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Permutation groups without irreducible

elements

A. M. W. Glass and H. Dugald Macpherson

May 10, 2016

Dedicated to the memory of Rüdiger Göbel

Abstract

We call a non-identity element of a permutation group irreducible
if it cannot be written as a product of non-identity elements of disjoint
support. We show that it is indeed possible for a sublattice subgroup
of Aut(R,≤) to have no irreducible elements and still be transitive on
the set of pairs α < β in R. This answers a question raised in “The
first-order theory of ℓ-permutation groups”, a Conference talk by the
first author.

G ↾ H

Let (Ω,6) be a totally ordered set and G be a subgroup of Aut(Ω,6). Let 1 be
the identity element of Aut(Ω,≤) and g ∈ G\{1}. Then g is said to be irreducible
if g = g1g2 with g1, g2 ∈ G and supp(g1) ∩ supp(g2) = ∅ implies g1 = 1 or g2 = 1.
Note that if G = Aut(Ω,≤), then g ∈ G is irreducible if and only if g has a single
supporting interval; i. e., there is σ ∈ supp(g) such that the convexification in Ω
of {σgn | n ∈ Z} is supp(g). We prove:

Theorem A. There is an ℓ-subgroup of Aut(R,≤) that is transitive on ordered

pairs α < β and has no irreducible elements.

Here, an ℓ-subgroup of Aut(R,≤) is a subgroup G of Aut(R,≤) such that
g+ ∈ G whenever g ∈ G, where αg+ := αg if αg ≥ α and αg+ = α if αg ≤ α
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(α ∈ R). In particular, G is a lattice-ordered group where f ∨ g = (fg−1 ∨ 1)g
and f ∧ g = (f−1 ∨ g−1)−1. For background on ordered permutation groups and
ℓ-groups see [1].

Proof of Theorem A. Let g ∈ Aut(R,≤). We say that g has period n ∈ Z+ if
(α+ n)g = αg + n for all α ∈ R. Let

G := {g ∈ Aut(R,≤) | (∃m ∈ Z+)(g has period m)}.

Then G is transitive on ordered pairs α < β in R and it is easily checked that
(G,R) is an ℓ-permutation group. Obviously, if f ∈ G fixes no point in R, then it
must be irreducible. So G has irreducible elements. On the other hand, if g ∈ G

has period m and is not the identity but fixes α0 ∈ R (and so fixes α0+ km for all
k ∈ Z), define g1, g2 ∈ G, each with periods 2m, as follows:

g1(x) =

{

g(x) if x ∈ [α0 + 2km,α0 + (2k + 1)m), k ∈ Z

x if x ∈ [α0 + (2k + 1)m,α0 + (2k + 2)m), k ∈ Z

g2(x) =

{

g(x) if x ∈ [α0 + (2k + 1)m,α0 + (2k + 2)m), k ∈ Z

x if x ∈ [α0 + 2km,α0 + (2k + 1)m), k ∈ Z
.

Then g1 and g2 have disjoint supports and g = g1g2, so g is reducible. Thus if
H := {g ∈ G | 0g = 0}, then H has no irreducible elements. Now H acts faithfully
on R+ and (H ↾ R+,R+) (the permutation group induced by H on R+) is an ℓ-
permutation group that is transitive on ordered pairs α < β in R+. Consequently
we obtain an ℓ-permutation group (H∗,R) that is transitive on pairs α < β in
R and has no irreducible elements. For let ϕ : R −→ R+ be an order-preserving
bijection between R and R+ and h∗ ∈ Aut(R,≤) be given by αh∗ = (αϕ)hϕ−1

(α ∈ R, h ∈ H). Then the desired properties transfer from H (acting on R+) to
H∗ = {h∗ : h ∈ H} (acting on R).

The above proof can similarly be adapted to ℓ-permutation groups (L,Q) that
are transitive on pairs α < β in Q and have no irreducible elements.
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