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We present and study a novel class of one-dimensional Hilbert space eigenfunction transforms that
diagonalize analytic difference operators encoding the (reduced) two-particle relativistic hyperbolic
Calogero–Moser dynamics. The scattering is described by reflection and transmission amplitudes t and r
with function-theoretic features that are quite different from nonrelativistic amplitudes. The axiomatic
Hilbert space analysis in the appendices is inspired by and applied to the attractive two-particle relativistic
Calogero–Moser dynamics for a sequence of special couplings. Together with the scattering function u of
the repulsive case, this leads to a triple of amplitudes u, t and r satisfying the Yang–Baxter equations.

1. Introduction

This article can be viewed from different perspectives, and indeed it has a two-fold purpose. On the
one hand, it yields (in its four appendices) a study of unitary eigenfunction transforms of a novel
type, generalizing the transmission–reflection and bound state picture associated with one-dimensional
non-relativistic Schrödinger operators

− d2

dr2
+ V(r). (1.1)

Here we are thinking of real-valued potentials V(r), r ∈ R, that are smooth and decay rapidly for
r → ±∞. As is well known, for such potentials the operator (1.1) can have finitely many bound states
with negative eigenvalues, whereas the scattering can be encoded in the so-called Jost solutions, which
have eigenvalue k2 > 0. (We view r and k as dimensionless variables.) Specifically, the Jost solutions
J±(r, k) satisfy the time-independent Schrödinger equation

(−∂2
r + V(r))J±(r, k) = k2J±(r, k), k > 0, (1.2)

and are characterized by the asymptotic behaviour

J+(r, k) ∼
{

a(k)e−irk + b(k)eirk , r → ∞,
e−irk , r → −∞,

(1.3)

J−(r, k) ∼
{

eirk , r → ∞,
a(k)eirk − b(−k)e−irk , r → −∞.

(1.4)
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2 S. HAWORTH AND S. RUIJSENAARS

It is then customary to define the transmission and reflection coefficients by

t(k) = 1/a(k), r(k) = b(k)/a(k). (1.5)

The generalized Jost functions we study in the appendices share the asymptotic behavior just recalled,
but their transmission and reflection coefficients have a (purely imaginary) period in the spectral variable k.
For certain special choices they converge to ordinary Jost functions as this period goes to i∞.

On the other hand, the article is concerned with special cases of the eigenfunctions arising for two
particles of opposite charge in the relativistic hyperbolic Calogero–Moser system, and with the associated
Hilbert space theory. We intend to return to the Hilbert space theory for the general case in a companion
paper. In the present one, however, we already lay the groundwork for the general case by introducing and
discussing the pertinent eigenfunctions, both in this section and in more detail in Section 2. In Section 2
we are also better placed to put these Hilbert space aspects in a wider context and summarize previous
literature in the area.

We proceed by recalling the two types of interaction for the hyperbolic Calogero–Moser two-particle
system in its centre-of-mass frame. For the non-relativistic Calogero–Moser case they are given by the
potentials

Vs(r) = λ(λ− 1)/ sinh2(r), Vo(r) = −λ(λ− 1)/ cosh2(r). (1.6)

(In the physics literature, these are often referred to as Pöschl–Teller potentials, see for example [1].)
Restricting attention to λ > 1, this corresponds to a description of a particle pair with the same/opposite
charge having a repulsive/attractive interaction, the charge interpretation being borrowed from the
electromagnetic force.

The relativistic generalizations of the repulsive and attractive non-relativistic Hamiltonians associated
with (1.6) can be taken to be of the form

Hs(ρ, τ ; r) =
(

sinh(r + iτ)

sinh(r)

)1/2

exp(iρ∂r)

(
sinh(r − iτ)

sinh(r)

)1/2

+ (r → −r), (1.7)

Ho(ρ, τ ; r) =
(

cosh(r + iτ)

cosh(r)

)1/2

exp(iρ∂r)

(
cosh(r − iτ)

cosh(r)

)1/2

+ (r → −r). (1.8)

Here we have ρ, τ > 0, and the non-relativistic differential operators given by (1.1) and (1.6) arise from
these analytic difference operators in the limit ρ → 0 with τ = ρλ. (For a comprehensive survey of
the relativistic Calogero–Moser N-particle systems together with their nonrelativistic and Toda limits we
refer to the lecture notes [2].)

The repulsive non-relativistic Hamiltonian can be diagonalized by using the conical (or Mehler)
function specialization of the hypergeometric function. The attractive potential arises from the repulsive
one by the two analytic continuations r → r ± iπ/2. The attractive non-relativistic Hamiltonian can
then be diagonalized by employing a suitable linear combination of the two correspondingly continued
conical functions, taking also bound states into account, which do not arise for the repulsive case. (More
details on these diagonalizations from disparate viewpoints can be found for instance in [1], Problems
38 and 39, [3], Sections 4.18 and 4.19, and [4].)

The repulsive Hamiltonian Hs can be diagonalized by a relativistic generalization of the conical
function. A detailed study of this relativistic conical function and its various limits can be found in [5].
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HILBERT SPACE THEORY FOR RELATIVISTIC DYNAMICS WITH REFLECTION. 3

We use this function as a starting point to arrive at the eigenfunctions of the attractive counterpart Ho that
are the key to the Hilbert space reinterpretation of Ho. As we shall show, they are once more obtained by
suitable linear combinations of the r → r ± iπ/2 continuations of the relativistic conical function.

For the special coupling constants τ = (N + 1)π , N ∈ N, the associated attractive eigenfunction
transforms have certain periodicity features that motivated the general framework that is set out in the
appendices. The latter yield a largely self-contained account, which can be read independently of the
main text.

We stress, however, that the assumptions we make in Appendices A and B would seem far-fetched
without their concrete realizations coming from the main text, as they are not satisfied for the eigenfunc-
tions of the non-relativistic operators (1.1) with a non-trivial V(r). Since one might question whether
they can be realized at all, we have included the simplest explicit examples in the appendices, so that one
need not delve into the main text to see that the assumptions are not vacuous.

The Hilbert space theory associated with the opposite-charge Hamiltonian Ho for the case of vanishing
reflection has been worked out before in Section 4 of [6]. (This case corresponds to couplings of the
form τ = (N + 1)ρ, N ∈ N.) The reflectionless case was also handled via a slightly more general
framework, cf. Section 2 in [6]. The latter setting is subsumed by our account in the appendices of the
present article, in the sense that the assumptions we make in Appendices A and B are satisfied by the
eigenfunctions studied in [6].

More specifically, in the appendices we start from wave functions

�(r, k) = �+(r, k)eirk +�−(r, k)e−irk , (1.9)

which are counterparts of the above function J−(r, k)/a(k), and impose various requirements on the
plane wave coefficients �±(r, k) of a function-theoretic and asymptotic nature. (The case �−(r, k) = 0
yields reflectionless transforms.) The assumptions ensure that we can push through a comprehensive
Hilbert space analysis for the associated transforms, without mentioning any Hamiltonians until the last
Appendix D, which is devoted to time-dependent scattering theory.

With the functional analysis relegated to the appendices, the main text demonstrates that the assump-
tions are satisfied by the pertinent eigenfunctions of the attractive Hamiltonian Ho when the coupling
constant τ is of the form (N + 1)π , N ∈ N. (The reflectionless τ -choices (N + 1)ρ, N ∈ N, are briefly
reviewed as well.) Therefore, when viewed as an analytic difference operator—as opposed to a Hilbert
space operator—the Hamiltonian reduces to the free one

Hf = exp(iρ∂r)+ exp(−iρ∂r). (1.10)

As it stands, the latter can of course be diagonalized by the Fourier transform with kernel exp(irk),
yielding multiplication by 2 cosh(ρk). The crux is, however, that the Ho-eigenfunctions for general τ and
ρ, specialized to τ = (N+1)π , do not reduce to a plane wave at all. Instead, they are of the form (1.9), with
non-trivial coefficients�±(r, k) that are iρ-periodic in r, and they give rise to reflection and transmission
coefficients r(k) and t(k) that, together with the scattering function u(k) for the repulsive case, satisfy
the Yang–Baxter equations.

The latter equations actually hold for the arbitrary coupling scattering amplitudes, cf. (2.34)–(2.38).
This state of affairs lends further credence to the long-standing conjecture that the many-particle general-
izations of the Hamiltonians (1.7) and (1.8) lead to a factorized S-matrix. For the classical versions of the
systems this solitonic scattering has been proved in [7], alongside a detailed account of the connection
to several solitonic field theories.
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4 S. HAWORTH AND S. RUIJSENAARS

For the special case τ = π/2, a prime example of the latter is the sine-Gordon classical field theory.
For this choice of τ , the scattering amplitudes t(k), r(k) and u(k) coincide with those for quantum sine-
Gordon opposite-charge and equal-charge fermions [8, 9]. This state of affairs is in agreement with earlier
work from a related viewpoint [10], to which we intend to return in the companion paper dealing with
general τ -values.

Among the special cases considered in this article, of particular interest is the case N = 0, yielding
τ = π . Indeed, for this choice the repulsive eigenfunction (essentially given by the relativistic conical
function) reduces to the plane wave sum sin(rk), so that u(k) = 1. By contrast, the scattering coefficients
t(k) and r(k) are non-trivial. (They amount to specializations of T+(k) (A.34) and R+(k) (A.35).) Physi-
cally speaking, this parameter choice yields a system in which particles of the same charge do not interact,
whereas oppositely charged particles have an attractive interaction. In particular, an oppositely-charged
pair can form a bound state, provided ρ is suitably restricted.

In order to tie in the main text with the appendices, we need to handle the residue sums that are
spawned by contour shifts arising for the pertinent transforms and their adjoints. For isometry of the
transforms, it is necessary that these sums vanish, whereas eventual bound states show up via non-zero
residue sums associated with the adjoint transforms. At the end of the main text, we also present an
in-depth study of isometry breakdown for sufficiently small ρ, a phenomenon without a non-relativistic
counterpart.

Having presented a bird’s eye view of the aims and contents of the article, we proceed with a more
detailed sketch of its results and organization.

As already mentioned, our starting point is the relativistic conical function. More specifically, we work
with a renormalized version Rren(a+, a−, b; x, y). (We recall one of the many integral representations for
this function below, cf. (2.1).) From a quantum-mechanical perspective, all of its five variables have
dimension [position]. More specifically, the parameters a+ and a− can be viewed as the interaction length
and Compton wave length �/mc, while the parameter b and variable y play the role of coupling constant and
spectral variable. The unorthodox choice of the latter (inasmuch as it is customary to choose a momentum
variable as spectral variable) is inspired by the symmetry of this function under the interchange of x and y
(self-duality). It is written entirely in terms of the hyperbolic gamma function G(a+, a−; z) from [11],
which is invariant under swapping a+ and a−, cf. (1.25) below. This ‘modular invariance’ is inherited
by Rren(a+, a−, b; x, y). The renormalized version has the advantage of being meromorphic in b, x and y,
with no poles in b that do not depend on x and y. In more detail, its poles can only be located at

±z = 2ia − ib + ika+ + ila−, z = x, y, k, l ∈ N, (1.11)

where

a ≡ (a+ + a−)/2. (1.12)

Thanks to these symmetry properties, this function satisfies not only the analytic difference equation
(A�E)

A(a+, a−, b; x)Rren(a+, a−, b; x, y) = 2 cosh(πy/a+)Rren(a+, a−, b; x, y), (1.13)

where the analytic difference operator (A�O) is defined by

A(a+, a−, b; z) ≡ V(a+, b; z) exp(−ia−∂z)+ (z → −z), (1.14)
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HILBERT SPACE THEORY FOR RELATIVISTIC DYNAMICS WITH REFLECTION. 5

with

V(a+, b; z) ≡ sinh(π(z − ib)/a+)
sinh(πz/a+)

, (1.15)

but also three more A�Es obtained by swapping a+ and a−, and/or x and y in (1.13).
Each of the resulting four A�Os has two more avatars, obtained by similarity transformations

involving the generalized Harish-Chandra function

c(b; z) ≡ G(z + ia − ib)/G(z + ia), (1.16)

and weight function

w(b; z) ≡ 1/c(b; z)c(b; −z). (1.17)

Here and often below, we suppress the dependence on a+ and a− when no ambiguity can arise. (For
example, the c- and w-functions just introduced are invariant under swapping a+ and a−.) From now on,
we also use the abbreviations

cδ(z) ≡ cosh(πz/aδ), sδ(z) ≡ sinh(πz/aδ), eδ(z) ≡ exp(πz/aδ), δ = +, −. (1.18)

For our present purposes, we only need two among these eight additional operators. The most
important one is the Hamiltonian

H(a+, a−, b; x) ≡ w(b; x)1/2A(a+, a−, b; x)w(b; x)−1/2, (b, x) ∈ (0, 2a)× (0, ∞), (1.19)

but we also have occasion to use

A(a+, a−, b; y) ≡ c(b; y)−1A(a+, a−, b; y)c(b; y). (1.20)

These operators can also be written as

H(b; x) = V(a+, b; −x)1/2 exp(ia−∂x)V(a+, b; x)1/2 + (x → −x), (1.21)

and

A(b; y) = exp(−ia−∂y)+ V(a+, b; −y) exp(ia−∂y)V(a+, b; y). (1.22)

From these formulas one can read off that they are formally self-adjoint, cf. (1.15).
The w-function (1.17) is positive for (b, x) ∈ (0, 2a) × (0, ∞), and throughout the article we take

positive square roots of positive functions. This positivity assertion and the alternative formulas for H(b; x)
and A(b; y) readily follow from key features of the hyperbolic gamma function. For completeness, we
briefly digress to summarize the salient properties.

The hyperbolic gamma function can be defined as the meromorphic solution to one of the first order
A�Es

G(z + iaδ/2)

G(z − iaδ/2)
= 2c−δ(z), δ = +, −, a+, a− > 0, (1.23)
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6 S. HAWORTH AND S. RUIJSENAARS

which is uniquely determined by the normalization G(0) = 1 and a minimality property; the second
A�E is then satisfied as well. (This property amounts to requiring absence of zeros and poles in a certain
|Im z|-strip, and ‘optimal’ asymptotics for |Re z| → ∞, cf. [11].) In the strip |Im z| < a it has the integral
representation

G(a+, a−; z) = exp

(
i
∫ ∞

0

dy

y

(
sin 2yz

2 sinh(a+y) sinh(a−y)
− z

a+a−y

))
, (1.24)

from which one reads off absence of zeros and poles in this strip and the properties

G(a−, a+; z) = G(a+, a−; z), (modular invariance), (1.25)

G(−z) = 1/G(z), (reflection equation), (1.26)

G(a+, a−; z) = G(a+, a−; −z). (1.27)

The hyperbolic gamma function has its poles at

−ia − ika+ − ila−, k, l ∈ N, (G−poles), (1.28)

and its zeros at

ia + ika+ + ila−, k, l ∈ N, (G−zeros). (1.29)

The pole at −ia is simple, and so is the zero at ia. Finally, we list the asymptotic behaviour for Re (z) →
±∞:

G(a+, a−; z) = exp
( ∓ i

(
χ + πz2/2a+a−

) )(
1 + O(exp(−r|Re (z)|))). (1.30)

Here, we have

χ ≡ π

24

(
a+
a−

+ a−
a+

)
, (1.31)

and the decay rate can be any positive number satisfying

r < 2π min(1/a+, 1/a−). (1.32)

The A�O (1.19) can be viewed as the defining Hamiltonian for the same-charge centre-of-mass
two-particle system. The opposite-charge defining Hamiltonian is given by

H̃(b; x) = w̃(b; x)1/2Ã(b; x)w̃(b; x)−1/2, (b, x) ∈ (−a+/2, a+/2 + a−)× R, (1.33)
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HILBERT SPACE THEORY FOR RELATIVISTIC DYNAMICS WITH REFLECTION. 7

where

Ã(b; x) ≡ Ṽ(b; x) exp(−ia−∂x)+ (x → −x), (1.34)

Ṽ(b; x) ≡ cosh(π(x − ib)/a+)
cosh(πx/a+)

, (1.35)

and the attractive weight function is given by

w̃(b; x) ≡
∏
σ=+,−

G(σx + ia−/2)
G(σx + ia−/2 − ib)

. (1.36)

Hence the attractive Hamiltonian can also be written as

H̃(b; x) = Ṽ(b; −x)1/2 exp(ia−∂x)Ṽ(b; x)1/2 + (x → −x). (1.37)

Clearly, the attractive coefficient Ṽ(b; x) arises from the repulsive coefficient V(a+, b; x) by either one of
the analytic continuations x → x ± ia+/2. Hence the same is true for Ã and A; for H̃ and H this is also
the case, as follows from the alternative representations (1.21) and (1.37).

Even so, the weight function w̃(b; x) does not arise in this way from w(b; x). Indeed, the two functions
w(b; x ± ia+/2) are not positive for (b, x) ∈ (−a+/2, a+/2 + a−) × R, whereas w̃(b; x) does have this
positivity feature. (As before, this readily follows from (1.23) to (1.27).) On the other hand, we clearly
have

w̃(b; x) = 1/c̃(b; x)c̃(b; −x), (1.38)

where

c̃(b; x) ≡ G(x + ia−/2 − ib)/G(x + ia−/2) = c(b; x − ia+/2). (1.39)

In words, the attractive c-function does arise from the repulsive c-function (1.16) by one of the analytic
continuations at issue. We also point out that the conjugation relation (1.27) entails that the c̃-function
has the same conjugation property

c̃(b; x) = c̃(b; −x), (b, x) ∈ R × R, (1.40)

as the c-function; by contrast to the latter, however, it is regular at the origin (for generic b), whereas c(b; x)
has a simple pole.

Because the scale parameter a+ and variable x are singled out, modular invariance and self-duality
are not preserved for the attractive regime. Therefore, it is no longer crucial to insist on the symmetric
parametrization of the repulsive regime. Even so, for reasons of notational economy we continue to
employ it for most of the main text.

In the appendices, however, it is more convenient to work with dimensionless variables r and k such
that the plane wave exp(iπxy/a+a−) becomes exp(irk). Specifically, we take

x/a− → r/ρ, y/a− → k/κ , (1.41)
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8 S. HAWORTH AND S. RUIJSENAARS

with

ρκ = πa−/a+. (1.42)

The coupling parameter b can be traded for a dimensionless parameter τ given by

τ ≡ πb/a+. (1.43)

The Hamitonians Hs (1.7) and Ho (1.8) then arise from H and H̃ by using these dimensionless quantities
together with the choice κ = 1.

In Section 2 we begin by summarizing pertinent results on the repulsive eigenfunctions. Their abun-
dance of symmetries leaves no doubt concerning their uniqueness, and indeed there already exists a fully
satisfactory Hilbert space theory for H(b; x) [5, 12].

For the attractive case, however, there is an enormous ambiguity, and it is no longer obvious how to
proceed. Once we have put this problem in perspective, we are prepared to survey the previous literature
that has a bearing on the key problem of promoting formally self-adjoint A�Os to self-adjoint Hilbert
space operators, using an explicit unitary eigenfunction transform that yields a concrete realization of the
spectral theorem [13].

After this terse literature overview (which can be found above (2.6)), we detail how our attractive
eigenfunctions result from the repulsive ones by taking a suitable linear combination of the two analytically
continued functions Rren(a+, a−, b; x ± ia+/2, y). We exemplify this for the simplest case b = a+. This
yields the elementary function (2.22), all of whose function-theoretic and asymptotic features can be
directly read off.

In view of the ambiguity in obtaining the opposite-charge eigenfunctions, our choice may seem
unmotivated at face value. It is, however, singled out by its very special and desirable features. We have
not attempted to show that this renders the choice unique, but we have little doubt that this is true.

To lend credence to this conviction, we obtain already in this article the dominant |Re x| → ∞
asymptotics of the joint eigenfunctionψ(b; x, y) (2.16), cf. Proposition 2.1. Specifically, together with the
scattering function u(b; y) (2.27) of the repulsive case, the resulting attractive transmission and reflection
coefficients t(b; y) (2.34) and r(b; y) (2.35) satisfy the Yang–Baxter equations (2.36)–(2.38). General-b
Hilbert space aspects, however, are beyond the scope of this article.

In the remaining sections we focus on the special b-values (N + 1)a+. Section 3 contains a
detailed account of function-theoretic and asymptotic properties of the corresponding eigenfunc-
tions ψN(x, y) (3.1). Their elementary character is inherited from that of the relativistic conical
functions RN(x, y) (3.2). The latter were studied in [14]. We need various results from this source, which
we summarize in the equations (3.5)–(3.20). In the remainder of the section we obtain the properties
of ψN(x, y) that served as a template for the axiomatic account in the appendices.

In Section 4 we then apply the Hilbert space results from the appendices to the eigenfunction trans-
forms associated with ψN(x, y), and to the adjoints of the transforms. First, we study the residue sums
arising for the transforms, showing that they vanish for the parameter interval a− ∈ ((N + 1/2)a+, ∞) in
Theorem 4.1. With isometry proved, it follows from Appendix D that the transforms can be viewed as the
incoming wave operators from time-dependent scattering theory. Then we study the adjoint transforms
for parameters in this isometry interval. Here a distinction arises: for the subinterval a− ∈ [(N +1)a+, ∞)

we prove in Theorem 4.2 that the associated residue sums vanish, so that the transforms are unitary. By
contrast, for a− ∈ ((N + 1/2)a+, (N + 1)a+), Theorem 4.4 reveals the presence of a bound state ψN(x),
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HILBERT SPACE THEORY FOR RELATIVISTIC DYNAMICS WITH REFLECTION. 9

given by (4.43). As we detail at the end of Section 4, it arises as (a multiple of) the residue of ψN(x, y) at
its only y-pole i(N + 1)a+ − ia− in the strip Im y ∈ (0, a−).

