

Ozone production efficiencies were only derived from 2014 data due to the lack of NOy measurements in

2012. Chemical observations were averaged to a 1min time resolution and filtered to include data after noon

(12–6 P.M. mountain daylight time (MDT)) during peak O3 production and sampling altitudes >25m agl to

reduce the influence of deposition to the surface. The slope of the Ox to NOz correlation at individual,

15min intervals was used to isolate and derive the OPE of individual air parcels. In contrast to the O3/NOz

slope defined in previous studies [e.g., Hirsch et al., 1996; Olszyna et al., 1994; Trainer et al., 1993, 1995], the

use of Ox accounts for local O3 titration through reaction of NO with O3 near NOx emission sources.

Additionally, NOz, instead of NOy, normalizes age across different air parcels [Trainer et al., 1993]. However,

by not additionally accounting for NOy removal processes, such as surface deposition of individual NOy

species (e.g., HNO3), the OPEs derived here are upper limits. Further OPE details are discussed in

sections 3.3 and S2.

2.4. Box Model

2.4.1. Model Description and Constraints

Model simulations were performed with the Dynamically Simple Model of Atmospheric Chemical Complexity

(DSMACC) [Emmerson and Evans, 2009]. DSMACC is a zero dimension box model that uses the Master

Chemical Mechanism (MCM v3.3.1) for its chemistry scheme and the NCAR Tropospheric Ultraviolet and

Visible Radiation Model (TUV v5.2) [Madronich et al., 1998] for photolysis rates. The MCM is a near-explicit che-

mical mechanism representing the gas-phase tropospheric degradation of VOCs [Jenkin et al., 2015]. The sub-

set of chemistry used here includes a complete inorganic mechanism and degradation scheme for 50 primary

VOCs, with a total of 4002 species and 15,555 reactions.

All DSMACC simulations are initialized at 8 A.M. MDT and integrated forward for 24 h with a 10min time step.

To represent the NFR as a photochemical box, simulations are initialized with and constrained every 30min to

SONNE diel average observations of temperature and mixing ratios of CO, CH4, 42 non-methane VOCs, and

water vapor (derived from 10m relative humidity measurements). Simulations are constrained to 2012 data

only due to lack of speciated VOC measurements in 2014. For comparison, both temperature and observed

O3 mixing ratios were higher in 2012 than 2014 with differences in maximum diel averages (27 July to 12

August 2012 and 2014) of 1°C and 1.8 ppbv, respectively. DSMACC simulations were additionally constrained

to SONNE diel average observations of total NOx, which was partitioned by the model into its components

(NO and NO2) every 10min assuming photo-stationary state, using j(NO2), temperature, and O3. Section S3

provides further information on DSMACC constraints, which force the model to accurately represent primary

species whose average concentrations are governed by processes not represented in the box model, such as

emissions and horizontal transport.

An additional dilution rate constant was applied to all 4002 model compounds to simulate average vertical

transport and loss from the box (as described in section S3.3). A dilution rate constant of 1.05 × 10�4 s�1

was derived from a fit of the model output to the diel average observations of 10 secondary products.

These 10 secondary species consist of O3, six oxygenated VOCs, and three alkyl nitrates, which were initialized

to their average observed values (8 A.M. MDT) but not otherwise constrained (see Figure S6). Background

mixing ratios of these 10 compounds (Table S3) were also added to the model at the same rate of dilution

to account for entrainment and mixing with the residual layer during boundary layer growth. At the fit dilu-

tion rate, the averagemodel-to-observation difference for all 10 compounds was�13.7% (for individual com-

pounds, see Table S3). Table S2 summarizes the model treatment of all chemical observations, and Figure 2

illustrates the observed non-methane VOCs in terms of their diel average OHR.

2.4.2. Model Scenarios

Base (Case 1) simulations represent the average chemical composition at BAO and were constrained to diel

average chemical and physical observations as described above. In comparison with Case 1 simulations,

Cases 2 and 3 (described below) are used to quantify the impact of primary O&NG VOCs on maximum

photochemical O3 production.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025265
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Case 2 simulations represent the average chemical composition at BAO without primary O&NG VOCs. To

derive this VOC scenario, speciated fractions of primary VOCs emitted from O&NG activity were subtracted

from Case 1 diel average observations. For example, propane was reduced by 90% between Cases 1 and 2,

as 90% of observed propane at BAOwas attributed to O&NG emissions [Gilman et al., 2013]. Table S2 provides

a full list of speciated O&NG contribution factors. For all non-methane VOCs, Gilman et al. [2013] used a multi-

variate regression with O&NG (propane) and urban (acetylene) tracers to derive O&NG factors. Oxygenated

VOCs were not tightly correlated with either tracer and were not assigned an O&NG factor by Gilman et al.

