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Abstract 

 

Systems biology is currently making a bid to show that it is able to make an important 

contribution to personalised or precision medicine. In order to do so, systems 

biologists need to find a way of tackling the pervasive variability of biological systems 

that is manifested in the medical domain as inter-subject variability. This need is 

simultaneously social and epistemic: social as systems biologists attempt to engage 

with the interests and concerns of clinicians and others in applied medical research; 

epistemic as they attempt to develop new strategies to cope with variability in the 

validation of the computational models typical of systems biology.  This paper 

describes one attempt to develop such a strategy: a trial with a population of models 

approach in the context of cardiac electrophysiology. I discuss the development of 

this approach against the background of ongoing tensions between mathematically 

and experimentally inclined modellers on one hand, and attempts to forge new 

collaborations with medical scientists on the other.  Apart from the scientific interest 

of the population of models approach for tackling variability, the trial also offers a 

good illustration of the epistemology of experiment-facing modelling.  I claim that it 

shows the extent to which experiment-facing modelling and validation require the 

establishment of criteria for comparing models and experiments that enable them to 

be linked together.  These 'grounds of comparability' are the broad framework in 

which validation experiments are interpreted and evaluated by all the disciplines in 

the collaboration, or being persuaded to participate in it. I claim that following the 

process of construction of the grounds of comparability allows us to see the 

establishment of epistemic norms for judging validation results, through a process of 

'normative intra-action' (Rouse 2007) that shape the social and epistemic evolution of 

systems approaches to biomedicine. 

 

[p.28]  
Systems biologists frequently promote their field as a form of biomedical rather 
than pure biological research.1 Currently, the position pieces and manifesto 
statements in this field express the potential to develop medical applications 
from systems biology in terms of personalised medicine, translational medicine, 
network medicine or systems medicine (for example, Auffray, Charron, & Hood, 
2010; Auffray, Chen, & Hood, 2009; Hood & Flores, 2012; Hunter et al., 2013; 
Wolkenhauer, Auffray, Jaster, Steinhoff, & Dammann, 2013). By their very nature, 

                                                        
1 Systems biology is a form of biological research that typically uses mathematical and 
computational means to investigate inter-relationships among components and levels from the 
sub-cellular to the whole organism level, and to illuminate non-linear causality in biological 
causality. See for example Boogerd et al. (2007) and Kitano (2002). 
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such pieces show the extent to which the medical applications of systems biology 
are still aspirational rather than actual. Even though progress is still at early 
stages, the shift to a medical paradigm brings new challenges to systems biology, 
or makes existing challenges more acute. This article discusses a challenge with 
both an old and a new face as systems biology attempts to forge its way into 
medical applications: that of model validation. The old face of this challenge is 
that [p.29] of interdisciplinary collaboration. Even though close-knit 
interdisciplinary groups of modellers and experimentalists are increasingly 
common in systems biology, this is still not the norm. This becomes an issue as 
systems biology tries to cross a new interdisciplinary threshold into applied 
medical clinical and pharmacological contexts. The new face of this challenge is 
variability, which is not new in itself, given how pervasive variability is in 
biology, but which makes new demands on systems biology in applied medical 
contexts. Systems biology claims to be particularly well suited to fulfilling the 
aim of tailoring diagnosis and treatment to individuals. However, the fulfilment 
of this promise depends on how systems biology handles the variability inherent 
in biological processes and in individuals’ responses to drugs and other 
treatments. This paper discusses validation and variability as joint challenges of 
the bid to transform systems biology into systems medicine. The first section 
revisits the issue of the interdisciplinarity of systems biology, discussing the 
ongoing tensions and perceptions of systems biology as a domain dominated by 
mathematics and computer science, despite the many counterexamples 
that are emerging and developing into mature research collaborations. The 
second section focuses on validation as a topic on which these tensions converge, 
and the third considers one attempt to address the validation of models in the 
face of variability. The resultant new approach to validation is a bid to alleviate 
some of the reservations of clinical researchers and others in the applied medical 
field. New approaches to modelling specifically geared towards validation in 
biomedical contexts are opportunities to observe the process of what Joseph 
Rouse has called ‘normative intra-action’ between modelling and experimenting 
(Rouse, 2002). I claim that this occurs through the constitution of epistemic 
norms that underlie the validation process through the construction of the 
grounds of comparability between models and experiments. The example comes 
primarily from systems cardiac electrophysiology, that is, the development of 
multi-scale models of the electrical activity in the heart. Empirical research for 
the paper draws upon 1) participative research with a cardiac modelling group, 
and in particular on a suite of documents including draft research papers, peer 
review, funding proposals and their reviews, and workshop notes; 2) broader 
literature reviews of cardiac electrophysiology focussing upon validation 
methodologies. A secondary site of fieldwork is with a systems biology group 
working on cell biology of the liver, with an eye to possible future applications in 
the treatment of liver cancer. 
 
