This is a repository copy of Nonparticipation or different styles of participation? Alternative interpretations from Taking Part.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/102893/

Version: Accepted Version

Article:

https://doi.org/10.1080/09548963.2016.1204051
Nonparticipation or different styles of participation? Alternative interpretations from Taking Part

Mark Taylor

Abstract

Since the Taking Part Survey began collecting data in England in 2005/06, it has become the dominant source of information on participation and its relationship with social stratification. Existing work that investigates domains of state-supported culture constructs narratives of often large groups of people “not currently engaged” in culture. The scope of the Taking Part survey provides for analysis of formal culture to be combined with analysis of other everyday activities; this allows us to identify not only what else those classified as “highly engaged” are doing, but also whether those “not currently engaged” are active in other things. Using five waves of Taking Part data, I use hierarchical cluster analysis on 90 variables to identify relationships between variables, and use kmeans cluster analysis to identify distinct patterns of participation in a wide range of activities. The analysis suggests, consistent with other work, that about 8.7% of the English population is highly engaged with state-supported forms of culture, and that this fraction is particularly well-off, well-educated and white. Over half of the population has fairly low levels of engagement with state-supported culture but is nonetheless busy with everyday culture and leisure activities activities, such as pubs, shopping, darts, and gardening. Only about 11% of the population is detached from mainstream pastimes and social events outside of watching television. The results challenge the basis on which policies seeking to manage cultural and leisure participation are made: current policies aimed at increasing participation in state-sanctioned activities are likely to target those with already busy cultural lives.

This work was supported by AHRC Connected Communities Large Project funding under Grant <number AH/J005401/1>.

Introduction

Market segmentation exercises in England are common in the state-supported cultural sector. These exercises categorise the adult population into groups according to their engagement with activities provided by the sector, generating implicit hierarchies between high and low levels of engagement. However, these exercises are not the only way to group people based on their participation. How different would a picture of participation look if different activities were incorporated, not just those activities supported by the state via cultural funding? The recent history of market segmentation exercises shows them using fairly similar data to one another in order to understand how audiences for the state-supported cultural sector’s product varies, with relatively minor differences between models. In the research discussed here, the aim is to investigate a wider range of activities in order to understand to what extent the picture drawn by these models is partial, and how much variation is masked by categories like “some engagement” and “little if anything”. This fits into a larger project1, of which one part is to use quantitative data that has already been collected to understand participation more broadly, alongside using qualitative methods to understand the importance of detail and of the local in participation (Miles and Gibson, this issue).

1 ‘Understanding Everyday Participation: Articulating Cultural Values’,

1
While quantitative research on cultural participation has existed for a long time, with detailed one-off surveys (eg Cultural Capital and Social Exclusion [Bennett et al., 2008]) and banks of participation questions in larger surveys (eg some waves of the British Household Panel Survey [Institute for Social and Economic Research, 2010]), in England opportunities to do detailed work have increased since the launch of the Taking Part Survey (TPS). Data was collected for the first time in 2005/06 [Department for Culture, Media and Sport, 2006], with a sample size in this wave of around 26,000, and with detailed questions on people’s participation in the state-supported cultural sector, in addition to in other activities. Around this same time, following a report from the Department for Culture, Media, and Sport (DCMS), the Culture and Sport Evidence Programme (CASE) synthesised and built on the academic literature on cultural consumption, both in sociology where there is a long history following Bourdieu [1984], and in other disciplines (see Cooper [2012] for a full description).

Using the TPS data, Arts Council England (ACE) developed its own segmentation tool, *Arts Audiences: Insight*, launched in 2008 and refreshed in 2011 [Arts Council England, 2008, 2011]. This tool uses cluster analysis, based on variables in TPS around the state-supported cultural sector, classifying the adult population as “highly engaged”, “some engagement” and “not currently engaged”, with 9%, 68%, and 23% of the population in each. These classifications are then broken down into 13 groups, from “urban arts eclectic” and “traditional culture vultures” on one end, to “older and home-bound” and “limited means, nothing fancy” on the other. At around the same time, ACE released another report effectively incorporating segmentation [Bunting et al., 2008]. This report, a collaboration with academics, also used a relatively small set of variables, but these were classified into “domains”: theatre, dance and cinema; visual arts, museums, festivals and street arts; and music. This work followed the framework of analysis on a 2001 survey, “Arts in England survey”, which contained far fewer variables (and was the subject of a large research programme: see Chan and Goldthorpe [2005, 2007a,b,c,d]). It used similar conceptual language to sociological debates on cultural consumption, investigating so-called “omnivoruousness”, or otherwise, in and across these domains within the state-supported cultural sector. This ACE report involved classifying 57% of the population’s participation as “little if anything”.