[2013]. Here the O&NG factors for these compounds have been set to 0%, resulting in a conservative (lower

limit) estimate for the attributed O&NG fraction of observed VOCs. In addition, three cycloalkanes, two

alkenes, one aldehyde, three biogenic VOCs, and three alkyl nitrates measured during SONNE were not

reported by Gilman et al. [2013] and are also assigned an O&NG contribution of 0%. The cycloalkanes likely

have an O&NG source but minimally impact simulated O3 due to their small mixing ratios (<0.03 ppbv)

and nonexplicit representation in the MCM (section S3.1). For all additional species measured but not expli-

citly represented in the MCM (see section S3.1), factors were applied to each individual compound prior to

lumping. As illustrated in Figure 3, primary O&NG emissions contributed to the majority of alkane OHR

(87%) and carbon mixing ratio (86%), but <25% to all other VOC classes. For CH4, Pétron et al. [2014] quanti-

fied the O&NG contribution in the Wattenberg Gas Field as 75% using a combination of aircraft CH4 observa-

tions and a regional bottom-up emission inventory (derived from literature emission factors, Colorado State

inventory data, and EPA reported facility-level emission estimates). Here 75% is applied to the observed aver-

age diel profile of enhanced CH4 (minus campaign background of 1814 ppbv). For NOx, no contribution from

O&NG activity was assumed. County level NOx emissions based on the 2011 (v1) U.S. National Emissions

Inventory (further details in section S4) suggest an O&NG contribution of 5.5% to NOx emissions in the

NFR nonattainment area (Figure 1). Past work in a Utah O&NG basin has shown that NOx emissions from

O&NG production can be overestimated by a factor of 4 [Ahmadov et al., 2015], indicating that the 5.5%

contribution of O&NG activity to NFR NOx emissions may be an upper limit.

Case 3 simulations represent the average BAO chemical composition with a doubled contribution from pri-

mary O&NG VOCs. For Case 3, speciated factors for primary O&NG VOCs (as described above) were added

to Case 1 diel observations. Table S4 provides a numeric comparison of all three VOC scenarios in terms of

their non-methane VOC OHR and carbon mixing ratio (ppbC).

3. Results and Discussion

3.1. Observed Chemical Composition and Wind Patterns

Air composition at BAO contains chemical tracers from all regional emission sectors (e.g., O&NG, urban, and

agriculture), irrespective of wind direction. The histogram in Figure 4b plots simple chemical tracers for all

Figure 2. Diel average of non-methane VOC and NOx model constraints. VOCs (left axis) are given in VOC OH reactivity;
NOx and O3 (right axes) are given in mixing ratio. The bar height is the average VOC OHR colored by the fractional VOC
class contribution every 60min. Average VOC class contributions are calculated from the sum of averaged (24 h) individual
VOCs. VOC OHR does not include contributions from HCHO, CO, or CH4. Aldehydes and ketones shown here were not used
as model constraints but instead used to derive the dilution rate constant.
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major emission sectors (O&NG, CH4; agriculture, NH3; and urban, CO and NOx), averaged between 2012 and

2014 observation years, binned by wind direction, and normalized to westerly mixing ratios. Data have been

binned by four wind directions and filtered to include wind speeds >2.5m/s to minimize the influence of

nearby emission sources and to be consistent with the threshold used by Pétron et al. [2012]. Figure 4b shows

that air at the site has a substantial contribution from all regional emission sources irrespective of local north,

east, or southerly wind directions. In addition, enhancements of tracers in the direction of each major emis-

sion source (e.g., NOx is slightly enhanced in southerly winds) are smaller than those observed in wintertime

[Brown et al., 2013, Figure 7]. These observations suggest significant mixing and recirculation that causes

regional air to have characteristics of all surrounding emission sectors.

Several mechanisms serve to mix emissions from different sources within the NFR. During summer, winds

follow a typical mountain-valley diel pattern. During the day, thermally driven upslope winds predominately

flow from the east, with a slight southerly component [Toth and Johnson, 1985]. Beginning in late afternoon,

flow patterns turn around and a westerly downslope occurs along the South Platte River Basin, often accom-

panied by afternoon regional thunderstorm activity [Toth and Johnson, 1985]. Figure 4a provides a histogram

of 30min averaged winds measured at BAO during July and August 2012 and 2014 (100m winds, speed

>2.5m/s, 11 A.M. to 3 P.M. MDT), which illustrate this dominant afternoon easterly flow prior to the

downslope switch. A terrain-forced mesoscale vortex circulation pattern, termed the Denver Cyclone, is also

a common occurrence during summer months [Crook et al., 1990; Szoke, 1991; Szoke et al., 1984;Wilczak and

Glendening, 1988]. These complex circulation patterns combine to mix air parcels, making it difficult to model

the daily evolution of emissions from spatially distinct regional emission source sectors.

Figure 3. O&NG fraction of observed non-methane VOCs as a function of normalized carbon mixing ratio and VOC OH
reactivity. Note that aldehydes and ketones were initialized with Case 1 mixing ratios (assuming O&NG VOC fraction = 0)
and calculated by DSMACC in all simulations. The aldehyde and ketone O&NG fractions (OHR: 19% and ppbC: 13%) were
derived from a comparison of the Case 1 VOC scenario with the removed O&NG scenario (Case 2) at 2012 observed NOx

mixing ratios.

Figure 4. (a) Histogram of July–August 2012 and 2014 wind directionmeasured at BAO (100m). (b) Medianmixing ratios of
chemical tracers averaged between 2012 and 2014 campaign years, normalized to mixing ratios in the western wind sector
to illustrate relative sector-to-sector differences on the same scale for all species. CO and CH4 plotted as normalized
enhancements above observed 2012 and 2014 backgrounds. All data filtered for wind speeds of >2.5m/s. Binned wind
directions correspond to north: 315°–45°, east: 45°–135°, south: 135°–225°, and west: 225°–315°.
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3.2. VOC OH Reactivity: 2012

The campaign average (±1σ standard deviation) OHR for non-methane VOCs (excluding HCHO) observed

during SONNE was 2.4 ± 0.9 s�1. This compares to a previous determination at BAO of 3 ± 3 s�1 based on

an analysis of data from same instrument in winter 2011 [Gilman et al., 2013] and summertimemeasurements

near O&NG operations in Pennsylvania of 2.4 ± 1.4 s�1 (includes CH4, excludes HCHO) [Swarthout et al., 2015].