1. Interdisciplinarity revisited 
 
Systems biology offers the science studies scholar an interesting combination of 
sociological and philosophical problems. The technologies it deploys, and the 
shifting disciplinary boundaries that characterise it have social, institutional and 
epistemological aspects that commentators and analysts have not been slow to 
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take up (for example Boogerd, Bruggeman, Hofmeyr, & Westerhoff, 2007; 
Breitling, 2010; Brigandt, 2013; Bruggeman & Westerhoff, 2007; Calvert & 
Fujimura, 2011; Carusi, 2011; Carusi, Burrage, & Rodriguez, 2013; Green, 2013; 
MacLeod & Nersessian 2013a; Macleod & Nersessian 2013b; O’Malley, Calvert, & 
Dupré, 2007; O’Malley and Dupré, 2005; Vermeulen, 2009; Vermeulen, Parker, & 
Penders, 2013; Bechtel (2013) and Gross (2011) focus on specifically medical 
applications of systems biology).2 It has been noted that there is often resistance 
on the part of experimental biologists to collaborate in systems biology research, 
which they often perceive as being overly theoretical, mathematical and not 
sufficiently biological. This can be seen as a continuation of resistance to 
mathematics and physics described by Keller (2002). However, lately the picture 
of systems biology in the philosophical literature has started to shift, and there 
are now several examples of the close collaborations between the different 
disciplinary groupings that go to make up mature systems biology research. This 
is a matter of epistemological as well as sociological significance: if systems 
biology genuinely presents a new mode of knowledge, this can be analysed and 
evaluated fully only in instantiations of systems biology where the traditional 
disciplinary boundaries have been overcome. A hallmark of these cases is that 
modelling and experimenting are brought into close interrelationship (Green, 
2013), either through interdisciplinarity being embodied in individuals able to 
do both modelling and experiments (Macleod & Nersessian, 2013b), or through 
teamwork and collaboration, when the nature of experiments does not allow 
for this (Carusi et al., 2013). The relationship between modelling and 
experimenting is a central feature of the epistemology of systems biology, since it 
defines in what kind of relationship the models typical of systems biology stand 
to the biological field investigated, what epistemic criteria they should meet and 
what kind of epistemic warrant these models have. It is a relationship 
that is particularly emphasised as systems biology makes inroads into applied 
medical research. 
 
As has been mentioned, there are increasing numbers of close knit 
interdisciplinary systems biology groups. Although there has been a 
rapprochement between mathematicians, computer scientists and biologists in 
many systems biology teams in recent years, deep disciplinary differences and 
disagreements persist in many domains of systems biology. There is also a 
lingering perception that systems biology is primarily oriented to mathematics, 
engineering and computer science. As systems biology targets medical 
applications more vigorously, new rifts emerge, together with new pockets of 
scepticism about whether systems biology can deliver on its promises. This was 
clearly evident in the reviews of a fellowship proposal for research to develop 
computational modelling as a resource for clinical and pharmacological 
applications. Although for reasons of confidentiality, it is not possible to know 
with certainty which disciplines were represented in the review panels, there 
was clearly hostility on the part of some reviewers at what was perceived as the 
presumption of computational modellers to be able to come to the assistance of 

                                                        
2 Although there are close affinities between systems biology and other forms of 
new biology, such as synthetic biology, this article considers only systems biology. 
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clinicians. From the perspective of clinicians and others involved in medical 
science research, the computational modelling approaches typical of systems 
biology are still relative outliers. Evidence of this can also be gleaned from an 
overview of publications in this field using the Pubmed platformthat scientists 
themselves are likely to use for literature searches. Considering only the case of 
cardiac electrophysiology, a typical search for literature reporting or including a 
systems computational approach does not present a picture of uniformly 
integrated modelling and experimenting. For example, in the proceedings 
(published in 2012) of a workshop held in 2011 on Computer Simulation and 
Experimental Assessment of Cardiac Function, only three out of 17 papers 
reported experiments carried out in their methods,3 and only one out of six 
sessions was devoted to studies that comprised both computational and 
experimental research. A search of articles published in 2012 and early 2013 
found that just over a third of the articles included experiments in [p.30] the 
study, though in less than a quarter of cases, did the validation methodology 
include conducting experiments.4 The relative dearth of papers that report 
experimenting for validation of models is particularly telling for this area. To 
medical scientists such as clinicians or pharmacologists, this reveals an approach 
to systems biology that is still more interested in developing mathematical and 
computational techniques than in getting to grips with biological processes. 
 
As discussed elsewhere (Carusi et al., 2013), cardiac electrophysiological 
modelling is one of the earliest examples of the use of computational science in 
physiology, beginning with the publication in 1962 of the first mathematical 
model of the electrical excitation in a single cardiac cell (Noble, 1962). At this 
early stage, it was quite possible for Denis Noble, a scientist trained in 
physiology, to acquire sufficient mathematical and computational knowledge to 
conduct the experiments, modelling and simulations himself5; however since 
then the complexity of the domain has entailed a division of labour, and 
demanded a high level of specialisation both for the mathematical complexity 
and for the physiological experiments across the range of ion channels, cells, 

                                                        
3 ‘The TRM Forum on Computer Simulation and Experimental Assessment of 
Cardiac Function’ http://europace.oxfordjournals.org/content/14/suppl_5/v1.full). 
4 The search was conducted on Pubmed, using the MeshTerms: atrial fibrillation; 
atrial fibrillations; arrythmia; models, cardiovascular; and computer simulations, 
and limiting the search to Jan 2012 to July 2013. The search returned 31 useable 
results (that is, results that were not reviews, not already included in the Proceedings 
of the Workshop referred to in footnote 5, and that reported on appropriately 
similar simulation studies); 13 included conducting experiments in the 
methods section (rather than relying on published data), and of these 7 included a 
validation process that included experiments. For each listing, the methods section 
was checked to see whether data had been procured especially for the research, or 
whether pre-existing data were relied upon. A search including the term ‘systems 
biology’ for the same period yielded one publication which had been mislabelled, 
and another using a genomic approach to systems biology, rather than the 
computational science approach being investigated here. Yet, systems biology is a 
term frequently used of the methodology centred upon computational simulations 
for the investigation of cardiac electrophysiology to judge by the use of the term as 
a keyword in scientific articles. A systematic investigation is needed of which terms 
are used where and for which audiences, and which methodologies are included. 
5 As described in Noble, Chen, Auffray, & Werner (2012). 
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tissues and whole organs that are required. For this reason, systems biology is 
characterised by a team approach.6 However, interdisciplinarity has not been 
driven purely by a recognition of the complexity of research, but by a wide 
variety of factors, including funding sources. As with other domains of systems 
biology, two important sources of funding for the systems approach to cardiac 
electrophysiology have traditionally been engineering funders on one hand, and 
medical research funders on the other. In the UK, a major source of funding was 
the EPSRC (Engineering and Physical Sciences Research Council) who have been 
keen to develop the burgeoning area of computational science (or e-science); in 
the European Commission FP7 funding programme, major funding came from 
sources dedicated to developing ICT for science (a major example of which is the 
‘Virtual Physiological Human’). The development of computational methods is an 
extremely strong theme in systems biology, and many systems biology groups 
are predominantly mathematical or computational, and most often in the area 
between the two, computational mathematicians. People with these skills are 
central for the development of computational techniques capable of solving the 
ordinary and partial differential equations of the mathematical models. It is 
extremely difficult to be a specialist both in experimental methods and in these 
mathematical/ computational techniques, particularly in multi-scale modelling. 
Moreover, the academic careers of people employed in these projects depends 
on their producing publications that recognisably fall under the remit of the 
funding body (Darch et al., 2010, Section 3.1). This leads to the crucial issue of 
how model validation is conceptualised in the area. 
 