These approaches focused on measuring patterns of attendance with particular kinds of state-supported culture, and have been very successful: they have been adopted across the cultural sector more broadly as a way of increasing knowledge of how people in England engage with the arts, developing new strategies for increasing audience size, and informing marketing strategies [5]. However, in focusing only on participation in state-supported culture the models are inevitably limited in scope. In what follows, I ask: What kind of model would be an alternative, and who would it be useful for?

It is particularly noteworthy that while the move from the 2001 Arts in England survey to TPS presented the opportunity to look at participation in a far wider range of activities than before, due to the survey itself being a longer document, this wasn’t taken. As the authors of the 2008 ACE report acknowledged:

---

2 For an introduction to the omnivore thesis, see Peterson and Kern [1996], and for a summary of problems with its use, particularly cross-nationally, see Peterson [2005]; the omnivore thesis has been summarised extensively in sociology and beyond (eg Savage and Gayo [2011], Rossman and Peterson [2015], Lopez Sintas and Garcia Alvarez [2004], Jarvinen et al. [2014]), and I will not reproduce another summary here.
By analysing attendance and participation patterns across a range of cultural, sport and leisure activities we can better understand the extent to which people have opportunities to experience the arts beyond the established forms that typically receive public funds. This may lead us to consider whether public money could be used in the future to support arts activities and experiences of a very different nature. [Bunting et al., 2008, 69]

Yet most work subsequently conducted on this survey has strongly resembled more recent versions of the limited 2001 survey in terms of its focus, failing to interrogate the wider range of activities now available for analysis in order to investigate differences in participation styles beyond the state-supported cultural sector. While Bunting et al authors acknowledge that is possible to use TPS data to understand whether activities and experiences of a very different nature could be investigated, and that such investigation might lead to transform current funding regimes, his is not explored in their report, and has not been explored since.³ By doing so here, the aim is to move beyond those people who are “highly engaged”, and to understand the variations in participation styles among people who have “some engagement”, or even are “not currently engaged”. This will allow a platform to critically assess how far current regimes reflect current practices. In order to do this, I will address the following four specific questions:

1. How many people are active in ways that are not incorporated in other analyses?
2. What fraction of the population can be classified as nonparticipants?
3. Does the fraction of people classified as highly active change?
4. How does the social composition of different patterns of participation vary?

2 Analysis

I use the same source data as much previous academic and cultural sector research above. The Taking Part Survey [Department for Culture, Media and Sport, 2006-2011] (TPS) is an annual face-to-face survey of adults in England, described as “the national survey of culture, leisure and sport” [Department for Culture, Media and Sport, 2006]. The first wave of the survey had around 26,000 respondents; more recent waves have had around 10,000.

The format of the questionnaire is more-or-less the same across the waves used. After providing details about their household structure, the first question about respondents’ current participation is about so-called “free time activities” (18 in 2005-06): respondents are presented with a list of activities, and asked which ones they do in their free time. Subsequently, respondents are presented with more detailed questions about banks of activities grouped into “arts participation”, “arts attendance”, followed by individual activities – visiting libraries, visiting heritage sites, and so on. Respondents are then asked similarly detailed questions about their participation in different sports. These questions are followed by further detail on their participation in the state-supported cultural

³ The most heavily-used model now, The Audience Agency [2014], incorporates more information but the activities are largely the same as in Arts Council England [2008].
sector, and the survey finishes with demographic questions\(^4\). The questions about free time activities – those same activities omitted from much analysis of cultural participation – are less detailed than those on other activities and may play a “warm-up” role in the survey.