On average, alkanes were the dominant contributing class to VOC OHR (56%; Figure 2), of which the majority

can be attributed to primary O&NG emissions (87%: VOC OHR, 86%: ppbC; Figure 3). Biogenic VOCs have

been shown to dominate VOC OHR in O&NG regions in Pennsylvania (47 ± 22% [Swarthout et al., 2015])

and Texas (70% [Rutter et al., 2015]), but only contribute on average, 8% to VOC OHR at BAO. This result high-

lights the importance of O&NG emissions relative to biogenic emissions on O3 production in the NFR, making

this location unique compared to two east/southeastern U.S. O&NG basins.

3.3. Ozone Production Efficiency: 2014

During the 2014 campaign, afternoon Ox was correlated with NOz (Figure 5), typical of summertime relation-

ships between O3 and oxidized reactive nitrogen observed in other U.S. regions [e.g., Trainer et al., 1993].

Individual OPEs were derived from a two-sided regression fit of Ox to NOz every 15min between 12 and 6

P.M. MDT after removing time intervals with fewer than 11, 1min data points. This time period was chosen

to minimize the effects of nonphotochemical factors such as morning O3 entrainment (see section S2.3.2)

and to compare the products of photochemistry (i.e., NOz and O3) in distinct air parcels. Increasing the time

period to 9 A.M. to 6 P.M. MDT introduces additional scatter in the data from the OPE analyses but does not

change the main conclusions presented below. Further, fits with intercepts more than ±2σ from the mean

intercept were also removed, as described further below and in section S2.2. There were 305 OPE fits that

met these criteria, which represent at least 15min of 27 (87%) afternoons in 2014 (see Figure S1). The average

(±1σ) of these 305 OPEs was 2.9 ± 4.4 ppbv/ppbv.

To ensure at least a 98.4% (i.e., significant) probability of correlation, a subset of these OPEs with correlation coef-

ficients (r2)> 0.5 was also selected. There were 80 OPEs that met the r2 threshold, which represent at least 15min

of 22 (71%) afternoons in 2014 (see Figure S1). The average (±1σ) of this 80 OPE subset was 5.3±3.6ppbv/ppbv.

Selection of this subset reduced scatter in the data but also introduced a high bias by eliminating data scattered

close to zero (e.g., with small changes in Ox and/or NOz). We take this smaller 80 OPE subset to represent time

periods with the greatest photochemical O3 production but compare both 305 and 80 OPE populations below.

Both populations are representative of the majority of high (>70ppbv) O3 days observed at BAO in 2014.

Average OPEs (±1σ) derived here are similar to those from analyses in other regions of the U.S. However,

many previous studies have defined OPE as the slope of O3/NOz or O3/NOy, making it difficult to directly com-

pare values here to much of the past ~20 years of OPE literature. Nevertheless, the averages of 2.9 ppbv/ppbv

(305 OPEs) and 5.3 ppbv/ppbv (80 OPEs) fall within the range of 2–8 ppbv/ppbv for Ox/NOz previously

reported for urban regions across the U.S. [Kleinman et al., 2002; Nunnermacker et al., 1998; St. John et al.,

1998; Zaveri et al., 2003].

Figure 5. (left) Observed Ox/NOz correlation for 16 July to 15 August 2014 (12 P.M. to 6 P.M. MDT, N = 8268), colored by
observed wind direction. (right) Example Ox/NOz correlation during one, 15min time interval. This OPE meets the point
number (>11), intercept (56.7 ± 9.3 ppbv), and r

2 (>0.5) filter requirements discussed in text.
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3.3.1. NFR Emission Sector OPEs

To distinguish the influence of different emission sectors on OPE, individual OPEs were sorted according to two

markers of air transport history: (1) wind direction and (2) simple chemical tracers. Sorting the data according to

these markers contrasts the O3 production associated with the relatively different VOC composition and NOx

mixing ratios of O&NG and urban emission sectors. As this section describes, however, any dependence of

OPE on these parameters is considerably smaller than the variability and/or uncertainty in the observedOPE data.

3.3.1.1. OPE as a Function of Wind Direction

Air arriving at BAO from the northeast is expected to have traveled over regional O&NG operations, while that

from the southeast to have been relatively more urban influenced (Figure 1). However, the OPE measured at

BAO does not vary strongly with wind direction. The overall Ox/NOz correlation in 2014, colored by wind direc-

tion (Figure 5, left), does not show a clear difference in air arriving from south or north of the site. Analysis of

individual OPEs against wind direction reveals similar results. Figure 6 provides a wind rose of the 80OPE subset

(r2> 0.5) colored by northeast (NE: 0–90°), southeast (SE: 90–180°), and western (W: 180–360°) wind directions

(15min average). The box and whisker plots for NE and SE wind sectors show no statistically significant

(i.e., p> α, α=0.05) difference in their average (difference= 0.6 ppbv/ppbv, p=0.43) or median (differen-

ce= 0.1 ppbv/ppbv, p=0.88) values. In addition, there is no significant difference between average NE and SE

OPEs(difference=0.5 ppbv/ppbv,p=0.39)whencalculatedfromthelargerpopulationof305withoutthe r2selec-

tion.Due tothe largeobservedvariability inOPE, 95%confidence intervals fordifferences inmeanNEandSEOPEs

are0.6 ± 1.4 ppbv/ppbvand0.5± 1.1 ppbv/ppbvfor the80and305OPEpopulations, respectively.Thiswinddirec-

tion analysis suggests a 95% probability that the OPE influence of O&NG emissions is less than 1.8 ppbv/ppbv.