2. Validation 
 
In this setting, the very term ‘validation’ gives rise to disciplinary 
misunderstanding and disagreement. In computational science (of which 
systems biology is a form), simulations solve the equations of a mathematical 
model that cannot be solved analytically. Verification  is a test of whether the 
numerical techniques and algorithms correctly solve the equations of the 
mathematical model, and is an internal relationship between these elements of 
the model. Validation instead is a test of whether the model is a model of the 
domain in question, and is an external relationship.7 In computational science, 
there can be disciplinary disagreements even with respect to the former steps. In 
his study of the introduction of Monte Carlo simulations in physics, Peter Galison 
points out that at the inception of this method there was resistance from 
mathematicians, who gave a higher epistemic value to mathematical proof than 
to the ‘messy’ solutions of numerical analysis (Galison, 1996). Even though this 
distinction is made, the two processes, verification and validation, are in practice 
very closely connected. The most frequent form of validation test is conducted 

                                                        
6 Thus, this particular field of systems biology started off with the bimodal 
approach embodied in one interdisciplinary individual as described in Macleod & 
Nersessian (2013b), but has since become more socially complex as well as physiologically 
complex. 
7 See Humphreys (2004: 101e113) for a detailed explanation of the different 
steps in computational modelling and simulation; and National Research Council 
(2012) for a concerted effort to distinguish between verification and validation in 
a way that makes sense for computational science. 
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through prediction against the data used in the construction of the model (as we 
saw in the previous section, often acquired from existing literature or datasets). 
The interpretation of the results of these tests depend on how much weight is 
given to the techniques of model construction, as opposed to the results of 
prediction. Frequently, in practice, validation remains a relatively internal affair, 
with a focus on the development of numerical techniques and algorithms for the 
construction of simulations rather than on experimenting.8 Often this is because 
computational science is particularly useful in domains where experiments are 
hard to conduct for practical, ethical or financial reasons (Humphreys, 2004: 
106). Despite the fact that this is not the case in systems biology, this attitude 
still prevails more than one would expect. Frequently, it is researchers who 
identify themselves primarily as mathematicians, engineers and computer 
scientists who are responsible for model construction. Even if a lot of tweaking 
goes into the process of modelling and simulation, still the ultimate outcome is to 
produce a simulation that is evaluated on the grounds of the techniques used to 
construct it. Scientists with these interests are not used to thinking in the terms 
of hypothesis and discovery in an open system that characterises experimental 
biology and physiology. This is reflected in the relative dearth of modelling that 
is actually coupled with experimenting, as discussed in the previous section.9 As 
mentioned, the [p.31] examples of systems biology to which philosophers have 
paid more attention have been those where modelling and experimenting are 
closely coupled (especially Carusi et al., 2013; Green, 2013; Macleod & 
Nersessian, 2013b). These have shown that models and experiments are inter-
related throughout the model construction process, but most importantly 1) 
experiments are required for the data to parameterise the models, and 2) for 
testing the models. These two roles are not always clearly distinguished. Because 
it is taken for granted as the ‘modus operandi’ in the context studied, the need 
for the distinction may not emerge. Working in a context where there are 
different attitudes towards validation, and therefore the choice of validation 
approach is reflected upon and defended, Carusi, Burrage, and Rodriguez 
(2012, 2013) call attention to the role of validation experiments as distinct from 
model construction experiments. This is not an absolute distinction, since 
obviously the results of validation experiments do feed back into model 
construction. Model validation experiments, that is, experiments conducted 
specifically with a view to testing modelsdgenerate independent data that 
were not initially used for the construction of the model being tested. These 
validation experiments involve an interpretation process that is geared towards 
the comparison of model outputs and experiment outputs, as scientists ‘look for 