While the survey is available until the 2013/14 wave, here I limit myself to the waves 2005/06 to 2008/09, and 2010/11. This is because the 2009/10 wave was shorter and contained fewer variables, and subsequent to the 2010/11 wave the survey sample changed so that half of the respondents each year had responded to earlier waves of the survey I do not use subsequent waves, to ensure that all observations are independent, nor do I use the 2009/10 wave, in order to maximise the number of variables in the model.\(^5\)

The analytical strategy is to adopt a similar modeling framework to that used in *Arts Audiences: Insight* [Arts Council England, 2008], while adding additional variables. This will generate an alternative segmentation model that includes activities outside of the state-supported cultural sector. This model will enable us to interrogate what segments “look like” – whether the key differences are just between those who are highly engaged in the state-supported sector and those who aren’t, or whether other differences appear more fundamental. It will also help us to better identify the relative size of particular segments and, of particular interest to the research project that sponsored this analysis (see Note 1), how large the fraction of people who might be described as “nonparticipants” is when additional “free time” activities are taken into account. This new model therefore incorporates not only the arts participation variables used in other ACE models, but also variables relating to attendance at museums, heritage sites and libraries; sport participation; volunteering; and activities classified by TPS as “free time”. To put it another way, this takes advantage of the variables introduced in TPS, in a way that the model does not simply represent an updated version of analysis of the Arts in England survey.

The specific analytical strategy involves three steps. As the overall number of activities is large (90), the first step is a data reduction exercise on variables to generate scales – due to technical limitations this is done in two steps, with sports analysed separately from other variables. The second step is to conduct cluster analysis on these derived scales, in order to generate segments of the population based on their participation. I use cluster analysis rather than any other classification in order for this analysis to be as similar methodologically as possible to work like that in *Arts Council England* [2008]: I am using the same data, and the same techniques, so that the only thing that differs between the analyses is the choice of variables used. Finally, as in *Arts Audiences: Insight* and other segmentation exercises, I investigate how these clusters vary in size, in constituent activities, and by other relevant characteristics in order to ask whether it is still the case that the most active groups are also the most affluent, given that the answer to the question “active in what?” has changed.\(^6\)

\(^4\) The details of this vary by wave; for example, some waves include questions on participants’ gambling, visits to royal parks, and so on, but this broad structure is consistent.

\(^5\) The questionnaire has been changed and refined over the period it has existed; it is possible to analyse even more variables at the cost of fewer cases.

\(^6\) Analyses are done with Stata 13 [StataCorp LLC, 2013]; the hierarchical cluster analysis with the user-written program hcavar [Hardouin, 2012].
2.1 Descriptive statistics

Very few arts or sporting activities have more than a small fraction of the population participating; the main exceptions are reading for pleasure, watching films at the cinema, and visiting heritage sites, with more than half the population doing each. By far the most popular activity classed as participation is reading for pleasure, with 64% of the population doing it at all, and 57% doing it frequently, although other than this the numbers are vastly lower. Sports-wise, the most popular activities are indoor swimming and health/fitness/gym, at barely 15% of the population.

Those activities classified in the survey as “free time”, however, are more evenly distributed. 24% of the population spends time on the joint least popular activities – voluntary work and video games – while if these were including in the designation of cultural participation, they would be second only to reading for pleasure. These numbers are dwarfed by other informal activities, such as eating out at restaurants (67%) and spending time with friends (92%).

Full details of levels of participation in all of these activities are available in online Appendix A: table 3 those in the arts participation, and miscellaneous attendance, sections; and table 6 those in the sporting activity section.