During times of high photochemical activity in 2014 (e.g., highest NOzmixing ratios; Figure 5), an OPE less than

1.8 ppbv/ppbv suggests that theO&NGsector contributesatmost11 ppbvto totalO3. TheactualO&NG influence

determined from the boxmodel analysis is likely considerably smaller (see section3.4.2).

Due to the complexity of local air trajectories, including diel flow patterns that mix urban and O&NG emis-

sions (section 3.1), it is difficult to accurately determine air transport and mixing histories using observed

wind directions alone. A back trajectory model has the potential to track air transport history more accurately

than local wind direction. As with observed wind direction, wind sectors for the 80 OPE subset as defined by a

back trajectory model (described in section S5) show no statistically significant difference between average

OPEs from the NE and SE wind sectors (difference = 0.6 ppbv/ppbv, p=0.55; Figure S9).

The lack of statistically significant difference in observed OPE with observed or modeled wind direction is evi-

dence for mixing between air parcels that obscures quantifiable differences between urban and O&NG sectors

and/or an OPE effect from O&NG emissions that has a 95% probability of being less than 1.8 ppbv/ppbv. We

interpret these results to mean either (1) observed OPEs are the product of both urban and O&NG emissions

that were well-mixed prior to measurement at BAO or (2) an OPE influence of urban and O&NG emissions

that are similar enough (i.e., <1.8 ppbv/ppbv) to be obscured by mixing when air is transported to BAO.

Figure 6. 80 individual OPEs with high (r2> 0.5) Ox/NOz correlation plotted radially as a function of wind direction, colored
by NE (0–90°, blue) and SE (90–180°, red) wind sectors. The box and whisker plots show the median OPE for each wind
sector (SE: 5.1 ppbv/ppbv, NE: 4.9 ppbv/ppbv) and range between the 10th and 90th percentiles.
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The box modeling results discussed in section 3.4.3 are consistent with the second scenario and suggest an

O&NG influence on regional average OPE of 1.3 ppbv/ppbv.

3.3.1.2. OPE as a Function of Chemical Tracers

Chemical tracers provide an additional method to determine air transport history. In the NFR, CH4 is emitted

primarily by O&NG (see above section 2.4.2), NH3 by agriculture, and CO and NOx by urban activity.

Background mixing ratios (minimum observed campaign values) of CO (76 ppbv) and CH4 (1916 ppbv) were

subtracted prior to analysis. Figure 7 shows correlations of the 80 OPE subset with NOx, NOy, NH3, CH4, and

CO. Correlations visually indicate a slight decrease in OPE with increasing tracer mixing ratios; however,

correlation coefficients indicate no statistically significant trend at the 95% confidence level (p> 0.05).

Correlations between chemical tracers and the 305 OPE-population are also insignificant (p> 0.22). These

results indicate relatively well-mixed air, also suggested by the dominant easterly flow and nondirectionally

enhanced tracer mixing ratios shown in Figure 4.

A second possibility is that these tracers are not specific enough to their assigned emission sectors. As

previously discussed in Pétron et al. [2012, 2014], approximately 25% of CH4 emissions are not associated with

O&NG operations, including three landfills located approximately 3 km to the south-southwest of BAO. In

addition, NEI-2011 inventories attribute 27% of NOx emissions in Weld County (Figure 1) to O&NG operations

(section S4). Ideally, this analysis would be conducted with more specific chemical tracers not available in

2014 (e.g., O&NG: propane and urban: acetylene) but suggests that simple tracers used here do not uniquely

distinguish the influence of different emission sectors on observed OPE at BAO.

3.3.2. Uncertainty in OPE Analysis

Interpretation of the Ox/NOz relationship is subject to several limitations [Ryerson et al., 1998; Trainer et al.,

1993] that are presented below in terms of their relation to deriving an average OPE under NFR conditions.

First, variability in background O3 may complicate OPE analysis [e.g., Neuman et al., 2009]. Backgrounds are

represented by the intercept of the Ox/NOz correlation and will artificially change the OPE if one fit is applied

to air parcels with different backgrounds (see example Figure S2). Therefore, OPE was derived from short time

intervals (15min) and filtered for intercepts greater than 2σ from the mean Ox background (further details in

section S2.2) in order to isolate air parcels with similar O3 backgrounds.

Second, Ox is not always positively correlated with NOz. This is likely the result of (1) environmental

conditions that do not promote photochemical activity and/or (2) transport processes that mix air par-

cels with differences in background O3 mixing ratios similar to their photochemical O3 enhancements.

Figure 7. 80 individual OPEs with high (r2> 0.5) Ox/NOz correlation as a function of simple chemical tracers. CH4 and CO
mixing ratios are the enhancements above background. Correlation coefficients (r2) for all species suggest no statistically
significant trend (95% confidence level) in OPE with tracers.
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Summer 2014 in the NFR was unseason-

ably cool with high thunderstorm activ-

ity (Figure S5), which can enhance the

downwind transport of O3 but also inhi-

bit the stagnation and accumulation of

pollution that contributes to OH radical

generation and efficient O3 production.