                                                        
8 This tendency to disconnect validation from experiments is also reflected in the philosophy of 
computational modelling. For example, Eric Winsberg (2009a) claims that the external validity of 
a computational model (that is, the extent to which it is accepted as standing in for a target) 
depends on the scientists’ trust in their model building techniques rather than on 
experimentation. The epistemic warrant of models has a relatively inward looking basis, and is 
regarded by Winsberg as being autonomous of experiment (2009b: 836). The distinction 
between simulations and experiments is discussed and critiqued by Parker (2009). 
9 As Krohs points out for the case of top-down Systems Biology, often coupling 
with experiments is in the form of convenience experiments, which “only allows 
for gathering data that match the demands of the program” and do not foster the 
epistemic attitude of exploration (Krohs, 2012: 56). 
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a match’ between the two. The terms ‘correspondence’, ‘similarity’ and ‘match’ 
are very common in systems biology publications, but it is not always clear how 
these terms are ‘cashed out’. These are terms that are interpreted in the process 
of comparison, against the background of questions about whether there is 
appropriate comparability between the model and experiments (Carusi et al., 
2013: 135). To be sure, there are always questions of appropriate comparability 
when comparing experiments relating to the same process or components, even 
in wetlab, for example, when the experiments involve different model organisms, 
or different techniques. To some extent, the same set of issues arises in the 
computational modelling domain, with particular force for three main reasons: 
1) the computational model and simulation has a greater degree of difference to 
the wetlab experiment, through being made of different matter (in silico vs 
organic); 2) it employs entirely different techniques (mathematical and 
computational vs wetlab laboratory); 3) there is an asymmetry between the 
computational model and simulation on one hand and experiment on the other, 
as the former is tested against the latter.10 These issues emerge most sharply in 
the case of multi-scale modelling, which integrates processes across sub-cellular, 
cellular, tissue, and whole organ levels, by combining models. The possibility of 
multi-scale integration is a great advantage of systems biology, since its 
computational technologies and techniques allow for an investigation of 
complexity that is out of reach for wet lab experimentation. However it is also an 
extremely challenging aspect of the validation of these systems, because the 
multi-scale model is not validated against a multi-scale experiment. As we shall 
see in the case discussed below, even in an experiment at two scales (cellular and 
sub-cellular) there is no self-evident way of comparing models and experiments. 
A number of philosophical and social studies of systems biology raise the issue of 
comparability between models and experiments. For example, Green (2013) 
describes modelling of transcriptional data in a network model as a process of 
‘constructing, manipulating and comparing representations in a spiral-like 
fashion where a whole body of models interact’ (Green, 2013:170). She points 
out that the role of some of these models is to provide a background for 
comparison (Green, 2013, Table 1). Carusi et al. (2012, 2013) describe a 
computational science based approach to investigating the kinetic aspects of a 
physiological process (the propagation of electrical current across the heart). On 
their account, in order to be geared towards validation, model construction 
needs to incorporate the construction of the grounds of comparability that allow 
for comparisons between the model system and validation experiments to be 
made. O’Malley and Soyer (2012) point out that making different data sets 
comparable is a central challenge of the data integration that is characteristic 
of systems biology. Chandrasekharan and Nersessian (2011) discuss the ways in 
which the fit of a model with experimental data is not a ‘point-for-point 
replication’ but rather something that starts off being rather fluid, but 
‘coagulates’ during the model building process, as it becomes more and more 
constrained (271e2). Macleod and Nersessian (2013b) focus on the cognitive 

                                                        
10 For all of these reasons, there can be an epistemic privileging of wetlab 
experiment against computational model and simulation. See Morgan (2005). For ongoing debate 
on this issue in the context of systems biology, see Leonelli & 
Ankeny (2012). 
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strategies deployed by modellers to adapt models and experiments. The present 
paper focuses on comparability as underlying the epistemic warrant that is at 
issue during validation procedures. In particular, it considers the way in which 
the modelling process includes setting up the criteria for comparison between 
models and experiments. The example described in detail in the next section is 
taken from a new direction of research that is currently under development, and 
directly responds to demands made on modelling by the shift into medical 
applications. 
 
3. Validation and variability in medical contexts 
 
Medical applications obviously bring with them the priorities of safe and 
effective treatment, as well as a different range of interdisciplinary relations with 
clinicians and others whose goals are not pure but applied science. Therefore as 
systems biology approaches medical applications, there is greater emphasis on 
methods of validation as against experiments, or pharmacologically and clinically 
acquired data.11 An example of this is an in house workshop organised by a 
world leading drug regulation body to explore the possibility of using these 
approaches for drug safety testing.12 Validation was a prominent theme of the 
workshop, and a follow up questionnaire invited participants to give in-depth 
answers to questions in three topics: data sources, validation, and 
sharing. The questions on validation included questions on the relation between 
models and data sets, and whether goodness-of-fit, robustness or predictiveness 
could be used as measures for evaluating models. We can also see a closer 
scrutiny of the validation of models in the clinical context, by clinicians who both 
do clinical research and treat patients. A feature of both of these contexts of drug 
regulation and clinic is the need to understand the wide range of variability that 
occurs in biological systems, giving rise to variability between individual 
patients, and the extent to which this variability makes a difference to treatment, 
for example, in the form of dosage or drug type. Variability occurs at all levels of 
organisation in living organisms (Claridge, 2010: 91); variability between 
patients is something that doctors and clinicians [p.32] every day (Montgomery, 
2006).13 In the context of cardiac electrophysiology at the cellular level, there are 
three important kinds of variability: the sub-cellular variability in the opening 

                                                        
11 In this article, I have focused on a particular mode of systems biology, 
computational modelling and simulation of physiological processes, and have not 
broached the challenges of other forms of systems biology. Data intensive modes of 
systems medicine bring other challenges, such as relating modelling to medical and 
clinical datasets, and to biobanks. 
12 The workshop was invitation only, and not made public. My knowledge of the 
workshop was obtained through fieldwork interviews and correspondence. 
13 It remains to be explored what types of medically relevant variability systems 
biology may be able to illuminate. Variability in the evolutionary sense plays an 
important role in the conception of disease (for an early formulation and criticism 
of this view, see for example Canguilhem, 1991); and this can be unpacked further 
in terms of, for example, the variability in gene mutations. However, the way that 
variability was explored in the trial discussed here did not take these aspects of 
gene mutation into accountdalthough in principle, it could be enlarged to include 
them. 
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and closing of ion channels and the movement of ions14; cellular variability 
between the same type of cells that are spatially colocated; variability between 
the same type of cells that are not spatially co-located. For the scientists, 
understanding variability entails understanding the mechanisms for each type of 
variability, as well as understanding the ways in which they interact with each 
other.15 In the context of the clinic or of drug regulation, grasping variability at 
these levels would make a huge contribution to the project of personalised 
medicine. Even if complete personalisation remains out of reach, the 
stratification of variability, finetuning it into different groupings and ranges, 
would be extremely useful. Systems biology, with its integrated 
models, promises to attain this goal. However, the issue of variability is difficult 
to get to grips with for many reasons having to do with biology and with 
scientific discourse and practice, and the fact that they do not always cohere. 
Variability between individuals comes up much more in the practice of clinicians 
and medical practitioners generally than it does in published findings, where it 
tends to be washed out. That is, in experimental set ups, one of the aims is to 
decrease variability; this is important for the reporting of the experiment, and 
for the way publications are reviewed. Thus a further reason why relying on 
data from published results is problematic for modelling and simulation of 
biological or physiological processes is that variability is not reflected in 
experimental results. Even where systems biologists do obtain experimental 
data sets directly for themselves, or through collaboration, the common 
practice is to work with averages of data values: for example, in the broad 
domain of electrophysiology, sometimes scientists choose the fastest and largest 
current conductances, and sometimes the mean (Marder & Taylor, 2011, 134). 
These are both idealisations of models; however, as with any form of 
idealisation, these choices need to be weighed up against what is potentially lost. 
Both of these choices for parameter fitting wash out variability, with the 
consequence of losing sight of the underlying interactions between 
mechanisms (Marder & Taylor, 2011, 135). Variability also makes it extremely 
difficult to interpret and compare experimental and computational results. I 
have already mentioned that this is particularly true of the results of integrated 
models, which are precisely the strength of computational modelling and 
simulation over experimental methods. Even as computational modelling allows 
for greater integration, the possible sources of variability increase, since each 
scale or level comes with its own variability, and there is further variability in 
the way the scales or levels interact with each other. In addition, since there is 
not only one way to integrate a multi-scale model, the variability associated with 
the integration of the model muddies the waters even further. For clinical 
researchers, who are also often practicing clinicians, the variability of biological 