After these ‘constructive’ results in Section 4, the final Section 5 furnishes some ‘destructive’ results
pertaining to the remaining a−-interval (0, (N +1/2)a+]. In particular, we prove that for a− ∈ (Na+, (N +
1/2)a+) isometry of the transform breaks down in a way that we make quite explicit. For N > 0 it is
not an easy matter to handle any positive a−, and we shall not do so. Indeed, as a− decreases, there is a
cascade of ever larger and more baroque deviations from isometry, much like for the reflectionless cases
handled in [6]. For N = 0 we do work out the details, which are summarized in Proposition 5.1.

As already mentioned, the appendices contain an axiomatic account of the functional-analytic aspects,
with the assumptions inspired by the features of the eigenfunctionsψN(x, y) (3.1). Appendix A deals with
a general transform F from ‘momentum space’ to ‘position space’. The former space is described in terms
of two-component square-integrable functions of a (dimensionless) variable k ∈ (0, ∞), so as to lead
to a 2 × 2 S-matrix S(k) (A.23). The assumptions are sufficiently restrictive to lead to a picture of the
transform as being isometric away from a subspace encoded in residue terms, cf. Theorem A.1. In the
axiomatic setting, however, it is far from clear whether this subspace is necessarily finite-dimensional,
as is the case for the transforms associated with ψN(x, y).

The adjoint transform F∗ is analyzed in Appendix B, with additional assumptions on the k-dependence
of the plane wave coefficients enabling us to arrive at the counterpart Theorem B1 of Theorem A1. Simple
explicit examples are included in this appendix via Propositions B3–B5, with Proposition B4 presenting
example transforms that go beyond the main text.

A pivotal technical ingredient in the proofs of Theorems A1 and B1 is relegated to Appendix C,
namely, the asymptotic analysis of the boundary terms arising from the rectangular integration contours
at issue in the proofs.

The article is concluded with Appendix D, in which it is shown that when the transforms are unitary,
then they may be viewed as the incoming wave operators for a large class of self-adjoint Hilbert space
dynamics. More specifically, the transform F from Appendix A plays this role for a class containing the
(Hilbert space version of the) opposite-charge Hamiltonian H̃((N + 1)a+; x) given by (4.1), whereas for
its adjoint F∗ the class contains a Hamiltonian that arises from the dual A�O S((N + 1)a+; y) given
by (4.2). It should be stressed that in the axiomatic framework of Appendix D the self-adjoint dynamics at
issue are defined via the transforms. Likewise, since we rely on the results of the appendices to associate
self-adjoint operators to the A�Os (4.1) and (4.2), the feasibility of doing so hinges on the isometry of
their eigenfunction transforms.

Below Theorem D.1 we also discuss the issue of parity and time reversal symmetry. Both symmetries
are present for the transforms arising from the main text, but we leave the question open whether time
reversal symmetry holds in the general setting of the appendices.

2. Repulsive and attractive eigenfunctions for general coupling

As is detailed in [5], the relativistic conical function has a great many distinct representations. For
completeness, we quote one of them, namely (cf. Eqs. (1.3) and (1.6) in [5]),

Rren(b; x, y) = G(ia − ib)√
a+a−

∫
R

dz
G(z + (x − y)/2 − ib/2)G(z − (x − y)/2 − ib/2)

G(z + (x + y)/2 + ib/2)G(z − (x + y)/2 + ib/2)
, (2.1)

where we take (b, x, y) ∈ (0, 2a) × R
2 to begin with. (Note that the G-asymptotics (1.30) entails the

convergence of the integral.) This is the only known representation that is both manifestly self-dual and
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10 S. HAWORTH AND S. RUIJSENAARS

modular invariant. Moreover, evenness in x and y follows by using the reflection equation (1.26), and
real-valuedness results from the conjugation relation (1.27).

The function

F(b; x, y) ≡ w(b; x)1/2w(b; y)1/2Rren(b; x, y), (b, x, y) ∈ (0, 2a)× (0, ∞)2, (2.2)

is also self-dual and modular invariant, so it is a joint eigenfunction of four independent A�Os,
namely H(a+, a−, b; x), H(a+, a−, b; y), H(a−, a+, b; x) and H(a−, a+, b; y). In fact, it has yet another
symmetry, which is not manifest: It satisfies

F(2a − b; x, y) = F(b; x, y). (2.3)

This can be understood from the four Hamiltonians having this symmetry property. By contrast, the A�O
A(a+, a−, b; z) (1.14) and the three factors of F(b; x, y) are not invariant under b → 2a − b.

It follows from previous results [5, 12] that the transform

(Fs(b)f )(x) ≡ 1√
2a+a−

∫ ∞

0
dy F(b; x, y)f (y), b ∈ (0, 2a), (2.4)

yields a unitary transformation from L2((0, ∞), dy) onto L2((0, ∞), dx). It satisfies

Fs(b)
∗ = Fs(b), Fs(2a − b) = Fs(b), (2.5)

with the self-adjointness following from real-valuedness and self-duality of its kernel, and the b-symmetry
from (2.3). For b equal to a+ or a− the transform amounts to the sine transform, and its b = 0 and b = 2a
limits amount to the cosine transform.

For b ∈ (0, 2a) the even weight function has a second order zero at the origin (cf. (1.29)), so its
square root continues from (0, ∞) to an odd function. Therefore, the transform can also be viewed as
a unitary involution on the odd subspace of L2(R). More generally, the eigenfunctions for N particles
with the same charge are antisymmetric under permutations [15]: Equal-charge particles obey fermionic
statistics.

By contrast, a fermion and an antifermion can be distinguished by their charge, so we should aim for
eigenfunctions of H̃(b; x) that have non-trivial even and odd reductions. This opposite-charge Hamilton-
ian, however, has no ‘modular partner’, so we can no longer insist on invariance under interchange of
a+ and a−, a requirement that renders the above same-charge eigenfunction F(b; x, y) essentially unique.
Now any H̃(b; x)-eigenfunction remains an eigenfunction upon multiplication by a function M(x, y) that
is meromorphic and ia−-periodic in x and has an arbitrary y-dependence. (This is the ambiguity alluded to
in Section 1.) A priori, however, there is no reason to expect that in this infinite-dimensional eigenfunction
space there exist any special ones with the requisite orthogonality and completeness properties.

More generally, to date there exists no general Hilbert space theory for A�Os. There is, however, a
growing supply of explicit (mostly one-variable) A�Os that admit a reinterpretation as bona fide self-
adjoint Hilbert space operators. This hinges on the existence of special eigenfunctions that give rise to the
unitary transform featuring in the spectral theorem for self-adjoint operators. We continue by surveying
the literature in this field, which is quite scant by comparison to the vast literature dealing with Hilbert
space aspects of (linear) differential operators and discrete difference operators.

By far the simplest cases are analytic difference operators that admit orthogonal polynomials as eigen-
functions. The earliest example is given by the Askey–Wilson polynomials [16]. From the perspective

 by guest on A
ugust 26, 2016

http://integrablesystem
s.oxfordjournals.org/

D
ow

nloaded from
 

http://integrablesystems.oxfordjournals.org/


HILBERT SPACE THEORY FOR RELATIVISTIC DYNAMICS WITH REFLECTION. 11

of Calogero–Moser type systems, these can be viewed as the special eigenfunctions of the BC1 rela-
tivistic trigonometric Calogero–Moser system that give rise to a reinterpretation of the Askey–Wilson
four-parameter A�O as a self-adjoint Hilbert space operator. Likewise, the multi-variable orthogonal
polynomials introduced by Macdonald [17] yield the sought-for joint eigenfunctions of the commuting
A�Os arising for the AN−1 (i.e., N-particle) relativistic trigonometric Calogero–Moser system, and the
Koornwinder polynomials those for the BCN case [18, 19].

A large class of one-variable A�Os yielding reflectionless unitary eigenfunction transforms has been
introduced in [20]. (The reflectionless A�Os studied in [6] form a tiny subclass.) Their eigenfunctions are
closely connected to soliton solutions of various nonlocal evolution equations. The unitarity proof for the
associated Hilbert space transforms makes essential use of previous results on the connection between the
classical hyperbolic relativistic Calogero–Moser N-particle systems and the KP and 2D Toda hierarchies.

Further unitary eigenfunction transforms for four-parameter A�Os of Askey–Wilson type have been
constructed in [12, 21], and for the elliptic eight-parameter A�Os introduced by van Diejen [22] in [23].
Other relevant papers are [24–26].

In all of these cases, the eigenfunctions have some very special properties that play a pivotal role for
pushing through the associated Hilbert space theory. In spite of this store of examples, a general theory
has not emerged yet.

Returning to the problem at hand, it is clear from (1.13)–(1.15) and (1.34)–(1.35) that we have

Ã(b; x)Rren(b; x ± ia+/2, y) = 2c+(y)Rren(b; x ± ia+/2, y). (2.6)

By virtue of (1.33), this implies that we get two independent H̃(b; x)-eigenfunctions,

H̃(b; x)w̃(b; x)1/2Rren(b; x ± ia+/2, y) = 2c+(y)w̃(b; x)1/2Rren(b; x ± ia+/2, y). (2.7)

However, these functions remain eigenfunctions when they are multiplied by functions that are ia−-
periodic in x and that have an arbitrary y-dependence, so it is at this point that we need further constraints
to reduce the ambiguity.

To this end, consider the auxiliary function

Z(b; x, y) ≡ Rren(b; x, y)/c(b; −y). (2.8)

In view of (1.20) it satisfies

A(b; −y)Z(b; x, y) = 2c+(x)Z(b; x, y), (2.9)

which entails

A(b; −y)Z(b; x ± ia+/2, y) = ±2is+(x)Z(b; x ± ia+/2, y). (2.10)

We now introduce the formally self-adjoint A�O

S(b; y) ≡ V(a+, b; y) exp(−ia−∂y)V(a+, b; −y)− exp(ia−∂y), (2.11)
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12 S. HAWORTH AND S. RUIJSENAARS

and observe that in view of (1.22) we have similarities

e−(±(ib − y)/2)

s−(ib − y)
A(b; −y)

s−(ib − y)

e−(±(ib − y)/2)
= ±iS(b; y). (2.12)

Therefore, the functions

ψ±(b; x, y) ≡ ±w̃(b; x)1/2
e−(±(ib − y)/2)

2s−(ib − y)
Z(b; x ± ia+/2, y), (2.13)

satisfy not only the same H̃-A�E,

H̃(b; x)ψ±(b; x, y) = 2c+(y)ψ±(b; x, y), (2.14)

but also the same S-A�E,

S(b; y)ψ±(b; x, y) = 2s+(x)ψ±(b; x, y). (2.15)

As a consequence, the function

ψ(b; x, y) ≡ ψ+(b; x, y)+ ψ−(b; x, y)

= w̃(b; x)1/2

2s−(ib − y)c(b; −y)

(
e−((ib − y)/2)Rren(x + ia+/2, y)

− e−((y − ib)/2)Rren(x − ia+/2, y)
)
, (2.16)

satisfies both A�Es, too. (We recall c(b; −y) is given by (1.16), and w̃(b; x) by (1.36).)
As will transpire, the function ψ(b; x, y) we just defined is the sought-for attractive eigenfunction.

We shall substantiate this for the special cases b = (N + 1)a+, N ∈ N, in the present article, whereas
the Hilbert space theory for the general-b case will be dealt with in a companion paper. The special cases
b = (N + 1)a−, N ∈ N, have been treated before in Section 4 of [6], but in view of the above-mentioned
ambiguity it is not immediate that the functions occurring there are basically the same as the functions
ψ((N + 1)a−; x, y). At the end of Section 3 we shall show that this holds true.

To be sure, at this point it is far from clear that even for the simplest cases b = a+ and b = a− the
eigenfunctionψ(b; x, y) has all of the desired properties. We continue by working out the details for these
b-values, since this involves little effort and the resulting formulas are illuminating.

As announced above, for b = a+ we are dealing with an equal-charge (reduced) two-particle system
that is ‘free’, in the sense that no scattering occurs. Specifically, we have (cf. Eq. (4.7) in [5])

Rren(a+; x, y) = sin(πxy/a+a−)
2s−(x)s−(y)

. (2.17)

Also, (1.16) and (1.23) imply

c(a+; z) = 1/2is−(z), w(a+; z) = 4s−(z)2, (2.18)
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HILBERT SPACE THEORY FOR RELATIVISTIC DYNAMICS WITH REFLECTION. 13

so that (2.2) yields

F(a+; x, y) = 2 sin(πxy/a+a−). (2.19)

This entails that Fs(a+) (2.4) amounts to the sine transform, as mentioned before.
On the other hand, from (1.39) and (1.38) we have

c̃(a+; x) = 1/2is−(x − ia+/2), w̃(a+; x) = 4s−(x + ia+/2)s−(x − ia+/2). (2.20)

Also, (2.8) gives

Z(a+; x, y) = −i sin(πxy/a+a−)/s−(x), (2.21)

so from (2.16) we obtain

ψ(a+; x, y) = (s−(x + ia+/2)s−(x − ia+/2))1/2

2s−(ia+ − y)

∑
τ=+,−

τ
e−(τ (y − ia+)/2)
s−(x − iτa+/2)

× (
e−(τy/2) exp(iπxy/a+a−)− e−(−τy/2) exp(−iπxy/a+a−). (2.22)

With the substitutions (1.41) and (1.42) in force, this yields the wave function �(r, k) featuring in
Proposition B.3, cf. (B.70).

Turning to the special case b = a−, we can again make use of the formulas (2.17), (2.18) and (2.21),
but now with a+ and a− swapped. Then, (1.39) and (1.38) yield the quite different outcome

c̃(a−; x) = 1/2c+(x), w̃(a−; x) = 4c+(x)2. (2.23)

Using (2.16), we now obtain the attractive wave function

ψ(a−; x, y) = exp(iπxy/a+a−), (2.24)

which is manifestly ‘free’, just as its repulsive counterpart.
Before specializing to the b-values (N + 1)a+ for N > 0, it is expedient to derive already in this

article the general-b asymptotic behaviour of ψ(b; x, y) as |Re x| → ∞. Indeed, this will illuminate how
we arrived at the above y-dependence.

To begin with, the G-function asymptotics (1.30) implies that the c-function (1.16) satisfies

c(b; z) ∼ φ(b)±1 exp(∓πbz/a+a−), Re z → ±∞, (2.25)

where we have introduced the constant

φ(b) ≡ exp(iπb(b − 2a)/2a+a−). (2.26)

Introducing next

u(b; z) ≡ −c(b; z)/c(b; −z) = −
∏
δ=+,−

G(z + iδ(a − b))/G(z + iδa), (2.27)
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14 S. HAWORTH AND S. RUIJSENAARS

we deduce

u(b; z) ∼ −φ(b)±2, Re z → ±∞. (2.28)

Also, the reflection equation (1.26) and the complex conjugation relation (1.27) entail

u(b; −z)u(b; z) = 1, |u(b; z)| = 1, b, z ∈ R. (2.29)

The function u(b; y) encodes the scattering associated with the A�O A(a+, a−, b; x) and its modular
partner, reinterpreted as commuting self-adjoint operators on the Hilbert space L2((0, ∞), dx). (To be
sure, this reinterpretation requires b ∈ [0, 2a], cf. [5].)

The assertion just made hinges on the asymptotic behaviour of the joint eigenfunction E(b; x, y) of
these A�Os, defined by

E(b; x, y) ≡ φ(b)

c(b; x)c(b; y)
Rren(b; x, y). (2.30)

By contrast to Rren(b; x, y) and F(b; x, y), this function is not even, but satisfies

E(b; −x, y) = −u(b; x)E(b; x, y). (2.31)

It follows from Theorem 1.2 in [27] that the E-function has asymptotics

E(b; x, y) ∼ eiπxy/a+a− − u(b; −y)e−iπxy/a+a− , (b, y) ∈ R × (0, ∞), Re x → ∞. (2.32)

(The specialization of the ‘BC1’-functions from [12, 27] to the ‘A1’-functions of this article is detailed in
Section 2 of [5].) Using (2.31) and (2.28), this yields

E(b; x, y) ∼ φ(b)2
(
e−iπxy/a+a− − u(b; −y)eiπxy/a+a−)

, (b, y) ∈ R × (0, ∞), Re x → −∞. (2.33)

To complete our preparation for the last result of this section, we define transmission and reflection
coefficients by

t(b; y) ≡ s−(y)
s−(ib − y)

u(b; y), (2.34)

r(b; y) ≡ s−(ib)
s−(ib − y)

u(b; y). (2.35)

This entails that when we set

sjk ≡ s(yj − yk), s = u, t, r, 1 ≤ j < k ≤ 3, (2.36)

then the well-known (u, t, r)-Yang–Baxter equations given by

r12t13u23 = t23u13r12 + r23r13t12, (2.37)
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HILBERT SPACE THEORY FOR RELATIVISTIC DYNAMICS WITH REFLECTION. 15

and

u12r13u23 = t23r13t12 + r23u13r12, (2.38)

are easily verified. We recall that these equations encode the consistent factorization of the multi-particle
S-matrix into a product of two-particle scattering amplitudes [28].

Proposition 2.1 The dominant large-|Re x| asymptotic behaviour of ψ(b; x, y) is given by

ψ(b; x, y) ∼
{

t(b; y) exp(iπxy/a+a−), Re x → ∞,
exp(iπxy/a+a−)− r(b; y) exp(−iπxy/a+a−), Re x → −∞,

(2.39)

where b ∈ (−a+/2, a− + a+/2) and y > 0. Furthermore, we have an identity

ψ(b; x, y) = t(b; y)ψ(b; −x, −y)− r(b; y)ψ(b; x, −y). (2.40)

Proof. Using the evenness of Rren(b; x, y) in x and y, the identity (2.40) follows from (2.16) by a
straightforward calculation. (It encodes ‘time reversal invariance’, cf. the discussion below Theorem D1.)

In order to prove (2.39), we first note that from (2.8) we have

Z(b; x, y) = −φ(b)−1c(b; x)u(b; y)E(b; x, y). (2.41)

Combining this relation with (2.25), (2.32) and (2.33), we obtain

Z(b; x, y) ∼
{

e−πbx/a+a−(
e−iπxy/a+a− − u(b; y)eiπxy/a+a−)

, Re x → ∞,
eπbx/a+a−(

eiπxy/a+a− − u(b; y)e−iπxy/a+a−)
, Re x → −∞.

(2.42)

Now from (1.38), (1.39) and (2.25) we get

w̃(b; x)1/2 ∼ exp(±πbx/a+a−), Re x → ±∞, (2.43)

where we need b ∈ (−a+/2, a− + a+/2) to ensure w̃(b; 0) > 0. From this we deduce

w̃(b; x)1/2Z(b; x ± ia+/2, y)

∼ e−(∓ib/2)
(
e−(±y/2)e−iπxy/a+a− − e−(∓y/2)u(b; y)eiπxy/a+a−)

, Re x → ∞, (2.44)

w̃(b; x)1/2Z(b; x ± ia+/2, y)

∼ e−(±ib/2)
(
e−(∓y/2)eiπxy/a+a− − e−(±y/2)u(b; y)e−iπxy/a+a−)

, Re x → −∞. (2.45)
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16 S. HAWORTH AND S. RUIJSENAARS

Hence (2.13) entails

2ψ±(b; x, y)s−(ib − y)

∼ ±(
e−iπxy/a+a− − e−(∓y)u(b; y)eiπxy/a+a−)

, Re x → ∞, (2.46)

2ψ±(b; x, y)s−(ib − y)

∼ ±e−(±ib)
(
e−(∓y)eiπxy/a+a− − u(b; y)e−iπxy/a+a−)

, Re x → −∞. (2.47)

Recalling (2.16), we now obtain (2.39). �

3. A close-up of the special eigenfunctions ψN(x, y)

In this section we specialize the coupling constant b to the sequence of values (N + 1)a+, N ∈ N, and
study the opposite-charge eigenfunctions

ψN(x, y) ≡ ψ((N + 1)a+; x, y), N ∈ N. (3.1)

They are obtained from the same-charge eigenfunctions

RN(x, y) ≡ Rren((N + 1)a+; x, y), N ∈ N, (3.2)

via (2.16). By contrast to the case of a generic coupling b ∈ R, the c-function and w̃-function featuring
in these formulas are elementary periodic functions, given by

1/c((N + 1)a+; −y) =
N∏

j=0

(−2i)s−(y + ija+), (3.3)

w̃((N + 1)a+; x) =
N∏

j=0

4s−(x + i(j + 1/2)a+)s−(x − i(j + 1/2)a+). (3.4)

(This easily follows from the G-A�Es (1.23).)
The crux of the special b-values is that the functions (3.2) are elementary functions, too. Specifically,

from Eqs. (4.8) and (4.5) in [5] we have

RN(x, y) = (−i)N+1(KN(x, y)− KN(x, −y))
/ N∏

j=−N

4s−(x + ija+)s−(y + ija+), (3.5)

with (cf. Eqs. (4.10)–(4.12) in [5])

KN(x, y) ≡ exp(iπxy/a+a−)�N(x, y), (3.6)

�N(x, y) ≡
N∑

k,l=0

c(N)kl (e−(ia+))e−((N − 2k)x + (N − 2l)y)). (3.7)
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The coefficients in the sum are specified in Section II of [14], where the functions KN(x, y) and RN(x, y)
have been studied in great detail. (See also [29] for a related account.) In the sequel we need substantial
information concerning the above quantities, which we proceed to collect.