These environmental conditions can

lead to periods of time with moderate

photochemical activity and O3 produc-

tion of only a few ppbv, similar to the

variability observed in 2014 background

O3 (Ox background: 56.7 ± 9.3 ppbv

(2σ)). Mixing and/or sampling of these

air parcels remove any observable Ox/NOz correlation. The r2 filter is applied to remove these events

but by doing so, biases the 80-OPE average high.

Third, OPE is sensitive to HNO3 deposition [e.g., Neuman et al., 2009; Sillman et al., 1998; Trainer et al., 1993].

Preferential removal of HNO3 relative to O3 will artificially raise the Ox/NOz slope since HNO3 is frequently the

largest NOz component in summer. A deposition velocity of 1–5 cms�1 within a 2 km boundary layer provides

an upper limit estimate of 11–52% of NOz lost over 6 h of transport (further details, see section S2.3.1).

Recalculating individual OPEs with corrected NOz produces an average (±1σ) OPE range of 3.3 ppbv/ppbv

(±2.2) to 4.7 ppbv/ppbv (±3.2) for the highly correlated 80-OPE subset, lower than the original average of

5.3ppbv/ppbv but within the standard deviation of 3.6 ppbv/ppbv. Additional, unintended conversion of

NH3 may also occur in the presence of ambient O3 at temperatures of 650°C in the CRD NOy quartz oven.

Adjusting NOz measurements of the original 80 OPEs with concurrent NH3 and O3 measurements (further

details in section S2.3.1) increases the average to 5.9 ppbv/ppbv. Combination of HNO3 and NH3 artifacts sug-

gests that the average OPE for the highly correlated subset is between 3.3 and 5.9 ppbv/ppbv (�2.0/+0.6), a

range encompassed by the standard deviation (1σ =3.6ppbv/ppbv) of the originally derived average.

An analysis of the 2014 data provides an average and expected distribution of observed OPE at BAO but does

not distinguish the influence of urban emissions from the O&NG sector. This result does not change with the

selection of highly correlated OPEs. These observations lead to three possible conclusions: (1) based on obser-

vational and modeled-wind direction analyses, the OPE difference between O&NG and urban emission sectors

has a 95% probability of being within 1.8 ppbv/ppbv; (2) OPE differences are obscured by regional air mixing;

and/or (3) small OPE differences cannot be distinguished using simple chemical tracers with multiple emission

sources. AlthoughOPE does not statistically vary with either wind direction or chemical tracer analyses, the simi-

larity provides a point of comparison between the observations and box model simulations described below.

3.4. Box Model Simulations: Maximum Photochemical O3

Model simulations were constrained to SONNE diel average observations as described in section 2.4.1. With

the dilution rate constant derived from a fit to 10 secondary species, the Case 1 VOC scenario simulates max-

imumO3 to within�2.5% (�1.7 ppbv) of the SONNE diel average. The average relative deviation between the

model output and observations for O3 is �2.6% (11 A.M. to 3 P.M. MDT, ±2 h from solar noon). Figure 8 illus-

trates the observed diel average and model output for O3, which suggests an accurate base case simulation

of maximum O3 produced at BAO. Deviation between simulated and observed O3 profiles after 4 P.M. MDT is

the result of the constant dilution/background-O3 entrainment rate that is applied to the entire 24 h simula-

tion, as described in section S3.3.

3.4.1. NOx Sensitivity

Case 1 simulations were run while constrained to SONNE observed mixing ratios of VOCs, NOx, and tempera-

ture (as described in section 2.4). To test the sensitivity of maximum photochemical O3 to NOx, 11 simulations

were run with the Case 1 VOC scenario, scaling observed NOxmixing ratios (displayed in Figure 2) by a factor

of 0 to 5. As shown in Figure 9 and Table S6, observed SONNE NOx mixing ratios (NOx scaling factor = 1) pro-

duce a maximum of 16.7 ppbv of photochemical O3, while doubling observed NOx increases photochemical

Figure 8. Base case (Case 1) simulated O3. Observed diel average (red)
and Case 1 simulated (black dashed) mixing ratios. Difference
between observed and modeled maxima is �2.5%.
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O3 to 19.5 ppbv. Here photochemical

O3 is defined as the difference

between simulated O3 and the simul-

taneous mixing ratio of O3 in the

zero-NOx simulation. Photochemical

O3 production does not occur with-

out NOx; however, O3 is introduced

to themodel to simulate entrainment

of background O3 into the boundary

layer (see section S3.3). O3 entrain-

ment occurs at the same rate in each

simulation and is therefore repre-

sented by the zero-NOx simulation.

Subtracting these mixing ratios from

each nonzero-NOx simulation pro-

vides the photochemically produced

O3 for the given amount of NOx.

Figure 9 suggests that photochemical O3 production in the region surrounding BAO is NOx limited. An

increase or decrease in NOx by a factor of 2 leads to a 16.8% (±2.8 ppbv) change in maximum photochemical

O3. However, NOx increases above a factor of 2 move O3 production into the NOx saturated (VOC sensitive)

photochemical regime, such that further increases will reduce maximumO3. These results are consistent with

NOx sensitivities derived from previous 3-D modeling of NFR O3 with a 2010 emission scenario [Colorado

Department of Public Health and Environment (CDPHE), 2008].

3.4.2. O&NG Influence

To determine the average influence of O&NG emissions on maximum photochemical O3, the fraction of VOCs

attributed to primary O&NG emissions was removed (Case 2) and doubled (Case 3) as described in

section 2.4.2. Twenty-two additional simulations were run with these two VOC scenarios while scaling SONNE

observed NOx mixing ratios between 0 and 5. Results of these simulations in comparison to Case 1 from

Figure 9 are listed in Table S6 and shown in Figure 10. The pie chart inserts represent the 24h average, non-

methane VOC-class fractional contribution to VOC OHR and carbon mixing ratio (ppbC) for each VOC scenario.