                                                        
14 Electrical activity in cells occurs through the flow of ions (such as potassium 
and sodium) through ion channels in the cell membrane. 
15 However it is unclear what the appropriate notion of mechanism is, or what 
pressure variability places on extant understandings of mechanism. Gross (2011) 
has considered the way in which systems biology’s incursion into the medical 
domain may require different conceptions of mechanism and therefore may point 
to a different conception of disease. While Gross discusses variability, his account 
focuses on systems that exhibit stability rather than variability (2011:484). See also 
Bechtel & Abrahamsen (2012). 
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processes is a key issue to whether modelling and simulation could really be of 
use to them. In their eyes, it does not help to develop an integrated model 
which is built according to modelling techniques and computational tricks 
trusted by the modellers, if in so doing the model has no way of dealing with the 
variability they encounter in their real world applications, or offers no better 
way of dealing with it than the techniques they already have available to them. 
Thus tackling the problem of variability is a way of showing clinicians that their 
problems are taken seriously. It is both an epistemological and a socio-
interdisciplinary endeavour. Once modelling and simulation become more 
attuned to biology and to the research needs of biologists working in biomedical 
contexts, validation begins to shift in focus from being thought of in 
mathematical and computational terms, to being thought of in experimental 
terms. As this occurs, the emphasis is no longer on producing one model of a 
process that is perfectly mathematically or computationally validated; as one of 
my informants (a biochemist researching cancer in the liver working closely with 
mathematical modelling) put it: ‘I think that solutions [to variability] must be 
sought in the direction where modellers are prepared to produce many 
different variants of their model (conceptually, i.e. in its logic/ topologic 
structure) to accommodate and respond to the experimentaliststinkering 
interrelation with the biological system.’16 On this suggestion, variability is 
addressed not by washing it out of the experiments, but by taking a pluralist 
attitude to models, and producing many versions of a model or of a model 
system rather than a single model. That is, rather than forcing invariability on 
experiments (and thereby on the target domain), it is a technique that absorbs 
some of the variability into modelling and simulation. The populations of models 
approach is an emerging methodology for modelling variability (Britton et al., 
2013; Marder & Taylor, 2011; Sarkar, Christini, & Sobie, 2012).17 In this paper, I 
shall limit myself to the description of one attempt to develop the population of 
models approach to address the issues of variability with which medical 
scientists and practitioners are faced in the context of cardiac electrophysiology. 
This trial stands out because of the way it combines the aim of addressing 
variability and experiment facing validation. It does so on the sub-cellular level 
of ion-channels and cellular level of Purkinje fibres; and is therefore trying to 
establish a way that variability could be tackled for these levels to start off 
with, and it shows this with respect to the type of experiments of interest to 
clinicians and pharmaceutical bodies: the drug test or drug assay to test the 
effect of a drug on ionic channels, which, as has already noted, are highly 
variable. Intra- and inter-cellular variability of ionic channels ultimately 
manifests as inter-subject variability in the side effects and toxicity of drugs. The 
trial is interesting for both social and epistemic reasons. Its social interest 
resides in the fact that this approach was developed in order to try to meet the 
challenge of clinicians to modellers regarding validation generally and 
specifically, validation in the face of variability; and was a focal point for forging 

                                                        
16 Email correspondence, 17 June 2013.  
17 This approach was first developed in the neurophysiology domain by Marder & 
Taylor (2011). In climate modelling, a related approach is the ensemble of models 
approach, but this differs from the biomedical context because it has a radically 
different relation to experiment 
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new collaborations in the face of [p.33] much scepticism on the part of clinicians. 
Its epistemic interest resides in what it shows about the process of devising a 
modelling approach geared at validation. The approach consists in producing a 
population of models in two stages: first the team generated 10 000 models by 
randomly varying parameter values on the initial data set of a base model (a set 
of equations and parameters relating to Action PotentialDuration (APD) 
in Purkinje Fibres18 for a generic action potential model). They then 
calibrated the 10 000 models with experimental ranges of six biomarker values 
of particular interest in cardiac electrophysiology and drug safety testing. Those 
models with a range of variability that did not fall within the biological range 
(indicated by these experimental data) were excluded. When questioned by one 
of the reviewers on the use of the term ‘calibration’, the authors specified 
that: ‘We use calibration to refer to the process performed on the entire 
population, in the sense that the population is adjusted so as to bring the range 
of behaviour seen within it in line with experimental data.’19 This process itself 
required a way of attuning the population of models with the initial data set: that 
is, of establishing ranges of values for the calibration. The problemis the paucity 
of experimental data sets relative to the size of the population of models. Given 
the standard number of experiments used for drug safety assays (that is, 
five), it is not possible to establish the range of biomarker values for the 
calibration statistically. The authors go on to describe their method of 
establishing ranges as follows: 
 

We therefore chose to use the upper and lower values of each biomarker as 
observed in our experimental data to guarantee our estimates of variability were 
within biological range for each of the three pacing frequencies. At each 
frequency and for each preparation, biomarker values were calculated by taking 
their median from a continuous train of at least 100 APs at steady state 
conditions. For each biomarker, at each frequency, the maximum and minimum 
values of that biomarker found across all preparations were used to set the 
range of acceptable biomarker values for model calibration (Britton et al., 2013, 
5).  