First, the coefficients c(N)kl (q) are Laurent polynomials in q with integer coefficients. In particular, we
have c(0)00 = 1 (so that R0(x, y) reduces to (2.17)), and

c(1)00 = c(1)11 = q, c(1)01 = c(1)10 = −q−1, q = e−(ia+). (3.8)

Second, the coefficients have symmetries

c(N)kl = c(N)lk = c(N)N−k,N−l = (−)N c(N)k,N−l, k, l = 0, . . . , N . (3.9)

Clearly, these are equivalent to the following features of KN and �N :

KN(x, y) = KN(y, x), �N(x, y) = �N(y, x), (3.10)

KN(x, y) = KN(−x, −y), �N(x, y) = �N(−x, −y), (3.11)

KN(x, y) = (−)N KN(x, −y), �N(x, y) = (−)N�N(x, −y), x, y ∈ R. (3.12)

Third, the function KN(x, y) satisfies the A�E

s−(x + iNa+)KN(x − ia+, y)+ s−(x − iNa+)KN(x + ia+, y) = 2s−(x)c−(y)KN(x, y). (3.13)

(This is a similarity transformed version of the A�E (1.13) with b = (N + 1)a+.)
Fourth, we need the following explicit evaluations:

KN(x, ±iNa+) = KN(±iNa+, y) =
2N∏

j=N+1

2s−(ija+), (3.14)

KN(±i(N − k)a+, y) = iN B(N)k (c−(y)), k = 0, . . . , N , (3.15)

KN(x, ±i(N − k)a+) = iN B(N)k (c−(x)), k = 0, . . . , N . (3.16)

Here, B(N)k (u) is a polynomial of degree k and parity (−)k with real coefficients, and the restrictions

ja+ /∈ a−N, j = 1, . . . , 2N , (3.17)

must be imposed for the degree-k property to hold true. In particular, from (3.8) we easily get

K1(±ia+, y) = 2s−(2ia+), K1(0, y) = 4s−(ia+)c−(y), (3.18)

and the restrictions a+ �= la−/2, l ∈ N, ensure that the coefficients do not vanish.
The above features can all be gleaned from Theorem II.1 in [14]. Finally, we also need the summation

identity

N∑
l=0

c(N)0l e−((N − 2l)y) =
N∏

j=1

2s−(y + ija+), (3.19)
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18 S. HAWORTH AND S. RUIJSENAARS

which results upon combining Eqs. (2.19)–(2.21) with Eq. (2.55) in [14]. From this we obtain a second
identity

N∑
l=0

c(N)Nl e−((N − 2l)y) = (−)N
N∏

j=1

2s−(y − ija+), (3.20)

by using c(N)Nl = c(N)0,N−l and relabelling.
We are now in the position to work out an explicit expression forψN(x, y) by using the above building

blocks. From this and the summation identities (3.19) and (3.20) we can then determine the asymptotic
behaviour of ψN(x, y). First, however, we do so for

EN(x, y) ≡ E((N + 1)a+; x, y), (3.21)

since this yields a simple template for the application of the above formulas.
From (2.26) we calculate

φ((N + 1)a+) = (−i)N+1e−(i(N + 1)Na+/2), (3.22)

and then (2.30) and (3.3) yield

EN(x, y) = e−(i(N + 1)Na+/2)(KN(x, y)− KN(x, −y))
/ N∏

j=1

4s−(x + ija+)s−(y + ija+). (3.23)

Combining (3.6) and (3.7) with (3.19), it is now easy to verify

EN(x, y) = eiπxy/a+a− − uN(−y)e−iπxy/a+a− + O(e−(−2x)), Re x → ∞, (3.24)

where

uN(z) ≡ u((N + 1)a+; z) =
N∏

j=1

s−(ija+ + z)

s−(ija+ − z)
, (3.25)

and where the implied constant can be chosen uniformly for Im x varying over R-compacts and y varying
over compact subsets of C with the y-poles removed. This agrees with the specialization of (2.32), and
by using (3.20) we readily obtain a more precise version of (2.33) as well.

Turning to ψN(x, y), we begin by defining a weight function wN(x) that plays the role of w(r) in
Appendix A. It is given by (recall (3.4))

wN(x) ≡ 1/w̃((N + 1)a+; x) = 1
/ N∏

j=0

4s−(x + i(j + 1/2)a+)s−(x − i(j + 1/2)a+). (3.26)

Next, we introduce a function vN(y) that corresponds to the function v(k) from Appendix B. To ease the
notation, we define its reciprocal:

1/vN(y) ≡ 2s−(y − i(N + 1)a+)c(((N + 1)a+; −y)
N∏

j=−N

2s−(y + ija+). (3.27)

 by guest on A
ugust 26, 2016

http://integrablesystem
s.oxfordjournals.org/

D
ow

nloaded from
 

http://integrablesystems.oxfordjournals.org/


HILBERT SPACE THEORY FOR RELATIVISTIC DYNAMICS WITH REFLECTION. 19

Using (3.3) and simplifying, this yields

vN(y) = 1
/ N+1∏

j=1

2is−(y − ija+). (3.28)

From (2.16) we now obtain, using the above formulas,

ψN(x, y) = (−)N iN+1wN(x)
1/2vN(y)

×
∑
δ=+,−

2δs−(x − iδ(N + 1/2)a+)e−(δ(i(N + 1)a+ − y)/2)

×
(

exp(iπxy/a+a−)e−(−δy/2)�N(x + iδa+/2, y)− (y → −y)
)

. (3.29)

As a check, note this coincides with (2.22) for N = 0.
We proceed to derive properties of ψN(x, y) from these explicit formulas. A first conclusion is that

we have

ψN(x, y) = ψN(x, −y), (x, y) ∈ R
2. (3.30)

Indeed, this readily follows by combining (3.26)–(3.29) with the conjugation relation (3.12) for �N .
Next, we obtain the large-|Re x| asymptotics of ψN(x, y). Just as for EN(x, y), the identities (3.19)

and (3.20) are the key ingredients. A little more effort is needed due to the extra factors, but it is still
straightforward to deduce

ψN(x, y) =
{

tN(y)eiπxy/a+a− + O(e−(−2x)), Re x → ∞,
eiπxy/a+a− − rN(y)e−iπxy/a+a− + O(e−(2x)), Re x → −∞,

(3.31)

with

tN(y) ≡ s−(y)
s−(i(N + 1)a+ − y)

uN(y), rN(y) ≡ s−(i(N + 1)a+)
s−(i(N + 1)a+ − y)

uN(y), (3.32)

where the implied constants can be chosen uniformly for Im x varying over R-compacts and y varying
over C-compacts with the y-poles removed. This renders the dominant general-b asymptotics given
by (2.34)–(2.39) more precise.

We can also use the dual versions of (3.19)–(3.20) (i.e., y → x and c0l/cNl → cl0/clN ) to obtain the
large-|Re y| asymptotics of ψN(x, y). This again needs a bit of work, the result being

ψN(x, y) =
{

wN(x)1/2CN(x) exp(iπxy/a+a−)+ O(e−(−y)), Re y → ∞,
wN(x)1/2CN(x) exp(iπxy/a+a−)+ O(e−(y)), Re y → −∞,

(3.33)

where

CN(x) ≡ (−)N+1e−(i(N + 1)2a+/2)
N∏

j=0

2s−(x + i(j + 1/2)a+), (3.34)
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20 S. HAWORTH AND S. RUIJSENAARS

and the implied constants are uniform for Im y in R-compacts and x varying over C-compacts with the
x-singularities removed. Thus we obtain a reflectionless asymptotics of the form

ψN(x, y) ∼ UN(x)
±1/2 exp(iπxy/a+a−), Re y → ±∞, (3.35)

with

UN(x) ≡ e−(i(N + 1)2a+)
N∏

j=0

s−(x + i(j + 1/2)a+)
s−(x − i(j + 1/2)a+)

. (3.36)

We stress that there are no restrictions on a+ and a− in (3.31)–(3.36), save for our standing positivity
assumption. This reveals a major flaw of time-independent (as opposed to time-dependent) scattering
theory in the present setting: The unitary asymptotics exhibited by these formulas does not show any
anomaly. However, as we shall see later on, we must restrict the scale parameters for (a suitable multiple
of) ψN(x, y) to yield the integral kernel of a unitary eigenfunction transform.

In order to clarify the unitarity issue (‘orthogonality and completeness’ in quantum-mechanical par-
lance), we rely on the results in the appendices. To make contact with their setup, we need to verify the
various assumptions made there. To this end we rewrite (3.29) as

ψN(x, y) = wN(x)
1/2vN(y)

∑
τ=+,−

�τN(x, y) exp(iτπxy/a+a−), (3.37)

so that we obtain entire coefficients

�τN(x, y) = (−)N iN+1τ
∑
δ=+,−

2δs−(x − iδ(N + 1/2)a+)

× e−(δ(i(N + 1)a+ − y)/2)e−(−δτy/2)�N(x + iδa+/2, τy). (3.38)

From this we read off the (anti)periodicity features

�τN(x + ia−, y) = (−)N+1�τN(x, y), τ = +, −, (3.39)

�τN(x, y + ia−) = τ(−)N+1�τN(x, y), τ = +, −. (3.40)

Also, from (3.26) it is clear that wN(x) is ia−-periodic, while (3.28) shows that we have

vN(y + ia−) = (−)N+1vN(y). (3.41)

When we now make the substitutions (1.41), then it follows from this that the assumptions in Appen-
dices A and B concerning periodicity/antiperiodicity in the variables r and k are satisfied. Likewise,
(A.11) is clear from (3.30), and the assumptions regarding asymptotic behaviour in r and k are satisfied,
too. Finally, we show that the critical evenness assumptions hold true.

Proposition 3.1 With the substitutions (1.41) in �±
N (x, y) (3.38) and vN(y) (3.28), the evenness

assumptions (B.19) and (A.25) hold true.
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HILBERT SPACE THEORY FOR RELATIVISTIC DYNAMICS WITH REFLECTION. 21

Proof. Staying with the variables x and y, (B.19) amounts to invariance of

Lτ ,τ ′
N (y, x, x′) ≡ �τN(x, y)�τ

′
N (x

′, −y)+ �−τ
N (−x, y)�−τ ′

N (−x′, −y), (3.42)

under taking y, x, x′ → −y, −x, −x′. To check this symmetry property, we suppress the subscripts in (3.38)
and use the notation

ηN ≡ i(N + 1/2)a+, ν = i(N + 1)a+/2. (3.43)

Then, (3.38) entails

�τ (x, y)�τ
′
(x′, −y) ∼ ττ ′ ∑

δ,δ′
δδ′s(x − δηN)s(x

′ − δ′ηN)�(x + δη0, τy)�(x′ + δ′η0, −τ ′y)

× e((δ′τ ′ − δτ)y/2)e((δ + δ′)ν)e((δ′ − δ)y/2). (3.44)

From this we deduce by using (3.11),

Lτ ,τ ′
N (y, x, x′) ∼

∑
δ,δ′
δδ′s(x − δηN)s(x

′ − δ′ηN)�(x + δη0, τy)�(x′ + δ′η0, −τ ′y)

× e((δ′τ ′ − δτ)y/2)
[
e((δ + δ′)ν)e((δ′ − δ)y/2)+ (δ, δ′ → −δ, −δ′)

]
=

∑
δ

s(x − δηN)s(x
′ − δηN)�(x + δη0, τy)�(x′ + δη0, −τ ′y)e(δ(τ ′ − τ)y/2) · 2c(2ν)

−
∑
δ

s(x − δηN)s(x
′ + δηN)�(x + δη0, τy)�(x′ − δη0, −τ ′y)e(−δ(τ ′ + τ)y/2) · 2c(y).

(3.45)

Invoking (3.11) once more, we now see that both sums are invariant under taking y, x, x′ to −y, −x, −x′.
Having verified (B.19), the weaker assumptions (A.25) follow, too. �

As promised below (2.16), we conclude this section by deriving explicit expressions for the attractive
eigenfunctions ψ((N + 1)a−; x, y) with N > 0, and comparing them to Section 4 in [6]. (Recall we
already calculated ψ(a−; x, y), cf. (2.24).) To this end we can make use of (3.3) and (3.5)–(3.7) with a+
and a− swapped, whereas (3.4) is replaced by

w̃((N + 1)a−; x) = 2c+(x)
N∏

j=−N

2c+(x − ija−). (3.46)

Employing these formulas in combination with (2.16), we obtain

ψ((N + 1)a−; x, y) = exp(iπxy/a+a−)

×
∑N

k,l=0(−)kc(N)kl (e+(ia−))e+((N − 2k)x + (N − 2l)y))∏N
j=1 2s+(y − ija−)[4c+(x − ija−)c+(x + ija−)]1/2

. (3.47)
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22 S. HAWORTH AND S. RUIJSENAARS

We point out that these functions are not only joint eigenfunctions of H̃((N +1)a−; x) and S((N +1)a−; y)
(cf. (2.14) and (2.15)), but also of the two ‘free’ A�Os

exp(−ia+∂x)+ exp(ia+∂x), exp(−ia+∂y)+ exp(ia+∂y). (3.48)

(Indeed, the functions multiplying the plane wave are ia+-periodic in x and y.) By contrast, for other
b-values no additional independent A�Os appear to exist for which ψ(b; x, y) are eigenfunctions.

The connection with the functions Fa(ν,β; x, p) given by Eq. (1.32) of [6] can be made by setting

a+ = π/ν, a− = �β, y = βp/ν. (3.49)

Then the dimensionless parameter a = �βν used there equals πa−/a+, and the coefficient matrices are
related by

(−)mc(N)mn (e+(ia−)) = iN c(a)mn , m, n = 0, . . . , N , (3.50)

cf. Eq. (1.39) in [6]. With these reparametrizations, we wind up with the relation

Fa(ν,β; x, p) = (−i)Nψ((N + 1)a−; x, y)
N∏

j=1

[s+(y − ija−)/s+(y + ija−)]1/2. (3.51)

We mention that in [29] these reflectionless eigenfunctions were tied in with basic hypergeometric
series. It is an interesting question whether this link can still be made for the eigenfunctions ψ((N +
1)a+; x, y).

4. The transforms associated with ψN(x, y)

In this section we focus on the Hilbert space aspects of the opposite-charge A�Os

H̃N(x) ≡ H̃((N + 1)a+; x) = exp(−ia−∂x)+ exp(ia−∂x), (4.1)

SN(y) ≡ S((N + 1)a+; y) = exp(−ia−∂y)− exp(ia−∂y), (4.2)

(cf. (1.37) and (2.11)), and their joint eigenfunctions ψN(x, y) (3.29). To this end we invoke the results
in Appendices A and B, with ψN(x, y) (reparametrized by (1.41)) in the role of �(r, k). We are entitled
to do so, since we have shown in the previous section that the assumptions made there are satisfied for
generic scale parameters a+, a−. We have not isolated the exceptional parameters yet, and now proceed
by studying this issue.

To start with, it easily follows from (3.29) that the transform resulting from (A.5) to (A.8) is bounded
whenever wN(x) and vN(y) have no pole at the origin. Indeed, the integral kernels are then given by a
finite sum of terms of the form

B(r) exp(iτ rk)B̂(k), τ ∈ {+, −}, (4.3)

where B(r) and B̂(k) are bounded functions on R and [0, ∞), respectively. Clearly, each such term gives
rise to a product of three bounded operators.
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HILBERT SPACE THEORY FOR RELATIVISTIC DYNAMICS WITH REFLECTION. 23

The only eventual constraint on a+ and a− encountered thus far comes from the condition ‘no poles
at the origin’ just mentioned. We are using the adjective ‘eventual’, since we do not know whether it can
ever happen that the wave function ψ(b; x, y) itself has a pole for x = 0 or y = 0. We can illustrate this
with ψ0(x, y) (2.22): Its factors are singular at the origin if and only if a+ ∈ a−N

∗, but in fact we easily
calculate

ψ0(x, y) = (−)l−1 exp(iπxy/a+a−), a+ = la−, l ∈ N
∗. (4.4)

More generally, whenever the parameter b is simultaneously a multiple of a+ and of a− (so that
the factors of ψN(x, y) have poles at the origin), the function ψN(x, y) is actually a (constant) phase
multiple of the plane wave exp(iπxy/a+a−). This can be concluded from the features of the functions
Fa(ν,β; x, p) (3.51) expounded at the end of Section 4 in [6].

Fortunately our ignorance about this absence of real poles is of little consequence, as we now explain.
First, it is clear from its definition (3.26) that wN(x) has no real poles for

a− > (N + 1/2)a+ = b − a+/2. (4.5)

For the remainder of this section, we restrict attention to this parameter interval. As we shall show in
the next one, for a− ≤ (N + 1/2)a+ the transform associated with ψN(x, y) is not isometric, save for a
discrete parameter set, hence not acceptable from a quantum-mechanical viewpoint.

Second, from (3.28) we read off that vN(y) has no real poles for a− > (N +1)a+. For a− = (N +1)a+,
however,ψN(x, y) reduces to the plane wave (2.24), so the corresponding transform amounts to the Fourier
transform. For the remaining interval a− ∈ ((N +1/2)a+, (N +1)a+)we do not get any real poles in vN(y),
so the upshot is that there is no real pole problem for the parameters (4.5) at issue in this section.

In Appendices A and B, however, we have additional assumptions concerning poles, which amount
to the poles of the weight functions wN(x) and vN(y)vN(−y) being simple. Clearly, in the interval (4.5)
wN(x) has double poles in the critical strip Im x ∈ (0, a−) whenever the poles at x = i(j + 1/2)a+,
j = 0, . . . , N , collide with the poles at x = ia− − i(k + 1/2)a+, k = 0, . . . , N . However, this is of no
consequence for the first major result of this section.

Theorem 4.1 With the parameter restriction (4.5) in effect, the transform FN(ρ, κ) given by (A.5)–(A.8)
with kernel

�(r, k) = ψN(a−r/ρ, a−k/κ), ρκ = πa−/a+, (4.6)

is an isometry.

Proof. The requirement (4.5) amounts to

ρκ ∈ ((N + 1/2)π , ∞). (4.7)

There is a finite set EN of exceptional ρκ-values in this interval for which at least one pole of (cf. (3.26))

w(r) = 1
/ N∏

j=0

4 sinh
(π
ρ

(
r + i(j + 1/2)

π

κ

))
sinh

(π
ρ

(
r − i(j + 1/2)

π

κ

))
, (4.8)
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24 S. HAWORTH AND S. RUIJSENAARS

is not simple. But the bounded multiplication operators featuring in the transform kernel (cf. (4.3)) are
clearly strongly continuous in ρ on the whole interval (4.7), so the same is true for the transform FN(ρ, κ).
Thus we need only show isometry for the non-exceptional subintervals to conclude isometry for all
of (4.7).

To prove isometry for

ρκ ∈ ((N + 1/2)π , ∞) \ EN , (4.9)

we may invoke Theorem A.1, since all of its assumptions are satisfied, with L equal to N + 1. In view
of its Corollary A.2, it suffices to show that each of the N + 1 terms in the sum on the RHS of (A.61)
vanishes.

To this end, consider the dependence on the indices ν and ν ′ of one of the terms. For it to vanish,
it is sufficient that the bracketed expression on the second line of (A.61) is proportional to νν ′. Indeed,
assuming it is, we can invoke the identity (A.70) to infer that the term vanishes.

Now in the case at hand, we have

μτ(ρx/a−, κy/a−) = vN(y)�
τ
N(x, y) exp(iτπxy/a+a−), τ = +, −, (4.10)

where �τN(x, y) is given by (3.38). Recalling (3.6), we see that the only dependence on τ comes from the
factor

τKN(x + iδa+/2, τy). (4.11)

Moreover, for the present case we may choose as pole locations

rj ≡ iπ(j + 1/2)/κ ⇔ xj ≡ i(j + 1/2)a+, j = 0, . . . , N . (4.12)

Thus we only encounter the values

KN(±ima+, τy), m = 0, . . . , N + 1, (4.13)

with the case m = N + 1 corresponding to xN and δ = +. In the latter case, however, the factor s−(x −
iδ(N + 1/2)a+) in (3.38) vanishes.

With the parameter restrictions (3.17) in force, we can invoke (3.15) to conclude that the values (4.13)
with m < N + 1 are even in y. By continuity this is still true for the excluded parameters. Hence these
values do not depend on τ .

The upshot is that the two μτ -products in (A.61) solely depend on ν and ν ′ via a factor νν ′, so that
all terms in the sum vanish. �

The proof of the above theorem only made use of Appendix A. To obtain the next theorem, we need
the results of Appendix B.
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HILBERT SPACE THEORY FOR RELATIVISTIC DYNAMICS WITH REFLECTION. 25

Theorem 4.2 Assume

a− ∈ [(N + 1)a+, ∞). (4.14)

Then the transform FN(ρ, κ) of Theorem 4.1 is unitary.