At observed NOxmixing ratios, the difference in maximum photochemical O3 between Cases 1 and 2 (no O&NG

VOC emission contribution) is 17.4%, or a 2.9 ppbv decrease. Similar to maximum O3, the O&NG VOC influence

Figure 9. NOx sensitivity of maximum photochemical O3 in the base case
(Case 1) simulation. Eleven simulations are shown with SONNE (2012)
observed NOxmixing ratios, represented by a scaling factor of 1, scaled from
0 to 5. The pie chart insert represents the 24 h average fractional contribution
of non-methane VOCs to OH reactivity.

Figure 10. NOx sensitivity of simulated maximum photochemical O3 mixing ratios for three VOC scenarios. The asterisk indicates a difference of 17.4% between
observed VOC base case (Case 1) and VOC scenario with O&NG VOCs removed (Case 2) at SONNE (2012) observed NOx mixing ratios. The pie chart inserts illus-
trate the 24 h average non-methane VOC OHR (s�1) and carbon mixing ratio (ppbC) of each VOC scenario. Distributions do not include CH4, CO, or HCHO.
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on photochemical MDA8 (maximum

daily 8 h average) is a decrease of

18.4% or 2.5 ppbv. Doubling the mix-

ing ratio of O&NG VOCs increases

simulated maximum photochemical

O3 by 13.2% or 2.2 ppbv, indicating a

nonlinear change in O3 with O&NG

VOCs. These three VOC scenarios sug-

gest that while O3 production is sensi-

tive to NOx, maximum and MDA8 O3

mixing ratios will also respond to

reductions in O&NG VOCs, again con-

sistent with previous 3-Dmodel results

[Colorado Department of Public Health

and Environment (CDPHE), 2008].

The 16.7 ppbv of photochemical O3 produced in Case 1 represents the maximum O3 enhancement under

average conditions. However, 2014 observed O3mixing ratios (Figures 5 and S1) show that O3 enhancements

above background can be approximately 30 ppbv on days with high photochemical activity (e.g., high O3 and

NOz mixing ratios). As described below in section 3.4.4 and section S7, model sensitivity studies show that

photochemical O3 is highly sensitive to photolysis rates, potentially explaining the large enhancements on

days with photolysis rates larger than average values. In contrast, the O&NG VOC contribution to O3

(~20%) is not highly sensitive to photolysis rates (section 3.4.4). Therefore, assuming mixing ratios of VOCs

and NOx similar to their observed diel average values, the absolute contribution from O&NG VOCs could

be ~6 ppbv on photochemically active days with ~30 ppbv of regional photochemical O3 production.

The total contribution of O&NG activity to photochemical O3will depend on emissions of NOx as well as VOCs.

The difference of 17.4% highlighted in Figure 10 assumes no change in NOx from observed mixing ratios.

Applying NOx reductions of 5.5% based on EPA NEI-2011 inventories (see section 2.4.2), Cases 1 and 2 suggest

that O&NG activity contributes 18.6% (3.1 ppbv) to maximum photochemical O3, in comparison to 17.4%

(2.9 ppbv) from VOC emissions alone. However, NEI inventory estimates of O&NGNOx emissions may be over-

estimated [e.g.,Ahmadov et al., 2015]. Thus, the total O&NGcontribution tomodeledmaximumphotochemical

O3 at diel average mixing ratios of NOx and VOCs is between 17.4 and 18.6% or 2.9 and 3.1 ppbv.

As shown in Figure 10, alkanes contributed 82% to the average SONNE non-methane carbon mixing ratio

measured at BAO (Figure 10, pie chart), of which 86% are attributed to O&NG emissions (Figure 3). Despite

this dominant fraction, the alkane contribution to average non-methane VOC OHR was 56% and less than

18% to maximum photochemical O3. This result is consistent with previous literature showing that alkanes

are not efficient at producing O3 [e.g., Russell et al., 1995] and demonstrates the difficulty in using either

carbon mixing ratio or VOC OHR for attribution of photochemically produced O3 to O&NG VOC emissions.

Despite evidence for reasonably well-mixed urban and O&NG emissions, Figure 1 suggests spatial heteroge-

neity in emissions from these sources, which can result in different photochemical regimes for O3 production.

For example, NOx and urban VOCs are expected in larger concentrations ~30 km south of BAO near urban-

Denver [Brown et al., 2013; Swarthout et al., 2013], while O&NG VOCs may be larger ~50 km north of BAO

centered in the Wattenberg Gas Field near Greeley [Swarthout et al., 2013]. However, O3 levels in exceedance

of NAAQS occur across these same distances [Colorado Department of Public Health and Environment (CDPHE),

2015], suggesting a level of regional similarity in O3 enhancements. Buffering effects in the VOC-NOx sensi-

tivity curves (Figure 11) can explain regional O3 enhancements despite different photochemical regimes.