 
This is an important step for establishing the experiment-facing nature of this 
modelling process. In the wider setting where this trial took place, therewas not 
universal acceptance of calibration by excluding models outside of the 
physiological range. Mathematicians argued that this made the model 
mathematically biased. This is one of the points where we see very different 
attitudes towards validation coming to the fore. For example, despite the 
reservations of mathematicians, reviewers of a previous version of the paper 

                                                        
18 Purkinje fibres are cells in the ventricular walls of the heart, particularly able to 
conduct cardiac action potentials. Action potential is the change of voltage on the 
inside and outside of a cell membrane, due to an imbalance of positively and 
negatively charged ions on each side of the membrane. The action potential 
duration (APD) is a measurement of the time it takes for the voltage to rise and fall, 
and is represented by a curve. 
19 Correspondence, 27 July 2013 and 11 September 2013. 
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reporting the study and its results appreciated this first calibration step, and 
even suggested further ways in which the fit to experimental data might be fine-
tuned (e.g. by ranking the models according to how much they deviated from the 
experimental mean). This process of calibration left 213 models forming the 
population of models. (See Fig. 1). The team used the remaining 213 models to 
explore the range of inter-subject variability, through establishing correlations 
between the six biomarkers20 and parameter values relating to ionic properties. 
The aim of this correlation process is to make hypotheses regarding the 
mechanisms for variability via these correlations, and to find which ionic 
properties are involved in which aspects of variability. This is further extended 
and tested by making quantitative predictions concerning the response of 
Purkinje fibres to a particular drug in new experiments specifically aiming to 
validate the population of models and the correlations of biomarkers and 
parameters, couched in the language of prediction and test. The new 
experiments carried out by the team took the form of a typical drug assay, 
that is 5 experiments involving microelectrode recordings of Purkinje fibres as 
affected by a different concentrations of a drug (dofetilide). The teamused the 
range of variability in the population of models, and the correlations between 
biomarkers and parameters to make predictions about these features in the new 
experimental data set generated for the purpose. However, what would 
count as correlations that could be observed and compared between 
modelling and experimenting did not pre-exist the trial. The criteria for these 
correlations between which biomarkers, and in which parameter rangesdwere 
themselves established in the trial, starting off with the first calibration step. In 
many respects it is an ongoing process of calibration, both of the population of 
models with previously obtained experimental results and with the newly 
produced experimental data set. The entire process was geared towards 
establishing comparability between the variability in the population of models, 
and that in the experimental dataset. The ongoing calibration and finetuning 
process builds up a picture of how a whole population of models (rather than 
one model at a time) can be compared to experimental data, establishing 
which parameter ranges can be used to interpret the variability across the 
datasets. At crucial points, it is literally the picture that counts, since the visual 
means of depicting the relationship between the models and experiments were 
as important as the textual description of the methodology, and the figures went 
through several modifications alongside the text. Thus, the results of the trial are 
as much about how to make variability in electrophysiology interpretable as they 
are about how to deal with variability across models, simulations and 
experiments. 
 
This early trial in the population approach found that there is a very wide range 
of combinations of parameter values that produce models that are within the 
range of experimental variability. The issue is to narrow that range down 
further, by introducing further constraints and additional biomarkers, in order to 
make finer discriminations in the calibration process. The calibration process, 

                                                        
20 The biomarkers are those commonly used in cardiac electrophysiology, that is, 
specific points along the curve of the Action Potential Duration: for example, the 
peak or the dome. 
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therefore, is not limited to this one trial, but is an ongoing process as further 
populations of models and further experimental datasets are produced. This is a 
methodology that is at early stages of development, but the approach it 
exemplifies marks an important shift in the way in which modelling and 
simulation are undertaken in systems biology. By shifting the focus from one 
model in isolation to the behaviour of a population of models, validation shifts 
from being about how one model matches up to experiment (with all the 
concomitant problems of interpretation of the results when variability is 
blackboxed) to how the range of variability in an experimentally calibrated 
population of models maps onto the range of variability in an experimental data 
set. In this case, variability is incorporated into the model-simulation-experiment 
system, rather than being blackboxed. 
 
The trial described here positions the population of models between 
experiments at two stages, 1) for producing the population and 2) for 
investigating patterns of correlation between biomarkers and parameters 
relating to ionic properties in a newly produced experimental data set (See Fig. 
1). There is no straightforward comparison in this process, no straightforward 
matching or checking for correspondences in a ‘face-off’ between models on one 
hand and experiments on the other to determine when models [p.34] can be 
considered validated. Rather, it is a process of establishing what could count as 
criteria of comparison, match or correspondence, through (for example) setting 
the criteria for including and excluding models from the population, for dividing 
the population into sub-populations, for quantifying correlations so that they can 
be used for comparison and so on.21 The criteria are further developed in the 
ongoing cycle of iterations with experiments. There is not an ultimate validation, 
rather its test is that it holds for long enough to make the next iteration 
worthwhile, and will gain in robustness as it goes along. If a meaningful cycle of 
model-simulation-experiment iterations succeeds, which experiments 
are conducted (including experimental design and the specific type of data 
obtained, for example, on which ion channels and pumps) is also changed.  
 