Proof. By Theorem 4.1 the transform is isometric, and it equals the Fourier transform at the interval
endpoint, cf. (2.24). Letting next

a− ∈ ((N + 1)a+, ∞) ⇔ ρκ ∈ ((N + 1)π , ∞), (4.15)

there is a finite set ÊN of exceptional ρκ-values in this interval for which at least one pole of (cf. (3.28))

ŵ(k) =
( N+1∏

j=1

4 sinh
(πk

κ
+ ij

π 2

ρκ

)
sinh

(πk

κ
− ij

π 2

ρκ

))−1
, (4.16)

is not simple. By continuity, we need only prove unitarity for

ρκ ∈ ((N + 1)π , ∞) \ ÊN . (4.17)

For such parameters all assumptions of Theorem B.1 are satisfied, with L̂ = N + 1.
As a consequence, it suffices to prove that each of the N + 1 terms on the RHS of (B.45) vanishes.

We choose as pole locations

kj ≡ iπ j/ρ ⇔ yj ≡ ija+, j = 1, . . . , N + 1. (4.18)

Now from (3.38) we get

λτN(x, y) ≡ exp(iτπxy/a+a−)�τN(x, y) = (−)N iN+1τ
∑
δ=+,−

2δs−(x − iδ(N + 1/2)a+)

× e−(δ(i(N + 1)a+ − y)/2)KN(x + iδa+/2, τy). (4.19)

The dependence on τ and τ ′ of the two λ-products in (B.45) is therefore given by an overall factor ττ ′

and by the arguments of the two KN -functions. But just as in the previous proof, it follows from (3.16)
that the values

KN(x, ±τ ija+), j = 1, . . . , N , (4.20)

do not depend on τ . In view of the identity (A.70) with A, A′ → iA, iA′, we then deduce that the terms in
the sum on the RHS of (B.45) vanish for j = 1, . . . , N .

Next, we set

�
τ ,τ ′
N (y, x, x′) ≡ λτN(x, y)λτ

′
N (x

′, −y)+ λ−τ
N (−x, y)λ−τ ′

N (−x′, −y)

= Lτ ,τ ′
N (y, x, x′) exp(iπ(τx − τ ′x′)y/a+a−), (4.21)
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26 S. HAWORTH AND S. RUIJSENAARS

and consider �τ ,τ ′
N (yN+1, x, x′). From (4.19) we get

�
τ ,τ ′
N (yN+1, x, x′) = (−)N+18ττ ′c−(i(N + 1)a+)

∑
δ,δ′=+,−

δδ′s−(x − iδ(N + 1/2)a+)

× s−(x′ − iδ′(N + 1/2)a+)KN(x + iδa+/2, τyN+1)KN(x
′ + iδ′a+/2, −τ ′yN+1),

(4.22)

where we have used (3.11) to rewrite the second λ-product. (Note that this agrees with (3.45).)
Invoking (4.19) once more, this can be rewritten as

�
τ ,τ ′
N (yN+1, x, x′) = −2c−(i(N + 1)a+)λτN(x, i(N + 1)a+)λ−τ ′

N (x′, i(N + 1)a+). (4.23)

We continue by evaluating λτN(x, i(N + 1)a+) explicitly. First, from (4.19) we have

λτN(x, i(N + 1)a+) = (−i)N+1τpN , (4.24)

where we have introduced

pN ≡ 2
∑
ν=+,−

νs−(x + iν(N + 1/2)a+)KN(x − iνa+/2, iτ(N + 1)a+). (4.25)

We are suppressing the manifest τ - and x-dependence of the entire functions on the RHS for the new
quantity pN , since it does not depend on these variables. We shall prove this claim shortly. Taking it for
granted, we may take x = i(N + 1/2)a+ and invoke (3.14) to obtain the product formula

pN =
2N+1∏

j=N+1

2s−(ija+). (4.26)

Hence we have

λτN(x, i(N + 1)a+) = τ

2N+1∏
j=N+1

2 sin(π ja+/a−), (4.27)

so that

�
τ ,τ ′
N (yN+1, x, x′) = 2ττ ′ cos(π(N + 1)a+/a−)

2N+1∏
j=N+1

4 sin(π ja+/a−)2. (4.28)

Thus the j = N + 1 term in the sum on the RHS of (B.45) vanishes, too, and the theorem follows.
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It remains to prove our constancy claim. To this end, consider the x-dependence of the sum S(x) on
the RHS of (4.25). It is clear from the definitions (3.6) and (3.7) that S(x) has period 2ia−. Next, we have

S(x + ia+/2)− S(x − ia+/2)

= s−(x + i(N + 1)a+)KN(x, τyN+1)− s−(x − iNa+)KN(x + ia+, τyN+1)

− s−(x + iNa+)KN(x − ia+, τyN+1)+ s−(x − i(N + 1)a+)KN(x, τyN+1), (4.29)

so from the A�E (3.13) we deduce that the RHS equals

(
s−(x + i(N + 1)a+)+ s−(x − i(N + 1)a+)− 2s−(x)c−(yN+1)

)
KN(x, τyN+1) = 0. (4.30)

Therefore S(x) has period ia+, too. Taking a+/a− irrational, it follows that S(x) is constant. By virtue of
real-analyticity in x, a+, a−, it then follows that S(x) can only depend on a+ and a−, and so our claim is
proved. �

For parameters satisfying (4.14), this theorem enables us to promote the A�Os (4.1) and (4.2) to
self-adjoint Hilbert space operators. Indeed, for this parameter range all assumptions of Appendix D are
satisfied, so that we may associate to H̃N(x) the operator MCM (cf. (D.9) and (D.10)), and to SN(y) the
operator D̂CM (cf. (D.53) and (D.54)). From this the following result is nearly immediate.

Corollary 4.3 Assume a+, a− satisfy (4.14). Then the self-adjoint operator MCM associated to the A�O
H̃N(x) has absolutely continuous spectrum [2, ∞) with multiplicity two, whereas the self-adjoint oper-
ator D̂CM associated to the A�O SN(y) has absolutely continuous spectrum (−∞, ∞) with multiplicity
one.

Proof. Indeed, the unitary transform and its adjoint intertwine the respective operators with multiplication
operators for which these spectral features are plain. �

Even though the action of the above operators on the functions in their domains is just the free A�O
action, they are quite different from the Hilbert space versions of the A�Os defined via the Fourier
transform F0, as evidenced by the non-trivial S-operators at hand.

A further comment on this distinction may be in order: it arises from the vastly different definition
domains. In particular, viewing MCM as a self-adjoint operator on L2(R, dx) by undoing the reparametriza-
tion (1.41), its definition domain consists of functions that have an analytic continuation to the strip
|Im x| < a−, but the locations of their square-root branch points for x ∈ i(−a−, a−) (which can be read
off from the pertinent eigenfunction transform) entail that a pairwise intersection of domains for differ-
ent parameters consists of the zero function. This domain behaviour is radically different from that for
a pair of distinct Hilbert space versions D̂1, D̂2 of the same free (i.e., constant-coefficient) differential
operator D. Indeed, typically their Hilbert space domains are encoded in distinct boundary conditions,
so that the domain intersection is still a dense subspace, but neither a core for D̂1 nor for D̂2.

We proceed with the last theorem of this section.

Theorem 4.4 Letting

a− ∈ ((N + 1/2)a+, (N + 1)a+), (4.31)
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28 S. HAWORTH AND S. RUIJSENAARS

the transform FN(ρ, κ) of Theorem 4.1 satisfies

FN(ρ, κ)∗FN(ρ, κ) = 1Ĥ, FN(ρ, κ)FN(ρ, κ)∗ = 1H −�N ⊗�N/(�N ,�N)1. (4.32)

Here, we have

�N(r) ≡ 2 cosh(κr)wN(a−r/ρ)1/2, (4.33)

with wN(x) defined by (3.26), and the inner product is given by

(�N ,�N)1 = (−)N+1
π

∏N
j=1 sin(jπ 2/ρκ)

κ
∏2N+1

j=N+1 sin(jπ 2/ρκ)
, ρκ ∈ ((N + 1/2)π , (N + 1)π). (4.34)

Proof. Proceeding as in the Proof of Theorem 4.2, we choose again as simple pole locations in the strip
Im k ∈ (0, κ) the numbers

kj ≡ ijπ/ρ ⇔ yj ≡ ija+, j = 1, . . . , N , (4.35)

but now we need to choose

kN+1 ≡ i(N + 1)π/ρ − iκ ⇔ yN+1 ≡ i(N + 1)a+ − ia−, (4.36)

since we have (N + 1)π/ρ ∈ (κ , 2κ). Thus the residue terms with j = 1, . . . , N vanish as before, but we
need to reconsider the j = N + 1 contribution.

Now from (4.19) and (3.40) we obtain

λτN(x, y − ia−) = τ(−)N+1e+(τx)λτN(x, y), (4.37)

so (4.21) entails

�
τ ,τ ′
N (y − ia−, x, x′) = ττ ′e+(τx − τ ′x′)�τ ,τ ′

N (y, x, x′). (4.38)

On account of (4.28) we then get

�
τ ,τ ′
N (i(N + 1)a+ − ia−, x, x′) = 2e+(τx − τ ′x′) cos(π(N + 1)a+/a−)

2N+1∏
j=N+1

4 sin(π ja+/a−)2. (4.39)

The upshot is that the residue sum (B.45) reduces to

R(r, r ′) = 2iŵN+1 cos((N + 1)π 2/ρκ)

2N+1∏
j=N+1

4 sin(jπ 2/ρκ)2

×
∑

τ ,τ ′=+,−

exp(κ(τ r − τ ′r ′)
1 − ττ ′ exp(κ(τ ′r ′ − τ r))

. (4.40)
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HILBERT SPACE THEORY FOR RELATIVISTIC DYNAMICS WITH REFLECTION. 29

Next, from (4.16) we calculate

ŵN+1 = (−)N κ
iπ

sin((N + 1)π 2/ρκ)∏2N+2
j=1 2 sin(jπ 2/ρκ)

, (4.41)

and via the identity resulting from (B.62) and (B.63) we obtain the sum in (4.40). Simplifying, we get
the final result

R(r, r ′) = (−)N 4κ

π
cosh(κr) cosh(κr ′)

∏2N+1
j=N+1 sin(jπ 2/ρκ)∏N

j=1 sin(jπ 2/ρκ)
. (4.42)

From this we arrive at (4.32) and (4.34) by the same reasoning as for the special case N = 0, cf.
(B.64)–(B.69). �

To conclude this section, we derive further information concerning the bound state �N(r) given
by (4.33). It is expedient to do so in its guise (cf. (1.41))

ψN(x) ≡ �N(ρx/a−) = 2c+(x)wN(x)
1/2

= 2c+(x)
/ N∏

j=0

[
4s−(x − i(j + 1/2)a+)s−(x + i(j + 1/2)a+)

]1/2
. (4.43)

Let us consider the poles of ψN(x, y) in the strip Im y ∈ (0, a−). Recalling (3.28) and (3.29), we see that
poles of ψN(x, y) can only occur at the locations y ≡ ija+ (mod ia−), with j = 1, . . . , N + 1.

Requiring first a− ∈ ((N + 1)a+, ∞), it follows that the only eventual pole locations in the critical
strip are the numbers

yj := ija+, j = 1, . . . , N + 1. (4.44)

Now ψN(x, y) has factors KN(x ± ia+/2, y)− KN(x ± ia+/2, −y) (cf. (3.29)), and on account of (3.16),
these factors vanish at yj for j = 1, . . . , N . Therefore ψN(x, y) is regular at y1, . . . , yN . Next, we recall that
we have

ψN(x, y) = wN(x)
1/2vN(y)

∑
τ=+,−

λτN(x, y). (4.45)

In view of the identity (4.24), this entails that ψN(x, y) is regular at yN+1 as well.
The upshot is that ψN(x, y) is holomorphic in the critical strip Im y ∈ (0, a−) for the a−-interval

featuring in Theorem 4.2. (Recall ψN(x, y) is equal to the plane wave (2.24) at the endpoint.)
For the a−-interval (4.31) of Theorem 4.4, however, the pole locations y1, . . . , yN are still in the critical

strip, whereas yN+1 is not. Obviously, ψN(x, y) is still regular at y1, . . . , yN . But now we also have a pole
of vN(y) in the strip at yN+1 − ia−. We can determine its residue by combining (4.37) and (4.24). Indeed,
from these identities we deduce

λτN(x, yN+1 − ia−) = iN+1pN e+(τx), τ = +, −. (4.46)
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30 S. HAWORTH AND S. RUIJSENAARS

Therefore, the residue is proportional to the bound state (4.43). To be specific, from (3.28) we calculate

Res vN(y)
∣∣∣

y=yN+1−ia−
= iN+1a−/π

N∏
j=1

2s−(ija+), (4.47)

and together with (4.26) this yields

Res ψN(x, y)
∣∣∣
y=yN+1−ia−

= (−)N+1
ia−

∏2N+1
j=N+1 sin(ja+/a−)

π
∏N

j=1 sin(ja+/a−)
ψN(x). (4.48)

The eigenvalue of the A�O H̃N(x) (4.1) on ψN(x) (4.43) is therefore given by

2c+(i(N + 1)a+ − ia−) = 2(−)N+1 cos(πa−/a+). (4.49)

(This can be easily checked directly.) Of course, we define the operator on L2(R, dx) associated to H̃N(x)
to have the same eigenvalue, and then the last result of this section easily follows.

Corollary 4.5 Assuming (4.31), the self-adjoint operator associated to H̃N(x) has a non-degenerate
positive eigenvalue

EN ≡ 2(−)N+1 cos(πa−/a+) ∈ (0, 2), a− ∈ ((N + 1/2)a+, (N + 1)a+), (4.50)

below its absolutely continuous spectrum [2, ∞) with multiplicity 2. The corresponding eigenfunc-
tion ψN(x) (4.43) has norm given by (4.34).

In view of Theorems D1, 4.2 and 4.4, the self-adjoint Hamiltonian on L2(R, dx) associated to the A�O
H̃N(x) yields a well-defined time-dependent scattering theory for a− > (N + 1/2)a+, with its S-operator
encoded in the transmission and reflection coefficients tN(y) and rN(y) given by (3.32) and (3.25). Note
that the ‘Jost function’ ψN(x, y)/tN(y) converges to a multiple of the bound state (4.43) as y converges to
i(N + 1)a+ − ia−.

5. Isometry breakdown

As we have seen in the Proof of Theorem 4.3, the reason for the transform F not being unitary is the
presence of a non-zero residue term. It emerges when a− decreases beyond the critical value (N + 1)a+,
at which the transform reduces to the Fourier transform F0. Since the adjoint F∗ of F is not isometric
for a− ∈ ((N + 1/2)a+, (N + 1)a+), we can no longer use F∗ to associate a self-adjoint operator to
SN(y) (4.2). Even so, since F is still an isometry in this a−-interval, F∗ is still a partial isometry.

As we shall make clear in this section, for generic a− ∈ (0, (N+1/2)a+) isometry of the eigenfunction
transform F breaks down, so that we cannot use it any longer to associate a self-adjoint operator to
H̃N(x) (4.1). This is due to non-zero residue terms that emerge when the numbers (cf. (4.12))

xj := i(j + 1/2)a+, j = 0, . . . , N , (5.1)

move out of the strip Im x ∈ (0, a−) as a− decreases. More precisely, the non-zero terms are spawned
by poles xj − inja−, with nj > 0 chosen such that these locations are in the critical strip. (Except for
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HILBERT SPACE THEORY FOR RELATIVISTIC DYNAMICS WITH REFLECTION. 31

the N = 0 case, we do not consider the a−-values such that the origin is among the locations xj − ila−,
l ∈ N

∗.)
We proceed to analyse the state of affairs for the N = 0 case in complete detail. (On first reading,

the reader may wish to skip to Proposition 5.1, in which the results are summarized.) We first recall that
the transform F0(ρ, κ) of Theorem 4.1 equals the transform F+(φ0) of Proposition B.3, and that we have
special cases

F0(ρ, κ) = (−)l−1F0, a− = a+/l ⇔ ρκ = π/l, l ∈ N
∗, (5.2)

cf. (4.4). Thus the transform is not only isometric for a+ < 2a−, but also for a+ equal to an arbitrary
multiple of a−.

Consider now the remaining ρκ-intervals

I−
n ≡

( π

2n + 2
,

π

2n + 1

)
, I+

n ≡
( π

2n + 1
,
π

2n

)
, n ∈ N

∗. (5.3)

We have (cf. (B.64))

w0(r) = 1
/

4 sinh
(π
ρ

(
r + i

π

2κ

))
sinh

(π
ρ

(
r − i

π

2κ

))
, (5.4)

so we get a simple w0(r)-pole in the critical strip Im r ∈ (0, ρ) at the location

r(n)1 := iπ/2κ − inρ �= iρ/2, (5.5)

with residue

w1 = −iρ

4π sin(π 2/ρκ)
. (5.6)

Also, from (B.70) we read off the summands μ±(r, k), and then a straightforward calculation yields

μτ(δr(n)1 , k) = τ(−)n+1 exp(δτnρk) sinh
(
iπ 2/ρκ

)exp
(
δ(πk/2κ − iπ 2/2ρκ)

)
sinh(πk/κ − iπ 2/ρκ)

. (5.7)

Therefore, the residue sum (A.61) becomes

R̂δ,δ′(k, k′) = ρ sin(π 2/ρκ)ŝn(k, k′)
4π sinh

(
πk/κ + iπ 2/ρκ

)
sinh

(
πk′/κ − iπ 2/ρκ

)

×
(

exp
(
δ
(πk

2κ
+ iπ 2

2ρκ

)
− δ′

(πk′

2κ
− iπ 2

2ρκ

))
+ (δ, δ′ → −δ, −δ′)

)
, (5.8)
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32 S. HAWORTH AND S. RUIJSENAARS

where

ŝn(k, k′) ≡
∑

ν,ν′=+,−

νν ′ exp(nρ(νk − ν ′k′))
1 − exp(ρ(ν ′k′ − νk))

= sinh((n + 1/2)ρ(k − k′))
sinh(ρ(k − k′)/2)

− sinh((n + 1/2)ρ(k + k′))
sinh(ρ(k + k′)/2)

. (5.9)

Now we have a recurrence

(ŝn − ŝn−1)(k, k′) = 2 cosh(nρ(k − k′))− 2 cosh(nρ(k + k′))

= −4 sinh(nρk) sinh(nρk′), (5.10)

whence we easily deduce

ŝn(k, k′) = −4
n∑

j=1

sinh(jρk) sinh(jρk′). (5.11)

Introducing

χ
(α,j)
δ (k) ≡ sinh(jρk)

sinh(πk/κ + iπ 2/ρκ)
exp

(
αδ

(πk

2κ
+ iπ 2

2ρκ

))
, α, δ = +, −, (5.12)

we therefore obtain

R̂δ,δ′(k, k′) = −ρ sin(π 2/ρκ)

π

∑
α=+,−

n∑
j=1

χ
(α,j)
δ (k)χ(−α,j)

δ′ (k′). (5.13)

Finally, we use the parity operator P̂ (D.36) to first substitute

χ(−,j) = −P̂χ(+,j), (5.14)

and then we rewrite (5.13) in terms of the even and odd functions

χ(e,j)(k) ≡ χ(+,j)(k)+ P̂χ(+,j)(k)

= sinh(jρk)

cosh(πk/2κ + iπ 2/2ρκ)

(
1

−1

)
, k > 0, (5.15)

χ(o,j)(k) ≡ χ(+,j)(k)− P̂χ(+,j)(k)

= sinh(jρk)

sinh(πk/2κ + iπ 2/2ρκ)

(
1
1

)
, k > 0. (5.16)
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As a result, we obtain the manifestly self-adjoint rank-(2n) kernel

R̂δ,δ′(k, k′) = ρ sin(π 2/ρκ)

2π

n∑
j=1

(
χ
(e,j)
δ (k)χ(e,j)

δ′ (k′)− χ
(o,j)
δ (k)χ(o,j)

δ′ (k′)
)

, (5.17)

with δ, δ′ = +, −, and k, k′ > 0.
We continue by calculating the residue sum R(r, r ′) (B.45). The dual weight function is given by

ŵ0(k) = 1
/

4 sinh
(π
κ

(
k + i

π

ρ

))
sinh

(π
κ

(
k − i

π

ρ

))
, (5.18)

and we consider its simple poles in the critical strip Im k ∈ (0, κ) of the form

k(m)1 = iπ/ρ − imκ �= iκ/2, m ∈ N
∗, (5.19)

with residue

ŵ1 = −iκ

4π sin(2π 2/ρκ)
. (5.20)

More specifically, we choose ρκ in the interval (cf. (5.3))

Im ≡
( π

m + 1
,
π

m

)
=

{
I+

m/2, m even,
I−
(m−1)/2, m odd,

(5.21)

with ρκ �= π/(m + 1/2) to avoid the double pole location. Using (B.64) we calculate

λ+(r, k(m)1 ) = 2(−)memκr sin(π 2/ρκ), (5.22)

λ+(r, −k(m)1 ) = 2(−)me−mκr
(

sin(2π 2/ρκ)− e2πr/ρ sin(π 2/ρκ)
)
, (5.23)

λ−(r, k(m)1 ) = −2 sin(π 2/ρκ)e−mκr , (5.24)

λ−(r, −k(m)1 ) = −2 sin(π 2/ρκ)emκre−2πr/ρ , (5.25)

and then the definition (B.46) yields

�τ ,τ (k(m)1 , r, r ′) = 4 sin(2π 2/ρκ) sin(π 2/ρκ) exp(τmκ(r − r ′)), (5.26)

�τ ,−τ (k(m)1 , r, r ′) = (−)m+14 sin(2π 2/ρκ) sin(π 2/ρκ) exp(τmκ(r + r ′)). (5.27)

(Note this checks with (4.28) for m = 0 and with (4.39) for m = 1.)
The residue sum R(r, r ′) (B.45) can therefore be written

R(r, r ′) = κ sin(π 2/ρκ)

π
w0(r)

1/2w0(r
′)1/2sm(r, r ′), (5.28)

 by guest on A
ugust 26, 2016

http://integrablesystem
s.oxfordjournals.org/

D
ow

nloaded from
 

http://integrablesystems.oxfordjournals.org/


34 S. HAWORTH AND S. RUIJSENAARS

where

sm(r, r ′) ≡
∑
τ=+,−

( exp(τmκ(r − r ′))
1 − exp(τκ(r ′ − r))

+ (−)m+1 exp(τmκ(r + r ′))
1 − exp(−τκ(r ′ + r))

= sinh((m + 1/2)κ(r − r ′))
sinh(κ(r − r ′)/2)

+ (−)m+1 cosh((m + 1/2)κ(r + r ′))
cosh(κ(r + r ′)/2)

. (5.29)

This sum obeys the recurrence

(sm − sm−1)(r, r ′) = 2 cosh(mκ(r − r ′))+ (−)m+12 cosh(mκ(r + r ′))

=
{ −4 sinh(mκr) sinh(mκr ′), m even,

4 cosh(mκr) cosh(mκr ′), m odd,
(5.30)

whose unique solution reads

sm(r, r ′) =
m−1∑
j=0

(−)jhj(r)hj(r
′), (5.31)

with

hj(r) =
{

2 sinh(jκr), j odd,
2 cosh(jκr), j even.

