

This is a repository copy of *Permutation groups without irreducible elements*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/102903/

Version: Accepted Version

Proceedings Paper:

Glass, AMW and Macpherson, HD orcid.org/0000-0003-0277-7561 (2017) Permutation groups without irreducible elements. In: Droste, M, Fuchs, L, Goldsmith, B and Strüngmann, L, (eds.) Groups, Modules, and Model Theory - Surveys and Recent Developments: In Memory of Rüdiger Göbel. New Pathways between Group Theory and Model Theory, 01-04 Feb 2016, Mülheim an der Ruhr, Germany. Springer , pp. 331-332. ISBN 978-3-319-51717-9

https://doi.org/10.1007/978-3-319-51718-6_17

© 2017, Springer International Publishing AG. This is an author produced version of a conference paper published in Groups, Modules, and Model Theory - Surveys and Recent Developments. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Permutation groups without irreducible elements

A. M. W. Glass and H. Dugald Macpherson

May 10, 2016

Dedicated to the memory of Rüdiger Göbel

Abstract

We call a non-identity element of a permutation group irreducible if it cannot be written as a product of non-identity elements of disjoint support. We show that it is indeed possible for a sublattice subgroup of $\operatorname{Aut}(\mathbb{R}, \leq)$ to have no irreducible elements and still be transitive on the set of pairs $\alpha < \beta$ in \mathbb{R} . This answers a question raised in "The first-order theory of ℓ -permutation groups", a Conference talk by the first author.

 $G \upharpoonright H$

Let (Ω, \leq) be a totally ordered set and G be a subgroup of $\operatorname{Aut}(\Omega, \leq)$. Let 1 be the identity element of $\operatorname{Aut}(\Omega, \leq)$ and $g \in G \setminus \{1\}$. Then g is said to be *irreducible* if $g = g_1g_2$ with $g_1, g_2 \in G$ and $\operatorname{supp}(g_1) \cap \operatorname{supp}(g_2) = \emptyset$ implies $g_1 = 1$ or $g_2 = 1$. Note that if $G = \operatorname{Aut}(\Omega, \leq)$, then $g \in G$ is irreducible if and only if g has a single supporting interval; *i. e.*, there is $\sigma \in \operatorname{supp}(g)$ such that the convexification in Ω of $\{\sigma g^n \mid n \in \mathbb{Z}\}$ is $\operatorname{supp}(g)$. We prove:

Theorem A. There is an ℓ -subgroup of $\operatorname{Aut}(\mathbb{R}, \leq)$ that is transitive on ordered pairs $\alpha < \beta$ and has no irreducible elements.

Here, an ℓ -subgroup of $\operatorname{Aut}(\mathbb{R}, \leq)$ is a subgroup G of $\operatorname{Aut}(\mathbb{R}, \leq)$ such that $g_+ \in G$ whenever $g \in G$, where $\alpha g_+ := \alpha g$ if $\alpha g \geq \alpha$ and $\alpha g_+ = \alpha$ if $\alpha g \leq \alpha$

²⁰¹⁰ AMS Classification: 20B22, 06F15.

Keywords: order-preserving permutation, ℓ -permutation group.

 $(\alpha \in \mathbb{R})$. In particular, G is a lattice-ordered group where $f \lor g = (fg^{-1} \lor 1)g$ and $f \land g = (f^{-1} \lor g^{-1})^{-1}$. For background on ordered permutation groups and ℓ -groups see [1].

Proof of Theorem A. Let $g \in Aut(\mathbb{R}, \leq)$. We say that g has period $n \in \mathbb{Z}_+$ if $(\alpha + n)g = \alpha g + n$ for all $\alpha \in \mathbb{R}$. Let

$$G := \{g \in \operatorname{Aut}(\mathbb{R}, \leq) \mid (\exists m \in \mathbb{Z}_+) (g \text{ has period } m) \}.$$

Then G is transitive on ordered pairs $\alpha < \beta$ in \mathbb{R} and it is easily checked that (G, \mathbb{R}) is an ℓ -permutation group. Obviously, if $f \in G$ fixes no point in \mathbb{R} , then it must be irreducible. So G has irreducible elements. On the other hand, if $g \in G$ has period m and is not the identity but fixes $\alpha_0 \in \mathbb{R}$ (and so fixes $\alpha_0 + km$ for all $k \in \mathbb{Z}$), define $g_1, g_2 \in G$, each with periods 2m, as follows:

$$g_{1}(x) = \begin{cases} g(x) & \text{if } x \in [\alpha_{0} + 2km, \alpha_{0} + (2k+1)m), \ k \in \mathbb{Z} \\ x & \text{if } x \in [\alpha_{0} + (2k+1)m, \alpha_{0} + (2k+2)m), \ k \in \mathbb{Z} \end{cases}$$
$$g_{2}(x) = \begin{cases} g(x) & \text{if } x \in [\alpha_{0} + (2k+1)m, \alpha_{0} + (2k+2)m), \ k \in \mathbb{Z} \\ x & \text{if } x \in [\alpha_{0} + 2km, \alpha_{0} + (2k+1)m), \ k \in \mathbb{Z} \end{cases}$$

Then g_1 and g_2 have disjoint supports and $g = g_1g_2$, so g is reducible. Thus if $H := \{g \in G \mid 0g = 0\}$, then H has no irreducible elements. Now H acts faithfully on \mathbb{R}_+ and $(H \upharpoonright \mathbb{R}_+, \mathbb{R}_+)$ (the permutation group induced by H on \mathbb{R}_+) is an ℓ -permutation group that is transitive on ordered pairs $\alpha < \beta$ in \mathbb{R}_+ . Consequently we obtain an ℓ -permutation group (H^*, \mathbb{R}) that is transitive on pairs $\alpha < \beta$ in \mathbb{R} and has no irreducible elements. For let $\varphi : \mathbb{R} \longrightarrow \mathbb{R}_+$ be an order-preserving bijection between \mathbb{R} and \mathbb{R}_+ and $h^* \in \operatorname{Aut}(\mathbb{R}, \leq)$ be given by $\alpha h^* = (\alpha \varphi) h \varphi^{-1}$ $(\alpha \in \mathbb{R}, h \in H)$. Then the desired properties transfer from H (acting on \mathbb{R}_+) to $H^* = \{h^* : h \in H\}$ (acting on \mathbb{R}).

The above proof can similarly be adapted to ℓ -permutation groups (L, \mathbb{Q}) that are transitive on pairs $\alpha < \beta$ in \mathbb{Q} and have no irreducible elements.

Acknowledgment. We are most grateful to Queens' College, Cambridge and the Engineering and Physical Sciences Research Council (grant EP/K020692/1) for funding to attend the Conference in memory of Rüdiger Göbel.

References

 A. M. W. Glass, Ordered Permutation Groups, London Math. Soc. Lecture Notes Series 55, Cambridge University Press, Cambridge, 1981. A. M. W. Glass,

Queens' College, Cambridge CB3 9ET, U.K.

E-mail: amwg@dpmms.cam.ac.uk

H. Dugald Macpherson, School of Mathematics, University of Leeds, Leeds LS2 9JT, U. K.

E-mail: H.D.MacPherson@leeds.ac.uk