Figure 11 shows that if, for example, the absolute mixing ratios of non-O&NG VOCs remained the same

but O&NG VOCs were doubled and NOx reduced by 30% (Figure 11, red diamond), the model predicts the

same maximum O3 produced as that at BAO. This implies that north of BAO, with a potentially larger abun-

dance of O&NG VOCs, this region would be more sensitive to NOx emission reductions. In contrast, if the non-

O&NG VOCs remained the same but O&NG VOCs were reduced by 50% at two southern locations, the model

predicts nearly the same maximum O3 produced for NOx emissions 1.3 to 2.7× higher than those at BAO

Figure 11. NOx sensitivity curves for three VOC scenarios. In contrast to
Figure 10, the third VOC scenario has O&NG VOCs reduced by half instead
of completely removed. The red line and symbols provide example locations
to the north and south of BAO with different O&NG and NOx mixing ratios
that experience the same photochemical O3 enhancement as that at BAO.
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(Figure 11, red box and triangle). O3 production at the second of these points (red triangle) is in the NOx-

saturated regime but still produces the same photochemical O3 as at the NOx-limited BAO. These scenarios

suggest that O3 enhancements in the NFR can be regional, while effective control strategies should still be

informed by finer scale VOC/NOx observations.

3.4.3. Model Ozone Production Efficiency

Case 1 and 2 simulations, as described above, were used to calculate the influence of O&NG VOC emissions

on modeled OPEs. The OPE of each model simulation was calculated from the average ΔOx/ΔNOz ratio

between 11 A.M. to 3 P.M. MDT, the same time period during which the model was fit to best reproduce

10 secondary products (see section S3.3). Here ΔOx and ΔNOz are used to capture photochemical O3 produc-

tion and NOx oxidation. Delta Ox and ΔNOz are defined as the difference between the Ox and NOz mixing

ratios in a given simulation and the simultaneous values in the zero-NOx simulation (as described in

section 3.4.1). The HNO3 dilution rate constant was the same as all other 4001 species (k=1.05 × 10�4 s�1),

but its deposition rate was set to 0 s�1 to remove the influence of HNO3 loss on NOz. Eliminating HNO3

deposition does not impact simulated maximum photochemical O3 but does increase Case 1 OPE by 7.7%

(see Table 1). Simulated OPE was also found to decrease with increasing NOx mixing ratios, consistent with

previous OPE model simulation results [e.g., Lin et al., 1988].

At a NOx scaling factor of 1, OPEs derived from the Case 1 and 2 VOC scenarios are 6.5 ppbv/ppbv (±0.5) and

5.2 ppbv/ppbv (±0.5), respectively. The errors are derived from the quadrature addition of OPE uncertainties

associated with model parameters listed in Table 1 (not including HNO3 deposition). These results suggest that

O&NG VOC emissions increase the efficiency of O3 production at BAO by 1.3 ppbv/ppbv (20%). To account for

NEI-estimated O&NG NOx emissions (see section 2.4.2), the OPE for Case 2 (no O&NG VOCs) was calculated at a

NOx scaling factor of 0.945 (�5.5%). The OPE influence of O&NG emissions did not change, as this small NOx

reduction did not influence the simulated OPE by >0.1 ppbv/ppbv. The similarity between Cases 1 and 2 sug-

gests that the OPE influence of O&NG emissions is small enough to be obscured in observations at BAO due to

air transport and mixing, as discussed previously in section 3.3.1.1.

3.4.4. Model Sensitivity Studies

As described above, simulations for all three VOC scenarios were constrained every 30min to chemical

species and physical parameters. The only tunable model parameter was the dilution rate constant, which

was derived by minimizing the deviation between observations and model output for 10 select secondary

products, including O3. A ±10% change in the dilution rate constant changes simulated maximum photoche-

mical O3 in Case 1 by +1.3/�1.1 ppbv (+7.8/�6.6%) and average model-to-observation relative deviation of

all 10 compounds by +1.6/�1.2%.

Case 1 (at observed NOxmixing ratios) was additionally tested for sensitivities to ±10% changes in other model

constraints including photolysis rates, albedo, temperature, background O3, enhanced CH4, and O3/HNO3

Table 1. Box Model Sensitivity Study Resultsa

Parameter Base Case Value Value Adjustment

Δ Max Photochemical O3

Δ OPE (%)
b

(ppbv) (%)
b

Photolysis rates 8 A.M. MDT values:
j(NO2) = 3.6 × 10�3 s�1

j(O1D) = 4.0 × 10�6 s�1

±25% +6.0/�5.4 +35.9/�32.3 +4.6/�3.1

±10% ±2.3 ±13.8 ±1.5
Dilution k = 1.05 × 10�4 s�1 ±10% +1.3/�1.1 +7.8/�7.1 -
Temperature SONNE observations ±10% ±0.8 ±4.8 +7.7/�6.2
Background O3 58 ppbv ±10% ±0.1 ±0.6 ±3.1
Enhanced CH4 SONNE observations-background ±10% ±<0.1 - -

±75% ±0.1 ±0.6 -
O3 deposition k = 3.5 × 10�6 s�1 ±10% ±<0.1 - -
Albedo 0.067 ±10% ±<0.1 - -
HNO3 deposition k = 2.2 × 10�5 s�1 �100% �<0.1 - +7.7c

a
Calculated for Case 1 VOC scenario at NOx scaling factor = 1.
bValues not provided if change is <0.1 ppbv (max photochemical O3) or <0.1 ppbv/ppbv (OPE).
cHNO3 deposition artificially increases modeled OPE by 7.7%; all OPE simulations were run without HNO3 deposition as this does not change photochemical O3

and is necessary to accurately model OPE.
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deposition rates (see Table 1). Sensitivity differences between maximum photochemical O3 and OPE can be

explained by the additional dependence of OPE on photochemical NOx oxidation. Of the parameters tested,