(5.32)

As a consequence, we obtain the manifestly self-adjoint rank-m kernel

R(r, r ′) = κ sin(π 2/ρκ)

π

m−1∑
j=0

(−)j�(j)(r)�(j)(r ′), ρκ ∈ Im \ {π/(m + 1/2)}, (5.33)

where

�(j)(r) ≡ hj(r)w0(r)
1/2. (5.34)

We now summarize the above N = 0 results.

Proposition 5.1 Letting ρκ ≤ π/2, the transform F0(ρ, κ) = F+(φ0) of Proposition B3 has the
following properties. For ρκ in the intervals I−

n and I+
n defined by (5.3), it satisfies

F0(ρ, κ)∗F0(ρ, κ) = 1Ĥ + ρ sin(π 2/ρκ)

2π

n∑
j=1

(
χ(e,j) ⊗ χ(e,j) − χ(o,j) ⊗ χ(o,j)

)
, (5.35)

with χ(e,j)/χ(o,j) given by (5.15)/(5.16). For ρκ in the interval Im (5.21), it satisfies

F0(ρ, κ)F0(ρ, κ)∗ = 1H + κ sin(π 2/ρκ)

π

m−1∑
j=0

(−)j�(j) ⊗�(j), (5.36)
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with �(j) defined by (5.34) and (5.32). Furthermore, at the interval endpoints we have

F0(ρ, κ) = (−)m−1F0, ρκ = π/m, m = 2, 3, . . . , (5.37)

where F0 is the Fourier transform.

Proof. We obtain (5.35) from Theorem A1 and (5.17). Likewise, (5.36) follows from Theorem B1
and (5.33), except at the midpoint of Im, at which ŵ0(k) (5.18) has a double pole. However, the pole
on the RHS of (5.20) is cancelled by a zero coming from (5.26) to (5.27), so that R(r, r ′) is regular
for ρκ = π/(m + 1/2). By continuity, therefore, (5.36) holds on all of Im. Finally, (5.37) follows
from (4.4). �

For N > 0 we need to keep track of more than one pole moving out of the Im r- and Im k-strips as
a− decreases. We shall only detail the case where the ‘highest’ r-pole has moved out, so as to explicitly
reveal the isometry breakdown for the interval

a− ∈ (Na+, (N + 1/2)a+) ⇔ ρκ ∈ (Nπ , (N + 1/2)π). (5.38)

Thus we can still work with the pole locations rj (4.12) for j = 0, . . . , N − 1, but now we need

r(1)N := iπ(N + 1/2)/κ − iρ ⇔ x(1)N := i(N + 1/2)a+ − ia−. (5.39)

From (3.6) and (3.7) we deduce

KN(δ(Na+ − ia−), y) = (−)N e+(δy)KN(δiNa+, y) = (−)N e+(δy)
2N∏

j=N+1

2s−(ija+), (5.40)

so via (4.19) we obtain

μτN(δx
(1)
N , y) = τvN(y)e+(δτy)e−(δ(y − i(N + 1)a+)/2)

2N+1∏
j=N+1

2is−(ija+). (5.41)

Recalling (3.28), this entails

μτN(δa−r(1)N /ρ, a−k/κ) = τ exp(δτρk) exp
(
δ
(
πk/2κ − i(N + 1)π 2/2ρκ

))

×
∏2N+1

j=N+1 sinh
(
ijπ 2/ρκ

)
∏N+1

j=1 sinh
(
πk/κ − ijπ 2/ρκ

) . (5.42)

As should be the case, this reduces to (5.7) for N = 0 and n = 1. Using the residue (cf. (4.8))

wN = ρ
(

2π
2N+1∏
j=1

2 sinh(ijπ 2/ρκ)
)−1

, (5.43)
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and following the same steps as for N = 0, this readily yields the arbitrary-N and n = 1 counterpart
of (5.35). Specifically, we obtain

FN(ρ, κ)∗FN(ρ, κ) = 1Ĥ + (−)N ρ
∏2N+1

j=N+1 sin(jπ 2/ρκ)

2π
∏N

j=1 sin(jπ 2/ρκ)

(
χ
(e,1)
N ⊗ χ

(e,1)
N − χ

(o,1)
N ⊗ χ

(o,1)
N

)
, (5.44)

with even and odd functions

χ
(e,1)
N (k) ≡ 1∏N

j=1 2 sinh(πk/κ + ijπ 2/ρκ)

× sinh(ρk)

cosh(πk/2κ + i(N + 1)π 2/2ρκ)

(
1

−1

)
, (5.45)

χ
(o,1)
N (k) ≡ 1∏N

j=1 2 sinh(πk/κ + ijπ 2/ρκ)

× sinh(ρk)

sinh(πk/2κ + i(N + 1)π 2/2ρκ)

(
1
1

)
. (5.46)

An inspection of the Proof of Theorem 4.3 reveals that the reasoning can be applied to the
interval (5.38) as well. This readily yields

FN(ρ, κ)FN(ρ, κ)∗ = 1H + (−)N κ
∏2N+1

j=N+1 sin(jπ 2/ρκ)

π
∏N

j=1 sin(jπ 2/ρκ)
�N ⊗�N , (5.47)

with �N given by (4.33) and (3.26). This concludes our account of isometry violation for the
interval (5.38).

The reader who has followed us to this point will realize that all ingredients are in place to handle the
intervals arising when a− is further decreased, but we shall not pursue this.

Appendix A. The transform F
Our general transform F involves two Hilbert spaces

H ≡ L2(R, dr), (A.1)

and

Ĥ ≡ L2((0, ∞), dk)⊗ C
2, (A.2)
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with inner products

(d, e)1 ≡
∫ ∞

−∞
dr d(r)e(r), d, e ∈ H, (A.3)

(f , g)2 ≡
∑
δ=+,−

∫ ∞

0
dk fδ(k)gδ(k), f , g ∈ Ĥ. (A.4)

(Physically speaking, these spaces can be thought of as the reduced position and momentum space of a
particle pair; the variables r and k are dimensionless and related to centre-of-mass position x = x1 − x2

and momentum p = p1 − p2 by r = νx and k = p/2�ν.) The transform is at first defined on the dense
Ĥ-subspace Ĉ of C

2-valued smooth functions f = (f+, f−) with compact support in (0, ∞), which are
assumed to be mapped into H:

F : Ĉ ≡ C∞
0 ((0, ∞))2 ⊂ Ĥ → H. (A.5)

Specifically, we have

(F f )(r) = 1√
2π

∫ ∞

0
dk

∑
δ=+,−

Fδ(r, k)fδ(k). (A.6)

The two transform kernels are defined in terms of one function �(r, k):

F+(r, k) = �(r, k), (A.7)

F−(r, k) = −�(−r, k). (A.8)

For the case of no interaction we have

�(r, k) = exp(irk), (A.9)

and then we denote the corresponding transform by F0. Thus, F0 amounts to the Fourier transform,
with f̂ ∈ L2(R, dk) corresponding to f ∈ Ĥ via

f̂ (k) =
{

f+(k), k > 0,
−f−(−k), k < 0.

(A.10)

(The phase of F− is a matter of convention, the minus sign being chosen for later purposes.)
We proceed with an initial list of assumptions on the function�(r, k). (This list will be supplemented

in Appendix B.) To begin with, we assume �(r, k) is a smooth function on R
2 that satisfies

�(r, k) = �(r, −k), (r, k) ∈ R
2, (A.11)
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38 S. HAWORTH AND S. RUIJSENAARS

and is of the form

�(r, k) = w(r)1/2
∑
τ=+,−

mτ (r, k) exp(iτ rk). (A.12)

The weight function w(r) is a positive even function and the positive square root is taken in (A.12).
It extends to a meromorphic function that has period iρ with ρ > 0. Its only singularities in the period
strip Im r ∈ (0, ρ) are finitely many simple poles. If r0 is one of these poles, it follows from evenness
and iρ-periodicity that iρ − r0 is another such pole whose residue has opposite sign. Thus we can pair
off the poles, obtaining 2L distinct poles r1, . . . , r2L related by

rj+L = iρ − rj, j = 1, . . . , L, (A.13)

with residues

wj ≡ Res (w(r))|r=rj , j = 1, . . . , 2L, (A.14)

satisfying

wj+L = −wj, j = 1, . . . , L. (A.15)

The two coefficients m±(r, k) are smooth and satisfy

mτ (r, k) = mτ (r, −k), τ = +, −, (r, k) ∈ R
2, (A.16)

in accord with (A.11). As functions of r, they extend to entire functions that are either both iρ-periodic
or both iρ-antiperiodic.

Next, we assume that the asymptotic behaviour of �(r, k) for Re r → ±∞ is given by

w(r)1/2m+(r, k) =
{

T(k)+ O(exp(−γ r)), Re r → ∞,
1 + O(exp(γ r)), Re r → −∞,

(A.17)

w(r)1/2m−(r, k) =
{

O(exp(−γ r)), Re r → ∞,
−R(k)+ O(exp(γ r)), Re r → −∞,

(A.18)

and that we also have

∂r(w(r)
1/2mτ (r, k)) = O(exp(∓γ r)), τ = +, −, Re r → ±∞. (A.19)

Here, we have γ > 0 and the implied constants can be chosen uniformly for Im r and k in R-compacts. (To
leave no doubt regarding the meaning of the uniformity assumption, let us spell it out for the bound (A.19):
For given compact subsets K1, K2 of R, it says that there exist positive constants C and R such that the
modulus of the lhs is bounded above by C exp(−γ |Re r|) for all k ∈ K1 and all r ∈ C with Im r ∈ K2

and |Re r| ≥ R.)
The transmission and reflection coefficients T(k) and R(k) are assumed to be smooth functions on R

satisfying

T(k) = T(−k), R(k) = R(−k), k ∈ R, (A.20)
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T(−k)T(k)+ R(−k)R(k) = 1, (A.21)

T(−k)R(k)+ R(−k)T(k) = 0. (A.22)

As a consequence, the matrix multiplication operator on Ĥ (‘S-matrix’) given by

S(k) ≡
(

T(k) R(k)
R(k) T(k)

)
, k > 0, (A.23)

is a unitary operator. We also point out that our initial assumption that F maps Ĉ into H readily follows
from the asymptotic behaviour we have just assumed.

We need two more assumptions on the coefficients. To this end we introduce

Mτ
α (r, k, k′) ≡ m+(−r, −k)mτ (−αr, k′)+ m−(r, −k)m−τ (αr, k′), τ ,α = +, −. (A.24)

Then we assume

Mα
α (r, k, k) = Mα

α (−r, k, k), α = +, −, (r, k) ∈ R
2. (A.25)

By contrast to previous ones, these assumptions may seem unintuitive. For now, we point out that (A.17)
and (A.18) imply

w(r)M+
+ (r, k, k′) =

{
1 + O(exp(−γ r)), Re r → ∞,
T(−k)T(k′)+ R(−k)R(k′)+ O(exp(γ r)), Re r → −∞,

(A.26)

w(r)M−
− (r, k, k′) =

{
O(exp(−γ r)), Re r → ∞,
−T(−k)R(k′)− R(−k)T(k′)+ O(exp(γ r)), Re r → −∞.

(A.27)

Consequently, the evenness assumptions (A.25) may be viewed as generalizations of the unitarity
assumptions (A.21) and (A.22).

Before stating a theorem that only involves the above assumptions on the various coefficients deter-
mining �(r, k), we add two simple choices that satisfy these assumptions. Besides ρ, they involve two
positive parameters κ and ϕ. The parametrization of the k-dependence and the choice of numerical factors
anticipate the further assumptions made in Appendix B.

Specifically, we set

w(r) ≡ 1/4 sinh(πr/ρ + iϕ) sinh(πr/ρ − iϕ), (A.28)

mτ
σ (r, k) ≡ �τσ (r, k)

2i sinh(πk/κ − 2iϕ)
, τ , σ = +, −, (A.29)

�−
σ (r, k) ≡ 2iσ sinh(2iϕ) exp(−πr/ρ), σ = +, −, (A.30)

�+
σ (r, k) ≡ 2i

(
exp(−πr/ρ) sinh(πk/κ − 2iϕ)− exp(πr/ρ) sinh(πk/κ)

)
, σ = +, −, (A.31)

and denote the associated special transforms by Fσ (ϕ), σ = +, −. Note first that all of these functions
are iπ -periodic in ϕ, so we may and will restrict ϕ to the period interval (0,π ]. For the special choices
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40 S. HAWORTH AND S. RUIJSENAARS

ϕ = π and ϕ = π/2, the weight function w(r) does not satisfy the simple pole restriction, but one readily
verifies

w(r)1/2
∑
τ=+,−

mτ
±(r, k) exp(iτ rk) =

{ − exp(irk), ϕ = π ,
exp(irk), ϕ = π/2.

(A.32)

Thus we have F±(π) = −F0 and F±(π/2) = F0, cf. (A.9). Choosing next

ϕ ∈ (0,π/2) ∪ (π/2,π), (A.33)

it is routine to check that all assumptions are satisfied, with L = 1, γ = 2π/ρ and

T±(k) = sinh(πk/κ)

sinh(2iϕ − πk/κ)
, (A.34)

R±(k) = ± sinh(2iϕ)

sinh(2iϕ − πk/κ)
. (A.35)

We are now prepared for the following theorem.

Theorem A1 Letting f , g ∈ Ĉ, we have

(F f , Fg)1 = (f , g)2 + i
L∑

j=1

wj

∑
δ,δ′=+,−

δδ′
∫ ∞

0
dk fδ(k)

∫ ∞

0
dk′ gδ′(k

′)

×
∑

ν,ν′=+,−

exp(irj(νk − ν ′k′))
1 − exp(ρ(ν ′k′ − νk))

Mδδ′νν′
δδ′ (νrj, k, k′). (A.36)

Proof. To start with, we stress that the 4L residue integrals on the RHS are absolutely convergent due
to our evenness assumptions (A.25). Indeed, fixing j, δ, δ′, the denominator has zeros on the integration
region only when k = k′ and ν = ν ′. Now the two terms in the sum with ν ′ = ν involve M+

+ (νrj, k, k′)
for the two cases δ = δ′, and M−

− (νrj, k, k′) for δ = −δ′. Hence (A.25) ensures the cancellation of the
poles arising for k = k′.

Proceeding with the proof, we use Fubini’s theorem to write

(F f , Fg)1 = lim
�→∞

∑
δ,δ′=+,−

δδ′
∫ ∞

0
dk fδ(k)

∫ ∞

0
dk′ gδ′(k

′)Iδδ′(�, k, k′), (A.37)

with

Iσ (�, k, k′) ≡ 1

2π

∫ �

−�
dr�(r, k)�(σ r, k′), σ = +, −, (A.38)

cf. (A.6)–(A.8). Using (A.11) and (A.12), we obtain

Iσ (�, k, k′) = 1

2π

∑
τ ,τ ′=+,−

∫ �

−�
dr w(r)Jτ ,τ ′

σ (r, k, k′), (A.39)
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where

Jτ ,τ ′
σ (r, k, k′) ≡ mτ (r, −k)mτ ′(σ r, k′) exp(ir(στ ′k′ − τk)). (A.40)

Fixing τ and τ ′, the integrand in (A.39) picks up an r-independent multiplier when r is shifted by iρ.
Indeed, w(r) is iρ-periodic, while

Jτ ,τ ′
σ (r + iρ, k, k′) = exp(ρ(τk − στ ′k′))Jτ ,τ ′

σ (r, k, k′). (A.41)

To exploit this, we use Cauchy’s theorem to get

(
1 − exp(ρ(τk − στ ′k′))

) ∫ �

−�
dr w(r)Jτ ,τ ′

σ (r, k, k′)

= 2π i
2L∑
j=1

wjJ
τ ,τ ′
σ (rj, k, k′)+ Bτ ,τ ′

σ (�, k, k′), (A.42)

where

Bτ ,τ ′
σ (�, k, k′) ≡ −

(∫ �+iρ

�

+
∫ −�

−�+iρ

)
dr w(r)Jτ ,τ ′

σ (r, k, k′). (A.43)

Here, we have chosen � sufficiently large so that the rectangular contour with corners −�,�,� + iρ
and −�+ iρ, encloses all of the w-poles r1, . . . , r2L.

Using (A.13)–(A.15), we can write the residue sum as

2L∑
j=1

wjJ
τ ,τ ′
σ (rj, k, k′) =

L∑
j=1

wj

(
exp(irj(στ

′k′ − τk))mτ (rj, −k)mτ ′(σ rj, k′)

− exp(ρ(τk − στ ′k′)) exp(−irj(στ
′k′ − τk))mτ (−rj, −k)mτ ′(−σ rj, k′)

)
.

(A.44)

As a consequence, we obtain

∑
τ ,τ ′=+,−

2L∑
j=1

wjJ
τ ,τ ′
σ (rj, k, k′)

/[1 − exp(ρ(τk − στ ′k′))]

=
L∑

j=1

∑
ν,ν′=+,−

wj

1 − exp(ρ(νk − ν ′k′))

[
exp(irj(ν

′k′ − νk))mν(rj, −k)mσν′(σ rj, k′)

− exp(ρ(νk − ν ′k′)) exp(−irj(ν
′k′ − νk))mν(−rj, −k)mσν′(−σ rj, k′)

]
, (A.45)
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42 S. HAWORTH AND S. RUIJSENAARS

where we have changed variables τ , τ ′ → ν, σν ′. When we now take ν, ν ′ → −ν, −ν ′ in the first sum,
we get

L∑
j=1

wj

∑
ν,ν′=+,−

exp(irj(νk − ν ′k′))
1 − exp(ρ(ν ′k′ − νk))

× [
m−ν(rj, −k)m−σν′(σ rj, k′)+ mν(−rj, −k)mσν′(−σ rj, k′)

]
. (A.46)

Combining this with (A.37)–(A.42), the 4L residue integrals on the RHS of (A.36) result upon rewriting
the second line of (A.46) as Mσνν′

σ (νrj, k, k′), cf. (A.24). (The latter equality is not immediate, but it can
be readily verified case by case.)

We proceed to rewrite Bτ ,τ ′
σ (�, k, k′). Taking r → −r + iρ in the second integral, we use evenness

and iρ-periodicity of w(r) to obtain

Bτ ,τ ′
σ (�, k, k′) =

∫ �+iρ

�

dr w(r)
(
Jτ ,τ ′
σ (−r + iρ, k, k′)− Jτ ,τ ′

σ (r, k, k′)
)
. (A.47)

Shifting r over iρ/2 and using (A.40), this entails

Bτ ,τ ′
σ (�, k, k′)

1 − exp(ρ(τk − στ ′k′))
= 1

2 sinh(ρ(τk − στ ′k′)/2)

∫ �+iρ/2

�−iρ/2
dr w(r + iρ/2)

×
∑
ε=+,−

ε exp(iεr(στ ′k′ − τk))mτ (ε(r + iρ/2), −k)mτ ′(σε(r + iρ/2), k′).

(A.48)

We now study the � → ∞ limit of

δδ′
∫ ∞

0
dk fδ(k)

∫ ∞

0
dk′ gδ′(k

′)
∑

τ ,τ ′=+,−

Bτ ,τ ′
δδ′ (�, k, k′)

1 − exp(ρ(τk − δδ′τ ′k′))
, (A.49)

for the four cases δ, δ′ = +, −.
First let δ = δ′. Then for the terms in (A.49) with τ = −τ ′, the denominator does not vanish on the

integration region. Therefore, using (A.48) and the asymptotics assumptions (A.17)–(A.18), it readily
follows that they vanish for� → ∞. (For the dominant asymptotics the r-integration is elementary, and
one need only invoke the Riemann–Lebesgue lemma and dominated convergence, while the subdominant
terms vanish by dominated convergence.)