 
 
 
 
 
 

                                                        
21 There is a large literature on the relationship between model source and target. 
The claim that comparability is established through the ongoing process of 
modelling the population of models (or other forms of models) is resonant with 
Weisberg’s position on the ‘feature set’. This is a selection of features with respect 
to which similarity between model and target is judged; for example he writes that 
‘[t]here is no context-free answer to this question, but part of the answer lies in the 
modeler’s intended scope. The modeler’s intended scope takes into account the 
research question of interest, the context of research, and the community’s prior 
practice (Kitcher, 1993). These elements of the modeler’s intended scope, in turn, 
determine the contents of the feature set’ (2013: 150). However, it is clear from the 
discussion in Section 4, that our accounts also differ. See also footnote 24. 
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The population of models trial I discuss is not a final validation but an argument 
for further iterations, addressed to the broader community. If it is convincing it 
will also bring about changes in the broader community as these modellers put 
the case that in order to further develop this joint approach to validation and 
variability, there should be separate data sets for calibration and validation, 
and much more extensive data sets to be made available by drug companies In 
fact, so far, it seems that the argument is being successfully made with new 
clinical collaborations forged and drug companies showing interest. In making 
the argument and in the response to it, it is clear the extent to which the 
modelling and experimenting processes change in response to each other. 
Validation as being an inward looking process concerned with the relation 
between equations and simulation falls away. Instead, a new process of 
validation starts to establish itself, one where validation is negotiated in the 
relationship between modelling and experimenting, and where emphasis shifts 
from a ‘one model at a time’ approach to a multiple models approach. This 
process of negotiation between modelling and experimenting is simultaneously 
epistemological and social, as it institutes new relationships between modellers 
and researchers and their respective communities in medical settings, be they 
clinical or pharmaceutical. In the next section, I suggest that it is fruitful to see 
the interrelationship between modelling and experimenting as one of 
‘normative intra-action’. 
 
 

Base model  
Source = prior collaborations of team 
members; equations for APD of Purkinje 
fibres as affected by 13 ionic currents. 
Model constructed from experimental 
data, modelling and simulation. 

 

Data 
Source = prior 
experiments 
conducted by 
team members 

Form = Parameter values of Action Potential Duration 
(APD) of Purkinje fibre ion channels  
Specifically, 6 biomarker values of interest for drug 
safety testing 

 
 Initial Data Set 

New Experiments 
Drug assay, to test one 
drug 
New dataset from 5 
experiments 

Population of  
100 000 models 
 

Generate Calibrate  
Population of 
213 models 

Prediction 

Correlation 

Comparison 

To next iteration, enlarged data 
set and populations of models 

Correlation of 
biomarkers and 
ionic properties 

Figure 1: The relationships between experimental data sets, the initial and calibrated 
population of models, and new experiments in the population of models approach to 
variability. Solid lines: processes in this trial; dashed lines: processes towards future trials. 
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4. Discussion 
 
The validation of computational models has closely inter-related social and 
epistemological aspects in systems biology. What counts as validating a model 
can be controversial in the communities of scientists conducting different forms 
of systems biology. The funding structures of systems biology mean there are 
many systems biology projects that are still funded primarily by mathematical 
and computational science funding bodies, with the concomitant research and 
publication demands to focus on mathematical and computational aspects of 
modelling and to approach validation from these perspectives. The domain of 
systems biology is still uneven regarding collaboration between modellers and 
experimentalists. The push for systems biology to move towards medical 
applications brings this to the fore yet again, since it requires a new set of 
collaborations, this time with clinicians or pharmaceutical companies. This in 
turn places further demands on validation: some are a more pressing version of 
existing demands, in view of the practical use to be made of the modelling 
techniques and approaches typical of systems biology; some instead are rather 
different demands, such as the demand to tackle validation in the face of 
variability. Variability is always a feature of medical contexts, but even more so 
when there is a predominant discourse of personalised or precision medicine as 
the goal of translation from systems biology into systems medicine. 
Both socially and epistemologically, the practicalities to be managed in bringing 
about systems medicine revolve around bringing modelling and experimenting 
into closer inter-relationships, [p.35] not only for model construction, but even 
more importantly, for validation. The examination of the construction of 
a population of models so that it explicitly engages with experimental 
data sets, foregrounds aspects of the epistemology of experiment-facing model 
construction. The epistemic goal of validation is 1) normally conceptualised in 
terms of similarity, correspondence and match, which are achieved through 
qualitative or quantitative comparison between model and simulation outputs 
and experimental data sets; 2) normative in that it establishes criteria for 
epistemic warrant. The relation between models (and populations of models) 
and experiments for validation might be thought of in two ways: as external or as 
internal. On the view that they are externally related, comparison occurs 
between two independently constituted outputs, that of the model and 
simulation (or population of models as in the case discussed here) and that of the 
validation experiments. Considering the different material forms of models and 
experiments, an analogy from the art world might help to illustrate this point: 
comparing externally related entities is akin to comparing two art forms in two 
different material modalities, such as a film and a novel about the same real 
world event, that however are produced completely independently of each other, 
and seeing what are the correspondences between them. In this case, 
interpreters draw the norms for the criteria of comparison from either one or 
the other, or from a context which is sufficiently analogous with both, or believed 
to be so. On the view that model (or population of models) and validating 
experiments are internally related the two outputs will instead be seen as co-
constituted rather than independently constituted. This means that they are 
defined as the models and experiments that they are, that is with the specific 
features that they have (for example, which models are included and excluded, 
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which parameters considered, which ranges are correlated, which research 
questions asked), in response to each other or in terms of a ‘dialogue’ with each 
other. These features are not chosen from the vantage point of modelling or 
experimenting, but in terms of the inter-relationship between them). To continue 
the art world metaphor, this is not analogous to a film version of a novel; rather, 
it is more akin to films and novels of the same event being produced in response 
to each other, often in quite long stretches of repetition and iteration.22 In this 
case, the very fact that some features emerge as shared by both films and 
novels, and thus as comparable, is due to this responsiveness to each other. On 
the conception of the validation relation as an internal one, models and 
experiments are produced in this form of ongoing mutual responsiveness to each 
other, which produces important features of each at the same time as it lays 
down the grounds for their being compared at all. In this case, the norms for 
the criteria of comparison are drawn from the relationship between 
modelling and experimenting. Considering the extent to which modelling and 
experiments are responsive to each other in establishing a common ground for 
comparison between them, it seems that analysing the validation process in 
terms of internally related models and validation experiments would be fruitful. 
Joseph Rouse (2002) has described a similar relation between theory and 
experiment as one of normative intra-action. Intra-action is a term introduced by 
Karen Barad (2007), signifying the way in which the entities or in Barad’s 
terms, the  a causal process are defined within the process. Rouse argues that in 
the relations between theory and experiments or more broadly still, science and 
the natural worlddintra-action is also normative, since it brings about not only 
actants with specified bounds and features, but also the criteria whereby 
scientific claims can be evaluated and judged. Rouse refers to this as the ‘domain 
constituting’ aspect of experimental systems, the practices of which ‘help 
constitute the fields of possible judgment and the conceptual norms that allow 
[conceptualizable] features to show themselves intelligibly’ (Rouse, 2009, 51). 
Importantly, however, the word ‘constitution’ here does not imply a stipulation 
(Rouse, 2009, 52). In the example discussed in this paper, the range of variability 
of models and experiments is articulated into a system defining what ranges in 
the population of models might be considered equivalent to what ranges in the 
experiments. This can be seen as a system of equivalences23 between models and 
experiments through the calibration process, defining the borders of ranges. This 
system gives significance to the patterns of data output between models and 
experiments, so that they can both function as a framework for making 
comparisons, and as criteria for evaluating the extent to which models succeed in 
grasping the salient features of experimental datasets. That is, it defines what 
counts as points of comparison on the basis of which a match between the 
outputs of modelling on one hand, and experimenting on the other, can be 
perceived. But this system of equivalences that articulates model and experiment 