OPE is most sensitive to changes in temperature, while maximum photochemical O3 is most sensitive to

changes in photolysis rates (more than the dilution rate constant) and increases by as much as 13.8% with a

10% increase in both j(NO2) and j(O1D) scaling factors. Observations of j(NO2) and j(O1D) are not known with

greater than 25% accuracy, which will change absolute maximum photochemical O3 by +6.0/�5.4 ppbv

(+35.9/�32.3%). To test the sensitivity of the main box model results to photolysis rates, 15 additional simula-

tions were run for Cases 1 and 2, while scaling photolysis rates by ±25%. The difference inmaximum photoche-

mical O3 between Cases 1 and 2 is not as sensitive to changes in photolysis as is the absolute maximum

simulated O3 (Figures S10 and S11). In other words, regardless of 25% changes in photolysis rates, BAO photo-

chemical O3 remains sensitive to NOx (Figure S10) and the O&NG VOC influence ranges from 15.1 to 19.4%

(Figure S11), within 2.3% of 17.4% derived under original photolysis conditions.

4. Conclusions

The Northern Front Range of Colorado has been in nonattainment with the NAAQS for O3 since 2007.

Summertime photochemical O3 in the NFR is influenced by regional NOx emissions, concentrated around

urban-Denver, and large VOC emissions from a rapidly developing O&NG basin. The BAO site lies between

these major regional emission sectors and exhibits influence from each (O&NG, urban, and agriculture).

Data from this site were used to quantify the influence of O&NG emissions on O3 production using an obser-

vationally constrained box model and metrics of VOC OHR and OPE.

OPEs derived from 2014 Ox/NOz correlations at 15min time intervals during 27 afternoons have an average of

2.9 ± 4.4 ppbv/ppbv (1σ) for all determinations and 5.3 ± 3.6 ppbv/ppbv (�2.0/+0.6) for a smaller subset with

high correlation between Ox and NOz. A difference in average OPE could not be statistically distinguished for

air primarily influenced by O&NG and urban emissions using observed wind direction, modeled back-

trajectories, or simple chemical tracers. These results suggest that the OPE influence of O&NG and urban

emissions at BAO is obscured by air mixing and/or do not differ to within 1.8 ppbv/ppbv. The simulated

OPE difference of 1.3 ppbv/ppbv with and without O&NG primary VOCs falls within the uncertainty of the

2014 observational analyses.

Box model simulations constrained to diel average chemical and physical observations indicate that maxi-

mum photochemical O3 at BAO is NOx sensitive. Simulations with removed and doubled primary O&NG

VOC contributions showed that O&NG VOC emissions contribute on average 17.4% (2.9 ppbv) to maximum

photochemical O3 and scale nonlinearly with changes in O&NG VOCs. NEI emissions of O&NG NOx are esti-

mated to contribute up to an additional 1.2% (0.20 ppbv) to the total contribution of O&NG activity to max-

imum O3 photochemically produced at BAO. Alkanes contributed on average 82% to the observed carbon

mixing ratio, of which 86% could be attributed to O&NG emissions. However, alkanes only contributed

56% to VOC OHR and less than 18% to modeled maximum photochemical O3.

Future work in the NFR is required to address several key uncertainties. First, detailed multiyear studies are

required to assess the influence of rapid changes in O&NG and urban activities on ambient levels of VOCs

and NOx and the sensitivity of photochemical O3 production. Between 2012 and 2014, the number of active

wells in Weld County increased by ~2000, oil production more than doubled, and natural gas production

increased by a factor of ~1.6 [Colorado Oil and Gas Conservation Commission (COGCC), 2/2016]. Since early

2015, O&NG drilling activity has declined nationwide. In addition, the NFR population has increased by

12% to over 3 million people since 2010 [United States Department of Agriculture (USDA), 2016] and continues

to grow, influencing the absolute emissions of NOx and distribution across the region. Such rapid changes in

O&NG activity and urban development suggest the potential for year-to-year changes in photochemical O3

sensitivities and emissions of VOC and NOx.

Second, spatially distributed studies from across the region are required to understand the differences in O3

sensitivities in the more VOC impacted areas to the north and NOx impacted areas to the south. Analysis of

recent 2014 and 2015 field studies should be informative. Future studies incorporating the type of detailed

measurements and models presented here at ground sites that span the NFR would serve to improve the
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understanding of regional O3 production sensitivities to VOCs and NOx, as well address recent trends in emis-

sions of both urban and O&NG NOx and VOCs.

List of Primary Acronyms

BAO –Boulder Atmospheric Observatory

CRD –Cavity Ring Down

DISCOVER-AQ –Deriving Information on Surface Conditions from Column and Vertically Resolved

Observations Relevant to Air Quality

DSMACC –Dynamically Simple Model of Atmospheric Chemical Complexity

EPA –Environmental Protection Agency

FRAPPÉ –Front Range Air Pollution and Photochemistry Éxperiment

MCM –Master Chemical Mechanism

MDA8 –Maximum Daily 8-h Average

MDT –Mountain Daylight Time

NAAQS –National Ambient Air Quality Standard

NEI –National Emission Inventory

NFR –Northern Front Range

O&NG –Oil and Natural Gas

OHR –VOC OH Reactivity

OPE –Ozone Production Efficiency

ppbC –parts per billion of Carbon

SONNE –Summer Ozone Near Natural gas Emissions

TUV –Tropospheric Ultraviolet and Visible radiation model

VOC –Volatile Organic Compound
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