Consider next the terms with τ = τ ′. From (A.48) and (A.24) we infer

∑
τ=+,−

Bτ ,τ
+ (�, k, k′)

1 − exp(ρτ(k − k′))
= 1

2 sinh(ρ(k′ − k)/2)

∫ �+iρ/2

�−iρ/2
dr w(r + iρ/2)

×
∑
α=+,−

α exp(iαr(k − k′))M+
+ (α(r + iρ/2), k, k′). (A.50)
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Now we change variables

t = ρk/2, t′ = ρk′/2, s = 2r/ρ, (A.51)

and set

Gα(s, t, t′) ≡ w(ρ(s + i)/2))M+
+ (αρ(s + i)/2, 2t/ρ, 2t′/ρ), α = +, −. (A.52)

This implies that the RHS of (A.50) can be rewritten as

ρ

4 sinh(t′ − t)

∫ 2�/ρ+i

2�/ρ−i
ds

∑
α=+,−

α exp(iαs(t − t′))Gα(s, t, t′). (A.53)

In view of our evenness assumptions (A.25), the functions G±(s, t, t′) satisfy (C.4). Moreover, (A.26)
implies that G±(s, t, t′) also satisfy (C.1)–(C.3), with η = γρ/2, and

A1(t, t′) = 1, A2(t, t′) = T(−2t/ρ)T(2t′/ρ)+ R(−2t/ρ)R(2t′/ρ). (A.54)

Finally, our unitarity assumption (A.21) entails that (C.5) is obeyed, with A(t) = 1. Putting

φ(t, t′) ≡ 1

2πρ
fδ(2t/ρ)gδ(2t′/ρ), (A.55)

it follows that all assumptions of Lemma C1 are fulfilled. As a result, we deduce

lim
�→∞

∫
(0,∞)2

dk dk′ fδ(k)gδ(k′)
2π

∑
τ ,τ ′=+,−

Bτ ,τ ′
+ (�, k, k′)

1 − exp(ρ(τk − τ ′k′))
=

∫ ∞

0
dk fδ(k)gδ(k). (A.56)

It remains to show that for the two remaining cases δ′ = −δ the pertinent limits vanish. As before,
this is easily checked when τ ′ = τ . Consider now the case τ ′ = −τ . As the analogue of (A.50), we then
get

∑
τ=+,−

Bτ ,−τ
− (�, k, k′)

1 − exp(ρτ(k − k′))
= 1

2 sinh(ρ(k′ − k)/2)

∫ �+iρ/2

�−iρ/2
dr w(r + iρ/2)

×
∑
α=+,−

α exp(iαr(k − k′))M−
− (α(r + iρ/2), k, k′). (A.57)

Using again the variable change (A.51), but now putting

Gα(s, t, t′) ≡ w(ρ(s + i)/2))M−
− (αρ(s + i)/2, 2t/ρ, 2t′/ρ), α = +, −, (A.58)

φ(t, t′) ≡ 1

2πρ
fδ(2t/ρ)g−δ(2t′/ρ), (A.59)
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it follows once more that all assumptions of Lemma C1 are fulfilled, now with

A1(t, t′) = 0, A2(t, t′) = −T(−2t/ρ)R(2t′/ρ)− R(−2t/ρ)T(2t′/ρ), (A.60)

and A(t) = 0 (cf. (A.25), (A.27) and (A.22)). Thus the cases δ′ = −δ yield limit zero, so that the proof
is complete. �

To apply the theorem in the main text, it is expedient to rewrite the residue sums in an alternative
form, which is detailed in the following corollary.

Corollary A2 Setting

R̂δ,δ′(k, k′) ≡ iδδ′
L∑

j=1

wj

∑
ν,ν′=+,−

1

1 − exp(ρ(ν ′k′ − νk))

× [
μ−δν(δrj, −k)μ−δ′ν′(δ′rj, k′)+ μδν(−δrj, −k)μδ

′ν′(−δ′rj, k′)
]
, (A.61)

where

μτ(r, k) ≡ exp(iτ rk)mτ (r, k), τ = +, −, (A.62)

the transform F is isometric if and only if the residue sums R̂δ,δ′(k, k′), δ, δ′ = +, −, vanish.

Proof. This readily follows from (A.36) by invoking (A.46) with σ = δδ′. �

For the special cases (A.28)–(A.31), we have

r1 = iρϕ/π ∈ i(0, ρ), w1 = ρ

4π sinh(2iϕ)
, ϕ ∈ (0,π/2) ∪ (π/2,π), (A.63)

�−
σ (±r1, k) = 2iσ sinh(2iϕ) exp(∓iϕ), (A.64)

�+
σ (±r1, k) = −2i sinh(2iϕ) exp(±(πk/κ − iϕ)). (A.65)

From this we obtain the following ratios:

Mα
α (−r1, k, k′)/Mα

α (r1, k, k′) = eπ(k
′−k)/κ , M−α

α (r1, k, k′)/Mα
α (r1, k, k′) = −σeπk′/κ ,

M−α
α (−r1, k, k′)/Mα

α (r1, k, k′) = −σe−πk/κ , α = +, −. (A.66)

Hence the residue sum in (A.36) is proportional to

1

1 − exp(ρ(k′ − k))
+ exp((2ir1 + π/κ)(k′ − k))

1 − exp(ρ(−k′ + k))

− σ
exp((2ir1 + π/κ)k′)
1 − exp(ρ(−k′ − k))

− σ
exp(−(2ir1 + π/κ)k)

1 − exp(ρ(k′ + k))
. (A.67)
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For this to vanish we can choose either

σ = +, 2ir1 + π/κ = 0, ρκ > π/2, (A.68)

or

σ = +, −, 2ir1 + π/κ = −ρ, ρκ > π , (A.69)

with the inequalities due to the requirement that r1 belong to i(0, ρ). Indeed, for these choices the asserted
vanishing comes down to the identities

1

1 − A′/A
+ 1

1 − A/A′ − 1

1 − 1/A′A
− 1

1 − A′A
= 0, (A.70)

1

1 − A′/A
+ A

A′
1

1 − A/A′ − 1

A′
σ

1 − 1/A′A
− A

σ

1 − A′A
= 0, σ = +, −, (A.71)

which are easily checked. Thus, setting

φ0 ≡ π 2

2ρκ
, ρκ > π/2, (A.72)

φe ≡ π 2

2ρκ
+ π

2
, ρκ > π , (A.73)

we deduce that the three transforms F+(φ0), F+(φe) and F−(φe) are isometric. In case the restrictions
on ρκ are not satisfied, we need to subtract a suitable multiple of iρ from iρφj/π , j = 0, e, to obtain a
pole location r1 with Im r ∈ (0, ρ). Generically, this yields a non-vanishing residue sum, hence isometry
breakdown.

The transform F+(φ0) amounts to the N = 0 transform in the main text. The ‘extra’ transforms F±(φe)

go to show that our assumptions allow realizations beyond the main text. In Section 5 we shall elaborate
on the issue of isometry violation. In particular, Proposition 5.1 encodes the salient features of F+(φ0)

for ρκ ≤ π/2.

Appendix B. The transform F ∗

In this appendix we retain the assumptions on F made in Appendix A. As we have pointed out, they
imply in particular that F maps Ĉ into H. However, they do not imply that F is a bounded operator. (To
be sure, boundedness is plain when the residue sum vanishes.) In fact, it might not even follow from the
assumptions made thus far that F has an adjoint that is densely defined.

From the additional assumptions in this appendix it shall follow that F∗ is indeed densely defined. In
particular, we shall see that we have

F∗ : C ≡ C∞
0 (R) ⊂ H → Ĥ. (B.1)

Of course, it follows without further assumptions that for h ∈ C we obtain

(h, F f )1 = 1√
2π

∑
δ=+,−

∫ ∞

−∞
dr h(r)

∫ ∞

0
dk Fδ(r, k)fδ(k), f ∈ Ĉ, (B.2)
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46 S. HAWORTH AND S. RUIJSENAARS

cf. (A.6). From this and (A.7)–(A.11) we easily deduce

(F∗h)δ(k) = δ√
2π

∫ ∞

−∞
dr�(δr, −k)h(r), δ = +, −, k > 0, (B.3)

whenever both integrals yield functions of k that are square-integrable on (0, ∞). But we can only ensure
this property by making more assumptions.

These extra assumptions concern the k-dependence of m±(r, k). They will allow us to study F∗ in
much the same way as F itself. We would like to stress, however, that it is at this point that we part company
with the non-relativistic framework, inasmuch as the Jost functions (1.2) do not have the periodicity in
the spectral variable k we are about to require.

First, we assume that the coefficients m+(r, k) and m−(r, k) are iκ-periodic and iκ-antiperiodic
functions of k, respectively, with κ > 0. Second, they are of the form

mτ (r, k) = v(k)�τ (r, k), τ = +, −. (B.4)

Here, �±(r, k) are assumed to be entire in k, whereas v(k) is meromorphic and either iκ-periodic or
iκ-antiperiodic. Third, v(k) satisfies

v(k) = v(−k), k ∈ R. (B.5)

Note that these assumptions are satisfied for the special cases given by (A.29)–(A.31), with v(k) being
iκ-antiperiodic.

Introducing the dual weight function

ŵ(k) ≡ |v(k)|2 = v(−k)v(k), k ∈ R, (B.6)

it follows from the assumptions just made that it extends to a meromorphic iκ-periodic function. We
assume that its only singularities in the period strip Im k ∈ (0, κ) are finitely many simple poles. Just as
for w(r), it then follows that we can pair off the poles, obtaining 2L̂ distinct poles k1, . . . , k2L̂ related by

kj+L̂ = iκ − kj, j = 1, . . . , L̂, (B.7)

with residues

ŵj ≡ Res (ŵ(k))|k=kj , j = 1, . . . , 2L̂, (B.8)

satisfying

ŵj+L̂ = −ŵj, j = 1, . . . , L̂. (B.9)

Clearly, these assumptions are satisfied for (A.29)–(A.31), with L̂ = 1, and

ŵ(k) ≡ 1

4 sinh(πk/κ − 2iϕ) sinh(πk/κ + 2iϕ)
, (B.10)
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HILBERT SPACE THEORY FOR RELATIVISTIC DYNAMICS WITH REFLECTION. 47

provided ϕ is restricted by (A.33) and not equal to π/4 or 3π/4. (The latter cases yield double poles at
k = iκ/2.)

Next, we assume that the |Re k| → ∞ asymptotics of the coefficients is given by

m+(r, k) =
{

C(r)+ O(exp(−γ̂ k)), Re k → ∞,
C(r)+ O(exp(γ̂ k)), Re k → −∞,

(B.11)

m−(r, k) = O(exp(∓γ̂ k)), Re k → ±∞, (B.12)

∂kmτ (r, k) = O(exp(∓γ̂ k)), τ = +, −, Re k → ±∞, (B.13)

with γ̂ > 0 and the implied constants uniform for Im k and r in R-compacts. Moreover, we assume that
the function C(r) extends from the real line to an entire iρ-periodic or iρ-antiperiodic function satisfying

|C(r)|2 = 1/w(r), r ∈ R. (B.14)

Introducing

U(r)1/2 ≡ C(r)w(r)1/2, r ∈ R, (B.15)

it follows from the above assumptions that U(r) extends to a meromorphic iρ-periodic function that is a
phase for real r, and that we have a reflectionless asymptotics

�(r, k) =
{

U(r)1/2 exp(irk)+ O(exp(−γ̂ k)), Re k → ∞,
U(r)−1/2 exp(irk)+ O(exp(γ̂ k)), Re k → −∞,

(B.16)

uniformly for Im k and r in R-compacts.
From this asymptotic behaviour it easily follows that F∗ is defined on C and given by (B.3), as

announced. Actually, it may well follow from our assumptions that F must be bounded. We have not
tried to show this, however, since we do not need this property for the general analysis undertaken in this
appendix. (It is not hard to see that the example transforms F±(ϕ) and the transforms arising in the main
text are bounded, cf. the paragraph containing (4.3).)

Our final assumptions generalize the evenness assumptions (A.25). Introducing

Lτ ,τ ′(k, r, r ′) ≡ �τ (r, k)�τ
′
(r ′, −k)+ �−τ (−r, k)�−τ ′(−r ′, −k), τ , τ ′ = +, −, (B.17)

it follows from the above that Lτ ,τ (k, r, r ′) is iκ-periodic in k, whereas Lτ ,−τ (k, r, r ′) is iκ-antiperiodic.
Also, it is plain that we have symmetries

Lτ ,τ ′(k, r, r ′) = L−τ ,−τ ′(k, −r, −r ′), Lτ ,τ ′(k, r, r) = Lτ
′ ,τ (−k, r, r). (B.18)

But the evenness properties

Lτ ,τ ′(k, r, r ′) = Lτ ,τ ′(−k, −r, −r ′), τ , τ ′ = +, −, (B.19)
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48 S. HAWORTH AND S. RUIJSENAARS

amount to further assumptions on the coefficients, strengthening (A.25). Indeed, for τ ′ = τ = + and
r ′ = r, (B.19) amounts to (A.25) with α = +, while for τ ′ = −τ = − and r ′ = −r, (B.19) reduces
to (A.25) with α = −.

It is easy to check that the assumptions on the |Re k| → ∞ asymptotics are satisfied for the example
cases (A.29)–(A.31), with γ̂ = π/κ , and

C(r) = −2 exp(iϕ) sinh(πr/ρ + iϕ), U(r) = exp(2iϕ)
sinh(πr/ρ + iϕ)

sinh(πr/ρ − iϕ)
. (B.20)

With due effort, the assumptions (B.19) can also be checked for these special cases.

Theorem B1 With the above assumptions in effect, let f , g ∈ C. Then we have

(F∗f , F∗g)2 = (f , g)1 + i
L̂∑

j=1

ŵj

∫ ∞

−∞
dr f (r)

∫ ∞

−∞
dr ′ g(r ′)w(r)1/2w(r ′)1/2

×
∑

τ ,τ ′=+,−

exp(ikj(τ r − τ ′r ′))
1 − ττ ′ exp(κ(τ ′r ′ − τ r))

Lτ ,τ ′(kj, r, r ′). (B.21)

Proof. The proof proceeds along the same lines as the Proof of Theorem A1. We begin by noting that
we have an identity

Lτ ,τ (k, r, r) = L−τ ,−τ (k, r, r), (B.22)

as readily follows from (B.17) and (B.19). Thus the residue integrals involving τ ′ = τ are absolutely
convergent. (For τ ′ = −τ absolute convergence is immediate, since then the denominator has no zeros.)

Next, we use (B.1) and Fubini’s theorem to write

(F∗f , F∗g)2 = lim
�→∞

∫ ∞

−∞
dr f (r)

∫ ∞

−∞
dr ′ g(r ′)I(�, r, r ′), (B.23)

with

I(�, r, r ′) ≡ 1

2π

∫ �

0
dk

(
�(r, k)�(r ′, −k)+�(−r, k)�(−r ′, −k)

)
, (B.24)

cf. (A.7)–(A.11). Using (A.12), (B.4)–(B.6), and our evenness assumptions (B.19), we now deduce

I(�, r, r ′) = 1

4π
w(r)1/2w(r ′)1/2

∑
τ ,τ ′=+,−

∫ �

−�
dk ŵ(k)Jτ ,τ ′(k, r, r ′), (B.25)

where

Jτ ,τ ′(k, r, r ′) ≡ Lτ ,τ ′(k, r, r ′) exp(ik(τ r − τ ′r ′)). (B.26)

 by guest on A
ugust 26, 2016

http://integrablesystem
s.oxfordjournals.org/

D
ow

nloaded from
 

http://integrablesystems.oxfordjournals.org/


HILBERT SPACE THEORY FOR RELATIVISTIC DYNAMICS WITH REFLECTION. 49

Fixing τ and τ ′, the integrand in (B.25) picks up a k-independent multiplier when k is shifted by iκ .
Indeed, this is clear for the plane wave factor, whereas ŵ(k)Lτ ,τ ′(k, r, r ′) is iκ-periodic/iκ-antiperiodic
for ττ ′ = +/ττ ′ = −. Using Cauchy’s theorem, we therefore get

(
1 − ττ ′ exp(κ(τ ′r ′ − τ r))

) ∫ �

−�
dk ŵ(k)Jτ ,τ ′(k, r, r ′)

= 2π i
2L̂∑
j=1

ŵjJ
τ ,τ ′(kj, r, r ′)+ Bτ ,τ ′(�, r, r ′), (B.27)

where

Bτ ,τ ′(�, r, r ′) ≡ −
(∫ �+iκ

�

+
∫ −�

−�+iκ

)
dk ŵ(k)Jτ ,τ ′(k, r, r ′). (B.28)

As before, we choose � sufficiently large so that the contour encloses all of the ŵ-poles.
We proceed to rewrite the residue sum as

2L̂∑
j=1

ŵjJ
τ ,τ ′(kj, r, r ′) =

L̂∑
j=1

ŵj

(
exp(ikj(τ r − τ ′r ′))Lτ ,τ ′(kj, r, r ′)

− ττ ′ exp(κ(τ ′r ′ − τ r)) exp(−ikj(τ r − τ ′r ′))Lτ ,τ ′(−kj, r, r ′)
)

, (B.29)

where we used (B.7)–(B.9). Hence we deduce

∑
τ ,τ ′=+,−

2L̂∑
j=1

ŵjJ
τ ,τ ′(kj, r, r ′)

/[1 − ττ ′ exp(κ(τ ′r ′ − τ r))]

=
L̂∑

j=1

∑
τ ,τ ′=+,−

ŵj

1 − ττ ′ exp(κ(τ ′r ′ − τ r))

[
exp(ikj(τ r − τ ′r ′))Lτ ,τ ′(kj, r, r ′)

− ττ ′ exp(κ(τ ′r ′ − τ r)) exp(−ikj(τ r − τ ′r ′))L−τ ,−τ ′(kj, r, r ′)
]
, (B.30)

where we have used an identity equivalent to (B.19), viz.,

Lτ ,τ ′(−k, r, r ′) = L−τ ,−τ ′(k, r, r ′). (B.31)

In the second sum we now take τ , τ ′ → −τ , −τ ′, thus arriving at

2
L̂∑

j=1

∑
τ ,τ ′=+,−

ŵj

1 − ττ ′ exp(κ(τ ′r ′ − τ r))
exp(ikj(τ r − τ ′r ′))Lτ ,τ ′(kj, r, r ′). (B.32)

Combining this with (B.23)–(B.27), we readily obtain the residue integrals on the RHS of (B.21).
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50 S. HAWORTH AND S. RUIJSENAARS

Next, we change variables to rewrite (B.28) as

Bτ ,τ ′(�, r, r ′) =
∫ �+iκ/2

�−iκ/2
dk ŵ(k + iκ/2)

(
Jτ ,τ ′(−k + iκ/2, r, r ′)− Jτ ,τ ′(k + iκ/2, r, r ′)

)
. (B.33)

From this we infer, using (B.26),

Bτ ,τ ′(�, r, r ′)
1 − ττ ′ exp(κ(τ ′r ′ − τ r))

= exp(κ(τ ′r ′ − τ r)/2)

1 − ττ ′ exp(κ(τ ′r ′ − τ r))

∫ �+iκ/2

�−iκ/2
dk ŵ(k + iκ/2)

×
∑
σ=+,−

σ exp(iσk(τ ′r ′ − τ r))Lτ ,τ ′(−σk + iκ/2, r, r ′). (B.34)

We now study the � → ∞ limit of the four terms

T τ ,τ ′(�) ≡ 1

4π

∫ ∞

−∞
dr f (r)

∫ ∞

−∞
dr ′ g(r ′)w(r)1/2w(r ′)1/2

Bτ ,τ ′(�, r, r ′)
1 − ττ ′ exp(κ(τ ′r ′ − τ r))

, (B.35)

contributing to the RHS of (B.23). For the cases τ ′ = −τ , it follows from the uniform asymptotics (B.11)–
(B.12) that we have

lim
�→∞

T τ ,−τ (�) = 0, τ = +, −. (B.36)

(Note that in (B.34) we may replace ŵ(k + iκ/2) by ŵ(−σk + iκ/2), since ŵ is even and iκ-periodic.)
For the cases τ ′ = τ , the RHS of (B.34) can be rewritten as

1

2 sinh(κ(r ′ − r)/2)

∫ �+iκ/2

�−iκ/2
dk

∑
α=+,−

α exp(iαk(r − r ′))

× ŵ(αk + iκ/2)L+,+(αk + iκ/2, r, r ′), (B.37)

where we used (B.31) with τ ′ = τ = − and iκ-periodicity.
We now change variables

t = κr/2, t′ = κr ′/2, s = 2k/κ , (B.38)

and set

Gα(s, t, t′) ≡ ŵ(ακ(s + i)/2)L+,+(ακ(s + i)/2, 2t/κ , 2t′/κ), α = +, −. (B.39)

Then (B.37) can be rewritten as

κ

4 sinh(t′ − t)

∫ 2�/κ+i

2�/κ−i
ds

∑
α=+,−

α exp(iαs(t − t′))Gα(s, t, t′). (B.40)
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Thanks to (B.18), the functions G±(s, t, t′) satisfy (C.4). Moreover, our assumptions (B.11)–(B.13) about
the Re k → ±∞ asymptotics of the coefficients mτ (r, k) ensure that G±(s, t, t′) also satisfy (C.1)–(C.3),
with η = γ̂ κ/2, and

A1(t, t′) = C(2t/κ)C(2t′/κ), A2(t, t′) = A1(t, t′). (B.41)

Putting

φ(t, t′) ≡ 1

4πκ
f (2t/κ)g(2t′/κ)w(2t/κ)1/2w(2t′/κ)1/2, (B.42)

it follows that the assumptions of Lemma C1 are obeyed, with

A(t) = |C(2t/κ)|2. (B.43)

In view of (B.14), we therefore get

lim
�→∞

T τ ,τ (�) = (f , g)1/2, τ = +, −, (B.44)

and hence the theorem follows. �

Just as for the residue sum in Theorem A1, in the main text it is more expedient to use an alternative
form for the residue sum in Theorem B1, as specified by the following corollary.