2.2 Hierarchical cluster analysis of variables

Table 1 shows how sports are contained within clusters, and table 2 describes the membership of clusters of variables, based on hierarchical cluster analysis. In each case, the second column lists the activities that have been grouped together, while the first column is a name that has been allocated to the group that describes its contents. Hierarchical cluster analysis does not assume particular numbers of clusters, instead it generates a dendogram of correlations between variables, containing Pearson proximities (on the x-axis of the dendogram) which indicate similarities of activities based on overlap between individuals. Based on these dendograms, I have allocated activities to groups based both on Pearson proximities, and on the basis of face value internal coherence to the activities, in order that groups are similar sizes as far as possible. To put it more simply, activities which have people in common are grouped together. This has meant, for example, that wood crafts, gardening, and DIY have been grouped together in spite of having larger Pearson proximity scores than other variables; however, these activities are more closely correlated with each other than with any others. The dendograms are available at Appendix B.

Table 1 about here

The TPS questionnaire draws a distinction between participation and attendance, and that distinction is largely present in these results. The “performance” and “composition” clusters consist only of activities in the “participation” bank of questions, while the “cultural events” cluster consists only of activities in the “attendance” bank of questions. While one might expect that singing to an audience might be in the same cluster as going to see other people singing for an audience, this is not the case; while these activities are not as far apart in terms of Pearson proximities as (for example) going to the opera and playing video games, the difference is still relatively stark. However,
there is one exception here: the “dance” cluster, in which attending contemporary dance and other
dance are relatively highly correlated with having done dance and ballet.

Perhaps the most striking cluster is “cultural events”. While some segmentation exercises consisting
exclusively of these variables (or fewer), here, these variables are most usefully understood as being
distinct from the others in the data, with a segmentation based on these alone carving up relatively
few, similar people. This cluster can be compared with the “informal fun” cluster, which consists of
variables from the “free time” batch of questions. However, “free time” variables are not exclusively
grouped together: the “home hobbies” cluster combines these with a variable from arts
participation (wood crafts). Meanwhile, table 1 again shows relatively coherent clusters of sports,
overlapping with the constructed variables in Reeves [2012].

These clusters of variables were then used to generate scales based on the estimated numbers of
times respondents participated in each activity – per month for sport, and per year for everything
else, due to the differences in phrasing in the questions. Due to the ambiguities in response
categories – someone participating in an activity “at least once a week” might be doing it a great
deal more than that, and the free time variables do not offer any information about frequency, just
whether participants do them or not – estimates of overall participation in groups of activities
contain moderate levels of uncertainty. However, owing to the hierarchical clustering, these scales
can be treated as reasonable estimates of participation in the main different groups of activities
measured in the survey.

2.3 kmeans cluster analysis of cases

The second stage of analysis is to estimate a similar segmentation exercise to those used by the
cultural sector, using the derived scales instead of a smaller set of activities, in order to understand
how using a wider set of variables influences the representation of differences in participation. To do
this, I use kmeans cluster analysis, the same technique used in Arts Audiences: Insight. Specifically,
this was conducted using the cluster command in Stata 13; run twenty times for different numbers
of clusters, with up to a million iterations for each. The clustering solutions were generally identical
for the lower numbers of clusters; where this was not the case I report the highest score of all
attempts. Figure 1, made with ggplot [Wickham, 2009] shows the Calinski-Harabasz pseudo-F scores
[Calinski and Harabasz, 1974] for each of these. Clustering solutions with higher pseudo-F scores
indicate clusters that are more coherent, and distinct from each other; in the absence of local
maxima the standard approach is to select the solution at the “elbow” or “knee” of the distribution;
here, I choose the 8-cluster solution, although it is possible to develop a model with far more “types”
as in the geodemographic models described above.

Figure 1 about here

---

7 I have compared the following results with other solutions, including those at the 4- and 6-cluster
solutions, and other 8-cluster solutions with lower pseudo-F scores. Among 8-cluster solutions results
are largely similar; the 6-cluster solution is similar to the 8-cluster solution, with a single cluster
constituting the membership of the “home and informal” and “tv viewers” clusters, and another of the
“diverse interests” and “fitness fanatics” clusters.
Appendix C reports the distributions of all scales derived in the previous section in each cluster, with table 8 summarising the scores for the sporting scales and table 7 those of the other scales; table 9 describes demographic characteristics of these clusters. The latter are summarised in figure 2: this contains the mean scores on four sports scales, six other activity scales, and six demographic items. The names for the clusters are based on their average scores on the scales used to construct them; the order in which they’re presented is based on a rough ranking of how they might be classified under analysis only on traditional cultural variables.