                                                        
22 For example, De Lillo’s novel Libra (1988), Oliver Stone’s film JFK (1991), and 
Stephen King’s novel 11/22/63 (2011) all deal with the assassination of John F. 
Kennedy, in response to each other, and potentially other films and novels to which 
they intertextually refer or which refer to them. 
23 The term ‘system of equivalences’ is adapted from the philosophy of Maurice 
Merleau-Ponty, for example in his essay on the algorithm in Prose of the World 
(1973). 



Published in Studies in History and Philosophy of Biological and Biomedical Sciences 

28 (2014) 28-37.  

 
and co-defines them is a modifiable framework, one that can be more finely 
articulated, or modified. It does have normative import, but this is tentative; if 
and how it will be developed depends on the ongoing iterations. Whether it 
‘takes’ as a norm depends on both social and epistemological factors. In order to 
become entrenched as a norm, it needs social acceptance, but this it can find only 
among those who are prepared to try to see comparisons between models and 
experiments according to it.24 Therefore, the continued iterations between 
modelling and experimenting, using experiments that are geared towards the 
very processes that clinicians and others are concerned with (such as the safety 
and side effects of particular drugs) are social at the very same time as they are 
epistemological. The ‘dialogue’ between models and experiments enacts a 
dialogue between modellers and medical, clinical and pharmaceutical 
experimentalists across their communities. 
 
5. Conclusion 
 
As systems biology approaches medical applications, the relationship 
between modelling and experimenting comes under scrutiny once again. The 
question of how models are validated is central to this scrutiny, and divisions 
that exist in systems biology communities account for residual scepticism and 
resistance in medical communities. Overcoming this scepticism requires systems 
biology to lose the last vestiges of being a science that is more about 
mathematics and computation than about biology, and to [p.36] find ways to 
ensure a (relatively) external validation process. However, here, a further 
challenge that emerges more urgently in medical contexts is that of variability, 
among individual patients, and in biological processes. Validation and variability 
are interconnected challenges, since one reason that validation experiments 
are difficult to interpret is the variability that there exists both in the biological 
processes, and in the modes of integration of the models typical of systems 
biology. Variability is always an issue in medical and clinical contexts, but even 
more so if the aim is personalised or precision medicine. Epistemologically, 
tackling the variability of physiological processes through modelling is at the 
same time to tackle the variability in the very relationship between modelling, 
simulating and experimenting. The philosophy of systems biology has given us 
many examples of the extent to which systems biology challenges any clear 
demarcation between the source and target of a model, and instead defines a 
new epistemology of hybrid model systems. The example discussed in this article 

                                                        
24 This idea has resonances with Evelyn Fox Keller’s proposals regarding the ways 
in which models as metaphors become literalised in a ‘conceptual-material’ 
convergence between the metaphors used in model building and processes and 
goals in laboratories and other contexts of application. For example, the ‘genetic 
computer’ “is no longer just a metaphor or even just a model: in two quite different 
domains, on the one hand, in the designing of new kinds of computers and on the 
other, of new kinds of organisms, the ‘genetic computer’ has begun to acquire 
something resembling literal truth [.] the convergence is simultaneously material 
and conceptual, and there is no residually literal sense in which any of the referents 
remain fixed. (2000:S84). Similarly, if a system of equivalences is taken on board 
and iterated, ‘it’ may come to be entrenched in the scientific domain (of practices 
and realities), but ‘it’ will also have been modified in that process of entrenchment 
through iteration: the system is not first conceptually fixed and then entrenched. 
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is taken from this renewed push of systems biology into the medical domain, and 
it shows up something that does not always come out clearly in these tightly 
knit social and epistemic groupings: that is, the extent to which the epistemic 
evaluation of the models is itself a target of modelling. Rather than epistemic 
evaluation consisting primarily in ‘looking for a match’ between models and 
experiments, these modelling processes also establish the conditions for 
identifying a match and build them into the models, through laying down the 
grounds of comparability between them. The representational force of the 
models is predicated upon these grounds, without which it is impossible even to 
ask the question whether a model represents its target, or what its validation 
might consist in. Drawing attention to these grounds as a form of normative 
intra-action invites attention to the specific ways in which they are built up in 
different modes of doing systems medicine, both epistemologically and socially. 
In particular, in the process of achieving personalised medicine informed by 
systems biology, the articulation, management and modelling of variability will 
ultimately play an important role in defining emerging systems notions at stake 
in personalised medicine. These include the notion of disease and ultimately, of 
the person. 
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