Corollary B2 Setting

R(r, r ′) ≡ iw(r)1/2w(r ′)1/2
L̂∑

j=1

ŵj

∑
τ ,τ ′=+,−

�τ ,τ ′(kj, r, r ′)
1 − ττ ′ exp(κ(τ ′r ′ − τ r))

, (B.45)

where

�τ ,τ ′(k, r, r ′) ≡ λτ (r, k)λτ
′
(r ′, −k)+ λ−τ (−r, k)λ−τ ′(−r ′, −k), (B.46)

λτ (r, k) ≡ exp(iτ rk)�τ (r, k), (B.47)

the operator F∗ is isometric if and only if the residue sum R(r, r ′) vanishes.

Proof. This easily follows from (B.21) and (B.17). �

For the examples (A.28)–(A.31), we should distinguish two cases for the simple pole locations k1 and
iκ − ik1 in the period strip Im k ∈ (0, κ), viz.,

k1 = 2iκϕ/π , ϕ ∈ (0,π/2), ϕ �= π/4, (B.48)

and

k1 = 2iκϕ/π − iκ , ϕ ∈ (π/2,π), ϕ �= 3π/4. (B.49)
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Also, we obtain

�−
σ (r, ±k1) = 2iσ sinh(2iϕ) exp(−πr/ρ), (B.50)

�+
σ (r, k1) = ∓2i sinh(2iϕ) exp(πr/ρ), (B.51)

�+
σ (r, −k1) = ∓2i sinh(2iϕ)

(
2 cosh(2iϕ) exp(−πr/ρ)− exp(πr/ρ)

)
, (B.52)

so that (B.17) yields

Lτ ,τ (k1, r, r ′) = −8 sinh(2iϕ)2 cosh(2iϕ) exp(τπ(r − r ′)/ρ), τ = +, −, (B.53)

Lτ ,−τ (k1, r, r ′) = ±8σ sinh(2iϕ)2 cosh(2iϕ) exp(τπ(r + r ′)/ρ), σ , τ = +, −, (B.54)

with the upper/lower sign referring to (B.48)/(B.49). From this we calculate ratios

L−,−/L+,+ = e2π(r′−r)/ρ , L+,−/L+,+ = ∓σe2πr′/ρ , L−,+/L+,+ = ∓σe−2πr/ρ . (B.55)

With (B.48) in force, the residue sum in (B.21) is therefore proportional to

1

1 − exp(κ(r ′ − r))
+ exp((2ik1 + 2π/ρ)(r ′ − r))

1 − exp(κ(−r ′ + r))

− σ
exp((2ik1 + 2π/ρ)r ′)
1 + exp(κ(−r ′ − r))

− σ
exp(−(2ik1 + 2π/ρ)r)

1 + exp(κ(r ′ + r))
. (B.56)

For this to vanish we can choose

σ = +, ik1 + π/ρ = 0 ⇔ ϕ = π 2/2ρκ = φ0, (B.57)

cf. (A.72). (Indeed, vanishing boils down to (A.70) with A, A′ → iA, iA′.) As a consequence, the transform
F+(φ0) is unitary for φ0 = π 2/2ρκ ∈ (0,π/2), φ0 �= π/4. Using a continuity argument, it follows that
F+(φ0) is unitary for the double-pole case φ0 = π/4, too.

Next, we consider the case (B.49). Then (B.10) yields the residue

ŵ1 = κ

4π sinh(4iϕ)
. (B.58)

From (B.53)–(B.54) we now deduce

R(r, r ′) = N (ϕ)w(r)1/2w(r ′)1/2Sσ (ϕ; r, r ′), (B.59)

where we have introduced

N (ϕ) ≡ κ sin(2ϕ)

π
∈ (−∞, 0), ϕ ∈ (π/2,π), (B.60)

and

Sσ (ϕ; r, r ′) ≡
∑
τ=+,−

(exp(τ (ik1 + π/ρ)(r − r ′))
1 − exp(τκ(r ′ − r))

+ σ
exp(τ (ik1 + π/ρ)(r + r ′))

1 + exp(−τκ(r ′ + r))

)
. (B.61)
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We proceed to study the two ϕ-choices φ0, φe ∈ (π/2,π), for which we already know that F+(φ0)

and F±(φe) are isometric. (Recall ρκ ∈ (π/2,π) in the first case and ρκ ∈ (π , ∞) in the second one,
cf. (A.72)–(A.73).) For the case ϕ = φ0 we obtain, putting

A ≡ exp(κr), A′ ≡ exp(κr ′), (B.62)

and setting ik1 + π/ρ = κ in (B.61),

S+(φ0; r, r ′) = A

A′
1

1 − A′/A
+ A′

A

1

1 − A/A′ + AA′ 1

1 + 1/A′A
+ 1

A′A
1

1 + A′A

= A′

A
+ A

A′ + A′A + 1

A′A
= 4 cosh(κr) cosh(κr ′). (B.63)

Introducing the function (cf. (A.28))

�0(r) ≡ 2 cosh(κr)w0(r)
1/2, w0(r) ≡ 1

/
4 sinh

(π
ρ

(
r + i

π

2κ

))
sinh

(π
ρ

(
r − i

π

2κ

))
, (B.64)

we get

�0(·) ∈ H, ρκ ∈ (π/2,π). (B.65)

Thus we can rewrite (B.21) as

(F+(φ0)
∗f , F+(φ0)

∗g)2 = (f , g)1 + κ sin(π 2/ρκ)

π
(f ,�0)1(�0, g)1. (B.66)

Now F+(φ0) is isometric, so F+(φ0)
∗ has a continuous extension from C to a partial isometry such

that

F+(φ0)
∗F+(φ0) = 1Ĥ, F+(φ0)F+(φ0)

∗ = 1H − P, (B.67)

where P is the projection on the orthocomplement of F+(φ0)(Ĥ). In particular, this implies (B.66) holds
true for all f , g ∈ H, which yields

F+(φ0)F+(φ0)
∗ = 1H + κ sin(π 2/ρκ)

π
�0 ⊗�0. (B.68)

Hence we have F+(φ0)
∗�0 = 0 and

(�0,�0)1 = − π

κ sin(π 2/ρκ)
, ρκ ∈ (π/2,π). (B.69)

By continuity these formulas are also valid for the double-pole case φ0 = 3π/4.
Let us now summarize our findings regarding F+(φ0).
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Proposition B3 The transform F+(φ0) defined by (A.5)–(A.8) with

�(r, k) ≡ w0(r)1/2

sinh
(
π

κ

(
k − iπ

ρ

))
(

eirk
[
e−πr/ρ sinh

(π
κ

(
k − iπ

ρ

)) − eπr/ρ sinh
(π
κ

k
)]

+ e−irke−πr/ρ sinh
( iπ 2

ρκ

))
, ρκ ∈ (π/2, ∞), (B.70)

is unitary for ρκ ∈ [π , ∞). For ρκ ∈ (π/2,π) it is isometric and satisfies

F+(φ0)F+(φ0)
∗ = 1H −�0 ⊗�0/(�0,�0)1. (B.71)

Here, w0(r) and �0(r) are defined by (B.64) and the inner product is given by (B.69).

As mentioned below (2.22), the function�(r, k) in this proposition is a reparametrized version of the
N = 0 function ψ(a+; x, y) of the main text. We also point out that from (B.70) one can read off that for
ρκ ∈ [π , ∞) the function �(r, k) is analytic in the strip Im k ∈ [0, κ). By contrast, for ρκ ∈ (π/2,π)
it has a pole in this strip at k = iπ/ρ − iκ , and the bound state �0(r) is proportional to the residue
at this pole. Finally, we repeat that Proposition 5.1 yields a complete picture of the transform F+(φ0)

for ρκ ≤ π/2.
Next, we study the choice ϕ = φe. Then we need to set ik1 + π/ρ = 0 in (B.61), yielding

Sσ (φe; r, r ′) = 1

1 − A′/A
+ 1

1 − A/A′ + σ

1 + 1/A′A
+ σ

1 + A′A
. (B.72)

For σ = − this vanishes, implying that the transform F−(φe) is unitary.
By contrast, we have

S+(φe; r, r ′) = 2. (B.73)

Defining (cf. (A.28))

we(r) ≡ 1
/

4 cosh
(π
ρ

(
r + i

π

2κ

))
cosh

(π
ρ

(
r − i

π

2κ

))
, (B.74)

we get

�e(r) ≡ we(r)
1/2 ∈ H, ρκ ∈ (π , ∞). (B.75)

Thus we can rewrite (B.21) as

(F+(φe)
∗f , F+(φe)

∗g)2 = (f , g)1 − 2κ sin(π 2/ρκ)

π
(f ,�e)1(�e, g)1. (B.76)

 by guest on A
ugust 26, 2016

http://integrablesystem
s.oxfordjournals.org/

D
ow

nloaded from
 

http://integrablesystems.oxfordjournals.org/


HILBERT SPACE THEORY FOR RELATIVISTIC DYNAMICS WITH REFLECTION. 55

As before, we deduce from this that we have F+(φe)
∗�e = 0 and

(�e,�e)1 = π

2κ sin(π 2/ρκ)
, ρκ ∈ (π , ∞). (B.77)

Once more, by continuity this is also true for φe = 3π/4.
We proceed to summarize these results.

Proposition B4 Consider the transforms Fσ (φe), σ = +, −, defined by (A.5)–(A.8) with

�(r, k) ≡ we(r)1/2

sinh
(
π

κ

(
k − iπ

ρ

))
(

eirk
[
e−πr/ρ sinh

(π
κ

(
k − iπ

ρ

)) + eπr/ρ sinh
(π
κ

k
)]

+ σe−irke−πr/ρ sinh
( iπ 2

ρκ

))
, ρκ ∈ (π , ∞), (B.78)

where we(r) is given by (B.74). The transform F−(φe) is unitary, whereas F+(φe) is isometric and satisfies

F+(φe)F+(φe)
∗ = 1H −�e ⊗�e/(�e,�e)1. (B.79)

Here, �e(r) is defined by (B.75) and the inner product is given by (B.77).

From (B.78) one sees that for σ = − the function �(r, k) is analytic in the strip Im k ∈ [0, κ). For
σ = + it has a pole in this strip at k = iπ/ρ, and the bound state �e(r) is proportional to the residue
of �(r, k) at this pole.

To conclude this appendix, we add one more explicit example satisfying all of the assumptions. We
begin by noting that when we have an additional assumption

m−(r, k) = 0, (B.80)

then we obtain a reflectionless transform, and it also follows that we have

M−
α (r, k, k′) = 0, M+

α (r, k, k′) = m+(−r, −k)m+(−αr, k′), α = +, −, (B.81)

Lτ ,−τ (k, r, r ′) = 0, Lτ ,τ (k, r, r ′) = �+(τ r, k)�+(τ r ′, −k), τ = +, −, (B.82)

cf. (A.24) and (B.17). Therefore, the critical evenness assumptions (A.25) and (B.19) reduce to the sole
assumption

�+(r, k)�+(r ′, −k) = �+(−r, −k)�+(−r ′, k). (B.83)

Moreover, in view of (A.44), the condition for the transform to be isometric reduces to

0 =
L∑

j=1

wj

[
μ+(δrj, −k)μ+(δ′rj, k′)− exp(ρ(δk − δ′k′))μ+(−δrj, −k)μ+(−δ′rj, k′)

]
, (B.84)

where we have used the notation (A.62).
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We are now prepared for our last example, which yields a reflectionless transform.

Proposition B5 The transform Fa defined by (A.5)–(A.8) with

�(r, k) ≡ wa(r)
1/2eirk

[
e−πr/ρ + eπr/ρ sinh

(π
κ

(
k + iπ

ρ

))/
sinh

(π
κ

(
k − iπ

ρ

))]
, (B.85)

wa(r) ≡ 1
/

4 cosh
(π
ρ

(
r + i

π

κ

))
cosh

(π
ρ

(
r − i

π

κ

))
, (B.86)

is isometric for ρκ ∈ (2π , ∞), and satisfies

FaF∗
a = 1H −�a ⊗�a/(�a,�a)1, �a(r) ≡ wa(r)

1/2, (B.87)

where

(�a,�a)1 = π

κ sin(2π 2/ρκ)
, ρκ ∈ (2π , ∞). (B.88)

Proof. Here we have

v(k) = 1
/

2i sinh
(π
κ

(
k − iπ

ρ

))
, �+(r, k) = 2ieπr/ρ sinh

(π
κ

(
k + iπ

ρ

)) + (ρ → −ρ). (B.89)

From this the evenness assumption (B.83) is readily verified, and all other assumptions are clearly satisfied
as well, with

Ta(k) = sinh
(π
κ

(
k + iπ

ρ

))/
sinh

(π
κ

(
k − iπ

ρ

))
, Ra(k) = 0, (B.90)

Ca(r) = 2 exp(iπ 2/ρκ) cosh(πr/ρ + iπ 2/ρκ). (B.91)

Consequently, Theorems A1 and B1 apply, so it remains to study the residue sums.
For the residue sum on the RHS of (B.84) we have L = 1 and we can take

r1 = iπ/κ + iρ/2 ∈ i[0, ρ), ρκ ∈ (2π , ∞). (B.92)

From (B.89) we then obtain

�+(νr1, k) = −2ν sinh(2iπ 2/ρκ) exp(νπk/κ), (B.93)

which entails

μ+(νr1, k) = −2ν sinh(2iπ 2/ρκ)v(k) exp(−νρk/2). (B.94)

From this we see that (B.84) holds true, so Fa is isometric.
Turning to the residue sum in Theorem B.1, we have L̂ = 1 and

k1 = iπ/ρ ∈ i[0, κ), ŵ1 = −iκ/4π sin(2π 2/ρκ), ρκ ∈ (2π , ∞). (B.95)
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From (B.89) we obtain

�+(r, νk1) = −2ν sin(2π 2/ρκ) exp(νπr/ρ), (B.96)

so (B.82) yields

Lτ ,τ (k1, r, r ′) = −4 sin(2π 2/ρκ)2 exp(τπ(r − r ′)/ρ). (B.97)

As a result, we have

∑
τ=+,−

exp(iτk1(r − r ′))
1 − exp(τκ(r ′ − r))

Lτ ,τ (k1, r, r ′) = −4 sin(2π 2/ρκ)2
∑
τ=+,−

1

1 − exp(τκ(r ′ − r))

= −4 sin(2π 2/ρκ)2. (B.98)

Therefore, (B.21) becomes

(F∗
a f , F∗

a g)2 = (f , g)1 − κ sin(2π 2/ρκ)

π
(f ,�a)1(�a, g)1, (B.99)

whence the proposition follows. �

Once more, the bound state �a(r) is proportional to the residue of �(r, k) at the pole k = iπ/ρ
in the strip Im k ∈ [0, κ). Admittedly, the transform Fa may seem to come out of the blue. We have
included it, because the function�(r, k) (B.85) corresponds to the function�(2a−; x, y) in the main text,
cf. (3.47). In Section 4 of [6] the reflectionless transforms associated with �((N + 1)a−; x, y), N ∈ N,
were already analyzed, and�(r, k) arises from the function given by Eq. (4.29) in [6]; as such, it satisfies
the eigenvalue equation

(
cosh(πr/ρ − iπ 2/ρκ)

cosh(πr/ρ)
exp(iπ∂r/κ)+ (i → −i)

)
wa(r)

−1/2�(r, k)

= 2 cosh(πk/κ)wa(r)
−1/2�(r, k). (B.100)

(To tie this in with Ho (1.8), first take ρ ↔ π/κ , then put κ = 1. We have deviated from the reparametriza-
tion (1.41) by swapping a+ and a−, so that the r- and k-periodicity assumptions apply to the reflectionless
wave function (B.85).)

In fact, all of the assumptions (including (B.80)) are obeyed by the arbitrary-N attractive eigenfunc-
tions from Section 4 in [6]. In particular, the evenness assumption (B.83) is obeyed due to parity features
of the latter.

Appendix C. A boundary lemma
The following lemma yields a template for handling the� → ∞ limits of the boundary terms arising in
the analysis of the transform F and its adjoint. It is adapted from the Proof of Theorem 2.1 in Appendix A
of [6].
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58 S. HAWORTH AND S. RUIJSENAARS

In order to handle F and F∗ at once, we start from two C-valued functions G±(s, t, t′) that are defined
on {Re s > 0} × R

2 and have the following features. They are analytic in s and smooth in t, t′. Their
dominant asymptotics as Re s → ∞ is given by smooth functions Aj(t, t′), j = 1, 2, in the sense that

G+(s, t, t′) = A1(t, t′)+ ρ1(s, t, t′), G−(s, t, t′) = A2(t, t′)+ ρ2(s, t, t′), (C.1)

where

ρj(s, t, t′) = O(exp(−ηs)), Re s → ∞, η > 0, (C.2)

∂3ρj(s, t, t′) = O(exp(−ηs)), Re s → ∞, η > 0, (C.3)

with implied constants that are uniform for Im s, t, t′ in compact subsets of R. Finally, we assume

G+(s, t, t) = G−(s, t, t), Re s > 0, t ∈ R, (C.4)

and

Aj(t, t) = A(t), j = 1, 2, t ∈ R. (C.5)

We are now prepared for our boundary lemma.

Lemma C1 Letting φ(t, t′) ∈ C∞
0 (R

2), define

IR ≡
∫

R2
dtdt′ φ(t, t′)

BR(t, t′)
sinh(t′ − t)

, (C.6)

where

BR(t, t′) ≡
∫ R+i

R−i
ds

∑
α=+,−

αGα(s, t, t′) exp(iαs(t − t′)), R > 0. (C.7)

Then we have

lim
R→∞

IR = 4π
∫ ∞

−∞
φ(t, t)A(t)dt. (C.8)

Proof. We begin by noting that by (C.4) the integrand in (C.7) is a smooth function of (t, t′) ∈ R
2 that

vanishes for t = t′, so that BR(t, t′) has the same properties. Therefore the integrand in (C.6) belongs to
C∞

0 (R
2). Hence IR is well defined.
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Next, we write

BR(t, t′) =
4∑

j=1

∫ R+i

R−i
ds bj(s, t, t′), (C.9)

b1 ≡ i sin(s(t − t′))A+(t, t′), b2 ≡ i sin(s(t − t′))ρ+(s, t, t′), (C.10)

b3 ≡ cos(s(t − t′))A−(t, t′), b4 ≡ cos(s(t − t′))ρ−(s, t, t′), (C.11)

where

A±(t, t′) ≡ A1(t, t′)± A2(t, t′), (C.12)

ρ±(s, t, t′) ≡ ρ1(s, t, t′)± ρ2(s, t, t′). (C.13)

Each of the terms in the sum on the RHS of (C.9) is a smooth function of t and t′ that vanishes for t = t′.
Thus the integrals

Ij(R) ≡
∫

R2
dtdt′

φ(t, t′)
sinh(t′ − t)

∫ R+i

R−i
ds bj(s, t, t′), j = 1, . . . , 4, (C.14)

are well defined and it suffices to prove

lim
R→∞

I1(R) = 4π
∫ ∞

−∞
φ(t, t)A(t)dt, (C.15)

lim
R→∞

Ij(R) = 0, j = 2, 3, 4. (C.16)

In order to prove (C.15), we use (C.14) and (C.10) to calculate

I1(R) =
∫

R2
dtdt′ φ(t, t′)

2 sin R(t − t′)
t − t′

A+(t, t′). (C.17)

Invoking the tempered distribution limit

lim
R→∞

sin Rx

x
= πδ(x), (C.18)

and using our assumption (C.5), we now deduce (C.15).
We continue by studying the integral I2(R). It can be written

i
∫

R2
dtdt′ φ(t, t′)

t − t′

sinh(t′ − t)

∫ R+i

R−i
ds

sin(s(t − t′))
t − t′

ρ+(s, t, t′). (C.19)
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The integrand of the s-integral can be estimated by using

∣∣∣∣ sin s(t − t′)
t − t′

∣∣∣∣ = 1

2

∣∣∣∣
∫ s

−s
dxeix(t−t′)

∣∣∣∣ ≤ |s|e|t−t′||Im s|, (C.20)

ρ+(s, t, t′) = O(exp(−ηs)), Re s → ∞, (C.21)

where the latter bound is uniform for Im s, t, t′ in R-compacts, cf. (C.2) and (C.13). Hence we easily
deduce (C.16) for j = 2.