Figure 2 about here

The eight clusters are all distinct from each other. While the “highly active” cluster represents a minority of people highly engaged in the arts, at 8.7% of the population it is very similar to the 9% in the “highly engaged” categories in Arts Audiences: Insight and is likely to resemble the same people, the remaining seven clusters are also meaningfully distinct from each other in ways that are not clear in other segmentation exercises. For example, “fitness fanatics” are an extremely distinctive group, with enormously high participation in fitness and very high participation in almost all other sports (excluding park sports and equipment sports), “traditional hobbies” are very active in informal leisure and in DIY and gardening; both “sociable sporty” and “diverse interests” score moderately highly on several different items, likely to be classified as “some engagement” in Arts Audiences: Insight, but very different from each other on their engagement with informal leisure. Meanwhile, the three groups likely to be classified as “not currently engaged” under Arts Audiences: insight – “informal fun”, “home and informal”, and “TV viewers” – are also meaningfully distinct from each other, with “informal fun” scoring moderate on the items in the informal leisure scale, and on more informal sporting activities such as pub sports, “home and informal” moderate on informal leisure and home hobbies, but not sporting activities, and “TV viewers” the lowest on almost all activities save for time watching TV, where they are the highest.

As with research focusing exclusively on the state-supported cultural sector, there is a clear relationship between cluster membership and measures of social position. When groups are ordered roughly from highest to lowest on “cultural events” and “performance”, the fraction of members in NS-SEC classes 1 and 2 and with university degrees decreases almost monotonically, with the exception of “fitness fanatics”. That said, the “highly active” cluster is way out in front, with “fitness fanatics”, “sociable sporty”, “traditional hobbies”, and “diverse interests” close together, as with “informal fun”, “home and informal”, and “TV viewers” also close together. Other demographic characteristics are different; with the exception of the “highly active” cluster, the mean age increases almost monotonically as groups go from higher to lower engagement with state-supported culture. Other variables distinguish the clusters less well; for example gender differences are not enormous, with the exception of the very male “fitness fanatics” group.

3 Discussion

The answer to the primary research question, “how does the picture of participation change when additional variables are included in analysis?”, is that the picture is transformed. Where in other studies the focus is on small differences in participation in small numbers of activities, here, while these differences persist, greater differences exist in activities that have not been incorporated before, identifying large differences between groups that have previously been combined.
The results here do not contradict work that focuses on a limited set of activities: if anything, the fraction of people estimated here to be engaged with the state-supported cultural sector is higher than in other studies; though it is worth noting that attending 11.4 activities in the “cultural events” cluster per year, as the “highly active” group does, might not be sufficient to be classified as “metrocultural” or “voracious” elsewhere, addressing specific question 3.

The answer to question 2, “what fraction of the population can be classified as nonparticipants?”, can be largely answered with the “TV viewers” group, around 11% of the population, although even this might be misleading as this group is still engaged with culture, albeit almost exclusively via the television set. As with other work, it is still possible that this is an overestimate: while this model attempts to incorporate additional variables in order to identify alleged nonparticipants’ actual participation, these additional variables do not capture all activity: a voracious photographer, who responded “never” to a question of how much time she spent “taking photographs for artistic purposes” might end up in this category.

Question 1, around people who are active in ways not incorporated in other analyses, can be answered by looking at some of the groups classified as having relatively only limited engagement in the publicly funded sector, such as “sociable sporty”, “traditional hobbies” and “diverse interests”. These groups, forming a full third of the sample between them, are moderately active in a wide range of activities including those with a clear structure, such as playing sports and gardening. Incorporating the groups “informal fun” and “home and informal”, who participate less in structured activities but are moderately active in more informal activities, the groups who might be classified as active in this model but not elsewhere rises to above two thirds of the population. To put it another way, analysis limited to the cultural sector suggests that a majority of the population is culturally inactive; the new model developed here suggests that only a small minority are, and the size of that small minority is still likely to be exaggerated.