Consider next I3(R). This integral equals

2
∫

R2
dtdt′ φ(t, t′) cos R(t − t′)

A−(t, t′)
t − t′

. (C.22)

Thus its integrand equals cos R(t − t′) times a function in C∞
0 (R

2). Its R → ∞ limit then vanishes by
virtue of the Riemann–Lebesgue lemma.

Finally, we take j = 4 in (C.14) and write

I4(R) =
∫

R2
dtdt′ φ(t, t′)

t − t′

sinh(t′ − t)

∫ R+i

R−i
ds cos(s(t − t′))

ρ−(s, t, t′)
t − t′

. (C.23)

Now due to our assumptions (C.4) and (C.5), the function ρ−(s, t, t′) vanishes for t = t′. For (t, t′)
belonging to the support of φ we therefore have

∣∣∣∣ρ−(s, t, t′)
t − t′

∣∣∣∣ =
∣∣∣∣∣

1

t − t′

∫ t′

t
du ∂3ρ−(s, t, u)

∣∣∣∣∣ ≤ max
(t,t′ ,θ)∈supp(φ)×[0,1]

|∂3ρ−(s, t, t + θ(t′ − t))|. (C.24)

Invoking our assumption (C.3), we infer that the RHS of (C.24) is O(exp(−ηRe s)) for Re s → ∞,
uniformly for Im s, t, t′ in R-compacts. Clearly, this entails that (C.23) has limit 0 for R → ∞, completing
the proof of the lemma. �

Appendix D. Time-dependent scattering theory
In the previous appendices we have not introduced any dynamics, yet we have freely referred to well-
known objects from scattering theory, including reflection/transmission coefficients and S-matrix. In
this appendix we shall explain the relation to time-dependent scattering theory in the general setting of
Appendices A and B.

First, we recall that this setting solely involves a number of features of the function �(r, k) in terms
of which the transform F is defined, cf. (A.5)–(A.8). These features were chosen such that they form
sufficient hypotheses for Theorems A1 and B1 to hold true. We have already shown that there are non-
trivial concrete realizations of these assumptions, yielding the transforms F±(ϕ), cf. (A.28)–(A.31).
These assumptions are in force throughout this appendix.

To connect the general transform F to time-dependent scattering theory, however, an additional
assumption is critical. This assumption is that F is an isometry, or equivalently, that the residue
sums (A.61) vanish. Admittedly, at face value this seems an assumption of a quite inaccessible nature.
The special cases worked out below Corollary A.2 show that it is not vacuous, but they only involve
the simplest case L = 1. Indeed, without the further examples coming from the main text, it would be
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far from obvious that there exist non-trivial arbitrary-L functions �(r, k) satisfying all of the pertinent
assumptions.

At any rate, in this appendix we are not concerned with explicit realizations of our assumptions, this
being the focus of the main text. More is true: We need not even restrict attention to the special dynamics
that pertains to the relativistic hyperbolic Calogero–Moser systems.

Specifically, we consider a vast class of dynamics to which the latter belongs. We start from
multiplication operators on Ĥ of the diagonal form

(M̂f )δ(k) = μ(k)fδ(k), δ = +, −, k > 0. (D.1)

Here, μ(k) is any real-valued, smooth, even function on R whose (odd) derivative satisfies

μ′(k) > 0, k > 0. (D.2)

Thusμ(k) is strictly increasing on (0, ∞), but not necessarily unbounded. (For example, the function 1−
exp(−k2) satisfies the assumptions.) On its maximal multiplication domain D(M̂) ⊂ Ĥ, the operator M̂ is
self-adjoint, and the subspace Ĉ = C∞

0 ((0, ∞))2 ⊂ D(M̂) is a core (domain of essential self-adjointness).
We can now define an operator M on the subspace

D(M) ≡ F(D(M̂)) ⊂ H, (D.3)

by setting

MF f ≡ FM̂f , f ∈ D(M̂). (D.4)

Since F is isometric (by assumption), this yields a self-adjoint operator M on the Hilbert space

Hr ≡ F(Ĥ). (D.5)

Furthermore, F(Ĉ) is a core for M. In case Hr is a proper subspace of H (so that F is not unitary), we
define M to be equal to an arbitrary self-adjoint operator on the orthogonal complement of Hr ; this choice
plays no role in the scattering theory of this appendix, but it will be made definite in the main text for the
dynamics at issue there, cf. the last paragraph of Section 4.

With the dynamics M thus defined as a self-adjoint operator on H, we now consider the associated
‘interacting’ unitary time evolution

U(t) ≡ exp(−itM), t ∈ R, (D.6)

in relation to a ‘free’ evolution defined by using the Fourier transform F0, cf. (A.9). Specifically, with F0

in the role of F , we obtain a self-adjoint operator M0 on H with associated time evolution

U0(t) ≡ exp(−itM0), t ∈ R. (D.7)

This evolution can be compared to U(t) in the usual sense of time-dependent scattering theory. We recall
that this amounts to study the (strong) limits of the unitary family U(−t)U0(t), yielding the isometric
wave operators

W± ≡ lim
t→±∞ U(−t)U0(t), (D.8)

in case the limits exist [30].
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The crux is now that our assumptions already suffice to prove that these limits do exist. Moreover,
the transform F is substantially equivalent to the incoming wave operator W−, in the sense that it is
equal to W−F0. To avoid possible confusion, we should stress that this equality does not give rise to an
isometry proof for F . Indeed, we need to assume that F is isometric to begin with, so as to obtain a
unitary evolution U(t), cf. (D.3)–(D.4).

Before stating the pertinent theorem, we specify the function μ(k) that corresponds to the defining
relativistic Calogero–Moser dynamics in the main text: It reads

μCM(k) = 2 cosh(ρk). (D.9)

The action of the associated operator MCM on the core F(Ĉ) is that of the analytic difference operator

HCM = exp(iρ∂r)+ exp(−iρ∂r). (D.10)

Indeed, HCM yields the eigenvalues (D.9) when acting on �(r, k). To be more specific, in the main
text the w(r)-poles are on the imaginary axis and the coefficients w(r)1/2m±(r, k) multiplying the plane
waves exp(±irk) are iρ-periodic for |Re r| > 0. (Note that the assumptions (A.17)–(A.18) entail that this
also holds true in the present axiomatic setting when we let |Re r| > |Re rj|, j = 1, . . . , 2L, so as to avoid
the branch points.)

Theorem D1 Assuming the transform F is isometric, define dynamics by (D.1)–(D.7). Then the strong
limits (D.8) exist. They are explicitly given by

W− = FF∗
0 , (D.11)

and

W+ = W−F0S(·)∗F∗
0 , (D.12)

where S(k) is the unitary matrix multiplication operator (A.23) on Ĥ.

Proof. We first prove that W− exists and is given by (D.11). Since F is isometric and the time evolutions
are unitary, we need only show that the H-norm

‖(eitMe−itM0F0 − F
)
f ‖1 = ‖(F0 − F)e−itM̂ f ‖1, (D.13)
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with f = (f+, f−) an arbitrary function in the dense subspace Ĉ of Ĥ, vanishes for t → −∞. To this end,
consider

(
(F0 − F)e−itM̂ f

)
(r) = 1√

2π

∫ ∞

0
dk

∑
δ=+,−

δ
(
eiδrk −�(δr, k)

)
e−itμ(k)fδ(k)

=:
1√
2π

∑
δ=+,−

δψδ(r). (D.14)

Taking r → −r in ψ−(r), we see that it suffices to prove that the H-norm of the function

g(t; r) ≡
∫ ∞

0
dk

(
eirk −�(r, k)

)
e−itμ(k)f (k), f ∈ C∞

0 ((0, ∞)), (D.15)

vanishes for t → −∞. Recalling (A.12), we obtain

g(t; r) =
∑
τ=+,−

τgτ (t; r), (D.16)

where

g+(t; r) ≡
∫ ∞

0
dk eirk(1 − w(r)1/2m+(r, k))e−itμ(k)f (k), (D.17)

g−(t; r) ≡
∫ ∞

0
dk e−irkw(r)1/2m−(r, k)e−itμ(k)f (k). (D.18)

From this we see that we need only change variables k → x ≡ μ(k) and invoke the Riemann–Lebesgue
lemma to obtain convergence to zero of g±(t; r) for t → −∞ and fixed r. (Note that our assumption (D.2)
ensures that this change of variables is well defined.)

As a consequence, it remains to supplement this pointwise convergence with L1(R) dominating
functions for the functions |g±(t; r)|2. To do so, we split up the integration over R into intervals [−R, R],
(−∞, −R] and [R, ∞), where R is chosen large enough so that we may invoke the asymptotics (A.17)–
(A.18). On the first interval the functions |g±(t; r)|2 are clearly bounded uniformly in t, so this contribution
vanishes for t → −∞.

Next, we bound |g+(t; r)|2 on the two tail intervals. For the left interval we use (A.17) to obtain an
exponentially decreasing dominating function. On the right interval we get two contributions from (A.17),
the second one again yielding an exponentially decreasing dominating function. Thus we are left with
obtaining a suitable bound for the function

∫ ∞

0
dk eirk(1 − T(k))e−itμ(k)f (k), r ∈ [R, ∞), (D.19)

with t ≤ −1, say. To this end, we write the exponentials as

(r − tμ′(k))−1(−i∂k) exp(irk − itμ(k)), (D.20)

noting that by our assumption (D.2) the denominator r − tμ′(k) is bounded away from zero on the
compact support of f (k) for t ≤ −1 and r ≥ R. Integrating by parts and estimating in the obvious
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64 S. HAWORTH AND S. RUIJSENAARS

way, this yields an O(1/r)-majorization that is uniform for t ≤ −1. Thus the modulus squared of the
function (D.19) is bounded above by C/r2 for all t ≤ −1, so that by the dominated convergence theorem
its L2([R, ∞))-norm vanishes for t → −∞.

It remains to bound |g−(t; r)|2 on the tail intervals. On the right one we get an exponentially decreasing
dominating function from (A.18). On the left, the second term in (A.18) yields again an exponentially
decreasing dominating function, so it remains to bound

∫ ∞

0
dk e−irkR(k)e−itμ(k)f (k), r ∈ (−∞, −R], (D.21)

uniformly for t ≤ −1. Writing

(r + tμ′(k))−1(i∂k) exp(−irk − itμ(k)), (D.22)

and integrating by parts, we readily obtain a uniform O(1/r)-majorization that suits our purpose. As a
result, we have now proved existence of W− and its explicit form (D.11).

Next, we show that W+ exists as well, and that W+F0 equals FS(·)∗. (In view of (D.11), this amounts
to (D.12).) Proceeding along the same lines as before, we study

‖(eitMe−itM0F0 − FS(·)∗)f ‖1 = ‖(F0 − FS(·)∗)e−itM̂ f ‖1, f ∈ Ĉ, (D.23)

for t → ∞. We have

(
(F0 − FS(·)∗) exp(−itM̂)f

)
(r) = 1√

2π

∑
δ=+,−

δφδ(r), (D.24)

where

φδ(r) ≡
∫ ∞

0
dk

(
eiδrk −�(δr, k)T(−k)+�(−δr, k)R(−k)

)
e−itμ(k)fδ(k). (D.25)

Taking r → −r in φ−(r), we deduce that we need only show that the L2(R)-norm of the function

h(t; r) ≡
∫ ∞

0
dk

(
eirk −�(r, k)T(−k)+�(−r, k)R(−k)

)
e−itμ(k)f (k), f ∈ C∞

0 ((0, ∞)), (D.26)

vanishes for t → ∞. Now from (A.12) we get

h(t; r) =
∑
τ=+,−

τhτ (t; r), (D.27)

 by guest on A
ugust 26, 2016

http://integrablesystem
s.oxfordjournals.org/

D
ow

nloaded from
 

http://integrablesystems.oxfordjournals.org/


HILBERT SPACE THEORY FOR RELATIVISTIC DYNAMICS WITH REFLECTION. 65

where

h+(t; r) ≡
∫ ∞

0
dk eirk

(
1 − w(r)1/2m+(r, k)T(−k)+ w(r)1/2m−(−r, k)R(−k)

)
e−itμ(k)f (k), (D.28)

h−(t; r) ≡
∫ ∞

0
dk e−irk

(
w(r)1/2m−(r, k)T(−k)− w(r)1/2m+(−r, k)R(−k)

)
e−itμ(k)f (k). (D.29)

As before, the Riemann–Lebesgue lemma implies that the functions h±(t; r) vanish for t → ∞ and
fixed r, so it remains to supply dominating functions for t ≥ 1, say. This can be done by adapting the
above reasoning for the incoming wave operator. More in detail, for h+(t; r) we can invoke the unitarity
relation (A.21) when r ≥ R and use (D.20) for integration by parts when r ≤ −R, whereas h−(t; r) can
be handled by using (A.22) for r ≤ −R and (D.22) for r ≥ R. Thus our proof is now complete. �

In the language of time-independent scattering theory, this theorem reveals that the integral kernel of
F is the incoming wave function

� in(r, k) =
(

�(r, k)
−�(−r, k)

)
, k > 0, (D.30)

cf. (A.6)–(A.8), whose relation to the outgoing one

�out(r, k) =
(

�(r, k)
−�(−r, k)

)
, k > 0, (D.31)

is given by

�(r, k) = T(−k)�(r, k)− R(−k)�(−r, k). (D.32)

Equivalently, we have

� in(r, k) = S(k)�out(r, k), (D.33)

with the S-matrix S(k) given by (A.23).
It follows from our assumptions that each of the above dynamics defined via F is invariant under the

usual parity operator

(Pf )(r) ≡ f (−r), f ∈ H. (D.34)

Indeed, we readily calculate that the operator

P̂ ≡ F∗PF , (D.35)

is given by

(P̂g)(k) =
(

0 −1
−1 0

)
g(k), g ∈ Ĥ. (D.36)
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This implies that the range Hr of F is left invariant by P , and since M̂ commutes with P̂ , we also have
[P , exp(itM)] = 0. (To be quite precise, this holds when we define M on the orthocomplement (Hr)⊥

of Hr in such a way that it also commutes with P on (Hr)⊥.)
By contrast, the state of affairs for the customary time reversal operator

(T f )(r) ≡ f (r), f ∈ H, (D.37)

is not clear in the present axiomatic context (as opposed to the main text, as we shall see shortly). We
proceed to elaborate on this. First, we can easily calculate

T̂0 ≡ F∗
0 T F0, (D.38)

yielding

(T̂0g)(k) =
(

0 −1
−1 0

)
g(k), g ∈ Ĥ. (D.39)

Thus T̂0 commutes with all of the dynamics M̂ given by (D.1). Clearly, this entails

T exp(−itM0) = exp(itM0)T , t ∈ R. (D.40)

The difficulty is now that we do not know whether our assumptions imply (D.40) with M0 → M. To
explain what is involved, let us assume that this is indeed the case. Then, the definition (D.8) of the wave
operators entails

T W− = W+T . (D.41)

Using (D.11) and (D.12), we readily deduce

F = T FS(·)∗T̂0. (D.42)

When we now compare the kernels of the transforms in (D.42), then we obtain

�(r, k) = T(k)�(−r, k)− R(k)�(r, k). (D.43)

In view of our standing assumption (A.11), this amounts to the identity

�(r, k) = T(k)�(−r, −k)− R(k)�(r, −k). (D.44)

On account of (D.30)–(D.32), this identity can also be rewritten as the relation

�out(r, k) =
(

0 −1
−1 0

)
� in(r, k). (D.45)

Clearly, this argument can be reversed: Assuming (D.44) holds true, we deduce

T exp(−itM) = exp(itM)T , t ∈ R. (D.46)
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For the transforms coming from the main text, the time reversal identity (D.44) is indeed valid,
cf. (2.40). Moreover, it can also be verified for the two transform kernels (B.78) in Proposition B4. But
we do not know whether (D.44) is a necessary consequence of the assumptions we made in Theorem D1.

From now on, we add to the assumptions of Theorem D1 the extra assumption that F is unitary
(equivalently, that Hr equals H, cf. (D.5)). As we shall show next, this implies that the function U(r)
arising from the large-|k| asymptotics of the coefficients (cf. (B.16)) may be viewed as the S-matrix of a
large class of ‘dual’ dynamics. This class arises by starting from real-valued, smooth, odd functions d(r),
which satisfy

d ′(r) > 0, r ∈ R. (D.47)

Thus d(r) is strictly increasing, but need not be unbounded. (For example, the function tanh r satisfies
the assumptions.)

Any such function gives rise to a self-adjoint multiplication operator D on its natural domain D(D) ⊂
H. Since F is assumed to be unitary, we can now define a self-adjoint operator D̂ on Ĥ by

D̂F∗f ≡ F∗Df , f ∈ D(D). (D.48)

We continue to compare the associated ‘interacting’ unitary time evolution

Û(t) ≡ exp(−itD̂), t ∈ R, (D.49)

to the ‘free’ evolution defined by using F∗
0 . Thus, replacing F∗ by F∗

0 in (D.48), we obtain a self-adjoint
operator D̂0 on Ĥ, which yields a time evolution

Û0(t) ≡ exp(−itD̂0), t ∈ R. (D.50)

As before, our goal is to show that the dual wave operators,

Ŵ± ≡ lim
t→±∞ Û(−t)Û0(t), (D.51)

exist, and to clarify their relation to F∗ and the unitary operator

(Uf )(r) ≡ U(r)f (r), f ∈ H. (D.52)

Before doing so, we detail the function d(r) that arises from the dual relativistic Calogero–Moser
dynamics. It is given by

dCM(r) = 2 sinh(κr), (D.53)

and the corresponding operator D̂CM acts on the core F∗(C) as the analytic difference operator

ĤCM = exp(−iκ∂k)− exp(iκ∂k). (D.54)

To see that this gives rise to the ‘eigenvalues’ (D.53), recall that we have assumed (above (B.4))
that m+(r, k) is iκ-periodic in k, whereas m−(r, k) is assumed to be iκ-antiperiodic.
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Theorem D2 The strong limits (D.51) exist and are given by

Ŵ± = F∗U(·)∓1/2F0, (D.55)

where U(r) is the unitary multiplication operator on H given by the square of (B.15).

Proof. Our proof is patterned after the Proof of Theorem D1. To show that Ŵ− exists and is given
by (D.55), we start from the Ĥ-norm

‖(eitD̂e−itD̂0F∗
0 − F∗U(·)1/2)f ‖2 = ‖(F∗

0 − F∗U(·)1/2)e−itDf ‖2, f ∈ C. (D.56)

In order to prove it vanishes for t → −∞, we consider

(
F∗

0 − F∗U(·)1/2)e−itd(·)f
)
δ
(k) = δ√

2π

∫
R

dr
(
e−iδrk −�(δr, −k)U(r)1/2

)
e−itd(r)f (r). (D.57)

By virtue of the Riemann–Lebesgue lemma, this function vanishes for t → −∞ and k > 0 fixed, so we
need only exhibit a suitable dominating function in L1((0, ∞), dk).

For δ = + we should look at the functions

ĝ+
+(t; k) ≡

∫
R

dr e−irk(1 − w(r)1/2m+(r, −k)U(r)1/2)e−itd(r)f (r), (D.58)

ĝ−
+(t; k) ≡

∫
R

dr eirkw(r)1/2m−(r, −k)U(r)1/2e−itd(r)f (r). (D.59)

To supply dominating functions for |ĝ±
+(t; k)|2, we split integration over (0, ∞) into intervals (0, R]

and [R, ∞), where R is chosen large enough for the asymptotics (B.11)–(B.12) to be valid. Since the
functions |ĝ±

+(t; k)|2 are bounded uniformly in t on (0, R], the contribution of this interval vanishes for
t → −∞.

To bound |ĝ+
+(t; k)|2 on [R, ∞), we need only invoke (B.11) and (B.15). Indeed, from this we deduce

that the dominant contribution cancels, so we are left with an exponentially decreasing dominating
function. For |ĝ−

+(t; k)|2 the existence of such a function is immediate from (B.12), so it now follows that
the norm of the function (D.57) with δ = + vanishes for t → −∞.

For the choice δ = −, we should majorize the functions

ĝ+
−(t; k) ≡

∫
R

dr eirk(1 − w(r)1/2m+(−r, −k)U(r)1/2)e−itd(r)f (r), (D.60)

ĝ−
−(t; k) ≡

∫
R

dr e−irkw(r)1/2m−(−r, −k)U(r)1/2e−itd(r)f (r). (D.61)

As before, boundedness for k ∈ (0, R] is plain, and just as for (D.59), we get an exponentially decreasing
dominating function for (D.61) on [R, ∞) right away from (B.12).

Invoking once again (B.11) and (B.15), we deduce that it remains to bound the function

∫
R

dr eirk
(
1 − w(r)C(−r)C(r)

)
e−itd(r)f (r), k ∈ [R, ∞), (D.62)
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for t ≤ −1. Writing

(k − td ′(r))−1(−i∂r) exp(irk − itd(r)), (D.63)

we observe that by our assumption (D.47) the denominator is bounded away from zero on the compact
support of f (r) for t ≤ −1 and k ≥ R. It easily follows that when we integrate by parts we can obtain an
O(1/k)-bound that is uniform for t ≤ −1. Thus the L2([R, ∞), dk)-norm of (D.62) vanishes for t → −∞.

The upshot is that we have completed the proof that Ŵ− exists and is given by (D.55). The proof
for Ŵ+ only involves some obvious changes, so we omit it. �
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