Question 4, on the demographic profiles of different groups, suggests that other indicators of social inequality are as salient in this model as they are in those of the cultural sector. The most privileged are the most active; the least privileged and those without children and partners are the least active. However, these relationships are not always straightforward: the oldest group is the least active, while the third oldest group is the most active.

What is implied by these results? Both academic and policy research tends to qualify its results by stating that it is looking only at parts of people’s lives: these results confirm this to be true, and suggest that further exploration of engagement in a wide range of activities could be developed. Particularly, when work is being done in the context of public funding, such as Arts Audiences: Insight, it is important to point out that differences between participation styles in the state-supported cultural sector only form part of the story. In order to further explore engagement, it is possible to use techniques such as cluster analysis in the framework of participation types, as well as alternative approaches such as multiple factor analysis (see Leguina and Miles, forthcoming in the second volume of this special issue) in order to compensate for the in-built bias towards particular types of activity.

While the analysis presented here has indicated particular dividing lines between groups, these lines are still based on a survey which is largely focused on activities provided by the state-supported sector, both culture and sport. The results of this analysis indicate that some of the key points of
demarcation are around more informal activities. However, when one considers the detail of questions around different fields, clear differences emerge – for example, comparing the numbers of questions around video games (one) with those around dance (six) indicated a major imbalance, even within activities for which the same government department is nominally responsible. This becomes even more striking when the thirteen questions around visual art are contrasted with the single question of whether people go to the pub. A reconfiguring of the survey to balance out the focus here could allow more detailed understandings of people’s everyday lives. Having said that, it is impossible for a survey to cover everything, and for TPS to increase its coverage of some activities this would come at the cost of decreasing others; with TPS’ longitudinal element in its infancy and overall declining participation rates in face-to-face surveys such changes are not without risk. This is not helped by the relative unpopularity of a large number of activities one might want to include in a national survey on participation. If activities are particular to local areas, have particular names and local signatures, and so on, a survey of around 10,000 people is unlikely to generate good estimates of the popularity and predictors of these activities. This is not to say that reorienting the survey is hopeless; rather, that a national survey is not a magic bullet for identifying all aspects of participation. Time use studies are an alternative for understanding activities’ diversity and range, but have their own problem of measuring activities that people only participate in occasionally. Qualitative studies provide far more detail about the breadth and frequency of people’s participation, but in order to generate a nationally representative picture the associated costs would be colossal.

The context, however, is not limited to estimating the fractions of people with particular participation styles. Research is commissioned to estimate the value of culture, using various different measurements [Crossick and Kaszynska, 2014]. Where the value of culture is estimated, and estimated in work commissioned by the relevant government department [Marsh et al., 2010], “culture” is a shorthand for “the state-supported cultural sector”. In these estimates, estimates of made of the direction and magnitude of relationships between state-supported activities and various beneficial outcomes – happiness, better health, and so on – fairly uniformly, these estimates are positive, presenting a justification for continued state support. Meanwhile, other activities are excluded from estimates, and because these activities are excluded, there is no discussion of whether they should start being state-supported because of their relationships with beneficial outcomes, as these outcomes are not estimated at all. In an environment where, for example, spending more time at the pub is associated with better health [Miles and Sullivan, 2012], there is a clear argument for integrating more activities into analyses of participation, and in order for these to be viable and thorough, relevant questions must also be included in national surveys such as TPS. In that way, the sociological framework adopted in existing DCMS and ACE work can be extended to incorporate such activities, the construction of participation groups can be changed, and the associations with memberships can be unpacked.

Acknowledgments
For their helpful comments, I would like to thank Andrew Miles, Lisanne Gibson, Catherine Bunting, three anonymous reviewers, and many more people who have seen earlier versions of this work.

---

8 This is not a criticism of the funders of TPS; estimates of sport in particular have been captured by the much larger-N Active People Survey, and earlier waves of TPS had larger sample sizes.
References

- Hardouin, J-B. (2012) *HCAVAR: Stata module to perform hierarchical clusters analysis of variables*.


• StataCorp LLC. (2013). *Stata Statistical Software: Release 13*. College Station, TX: StataCorp LP.
