
This is a repository copy of Handling Scheduling Problems with Controllable Parameters
by Methods of Submodular Optimization.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/102830/

Version: Accepted Version

Proceedings Paper:
Shioura, A, Chakhlevitch, NV and Strusevich, VA (2016) Handling Scheduling Problems
with Controllable Parameters by Methods of Submodular Optimization. In: Kochetov, Y,
Khachay, M, Beresnev, V, Nurminski, E and Pardalos, P, (eds.) Discrete Optimization and
Operations Research. 9th International Conference, DOOR, 19-23 Sep 2016, Vladivostok,
Russia. Lecture Notes in Computer Science (9869). Springer International Publishing ,
Cham, Switzerland , pp. 74-90. ISBN 978-3-319-44913-5

https://doi.org/10.1007/978-3-319-44914-2_7

© Springer International Publishing Switzerland 2016. This is an author produced version
of a paper published in Lecture Notes in Computer Science. The final publication is
available at Springer via http://dx.doi.org/10.1007/978-3-319-44914-2_7. Uploaded in
accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Handling Scheduling Problems with Controllable

Parameters by Methods of Submodular

Optimization

Vitaly A. Strusevich1, Akiyoshi Shioura2, and Natalia V. Shakhlevich3

1 Univeristy of Greenwich, London, U.K.
2 Tokyo Institute of Technology, Tokyo, Japan

3 University of Leeds, Leeds, U.K.

Abstract. In this paper, we demonstrate how scheduling problems with
controllable processing times can be reformulated as maximization linear
programming problems over a submodular polyhedron intersected with
a box. We explain a decomposition algorithm for solving the latter prob-
lem and discuss its implications for the relevant problems of preemptive
scheduling on a single machine and parallel machines.

1 Introduction

In Scheduling with Controllable Processing Times (SCPT), the actual durations
of the jobs are not fixed in advance, but have to be chosen from a given interval.
For a SCPT model, two types of decisions are required: (i) each job has to be
assigned its actual processing time, and (ii) a schedule has to be found that
provides a required level of quality. A penalty is applied for assigning shorter
actual processing times. The quality of the resulting schedule is measured with
respect to the cost of assigning the actual processing times that guarantee a
certain scheduling performance. This area of scheduling has been active since
the 1980s, see surveys [21] and [27].

Nemhauser and Wolsey were among the first who noticed that the SCPT
models could be handled by methods of Submodular Optimization (SO); see,
e.g., Example 6.1 (Section 6 of Chapter III.3) of their book [20]. A systematic
development of a general framework for solving the SCPT problems via sub-
modular methods has been initiated by Shakhlevich and Strusevich [28, 29] and
further advanced in [30]. As a result, a powerful toolkit of the SO techniques
[5, 26] can be used for design and justification of algorithms for solving a wide
range of the SCPT problems. In this paper, we present convincing examples of
a positive mutual influence of scheduling and submodular optimization, mainly
based on our recent work [32]-[35].

2 Scheduling with Controllable Processing Times

The jobs of set N = {1, 2, . . . , n} have to be processed either on a single machine
M1 or on parallel machines M1,M2, . . . ,Mm, where m ≥ 2. For each job j ∈ N ,

2

its processing time p(j) is not given in advance but has to be chosen from a
given interval

[
p(j), p(j)

]
. That selection process is often seen as compressing the

longest processing time p(j) down to p(j). The value x(j) = p(j)− p(j) is called
the compression amount of job j. Compression may decrease the completion
time of each job j but incurs additional cost w(j)x(j), where w(j) is a given
non-negative unit compression cost. The total cost is represented by the linear
function W =

∑
j∈N w(j)x(j).

Each job j ∈ N is given a release date r(j), before which it is not available,
and a deadline d (j), by which its processing must be completed. In the processing
of any job, preemption is allowed, so that the processing can be interrupted on
any machine at any time and resumed later, possibly on another machine. It
is not allowed to process a job on more than one machine at a time, and a
machine processes at most one job at a time. Given a schedule, let C(j) denote
the completion time of job j. A schedule is called feasible if the processing of a
job j ∈ N takes place in the time interval [r(j), d (j)].

We distinguish between the identical parallel machines and the uniform
parallel machines. In the former case, the machines have the same speed. If
the machines are uniform, then it is assumed that machine Mh has speed sh,
1 ≤ h ≤ m. Throughout this paper we assume that the machines are numbered
in non-increasing order of their speeds, i.e.,

s1 ≥ s2 ≥ · · · ≥ sm. (1)

Adapting standard notation for scheduling problems [15], we denote a generic
problem of our primary concern by α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) ,
pmtn|W. Here, in the first field α we write “1” for a single machine, “P” in the
case ofm ≥ 2 identical machines and “Q” in the case ofm ≥ 2 uniform machines.
In the middle field, the item “r(j)” implies that the jobs have individual release
dates; this parameter is omitted if the release dates are equal. We write “p(j) =
p(j) − x(j)” to indicate that the processing times are controllable and x(j) is
the compression amount to be found. The condition “C(j) ≤ d (j)” reflects
the fact that in a feasible schedule the deadlines should be respected; we write
“C(j) ≤ d”, if all jobs have a common deadline d. The abbreviation “pmtn”
is used to point out that preemption is allowed. Finally, in the third field we
write the objective function to be minimized, which is the total compression
cost W =

∑
w(j)x(j).

If the processing times p(j), j ∈ N , are fixed then the corresponding coun-
terpart of problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d (j) , pmtn|W is denoted
by α|r(j), C(j) ≤ d (j) , pmtn|◦. In the latter problem, it is required to verify
whether a feasible preemptive schedule exists. If the deadlines are equal, then
the counterpart of problem α|r(j), p(j) = p(j) − x(j), C(j) ≤ d, pmtn|W with
fixed processing times can be denoted by α|r(j), pmtn|Cmax, so that it is required
to find a preemptive schedule that for the corresponding settings minimizes the
makespan Cmax = max {C(j)|j ∈ N}: if the optimal makespan is larger than d
the required feasible schedule does not exist; otherwise, it exists.

Below we give examples of two most popular interpretations of the SCPT
models. Alternative interpretations can be found, e.g., in [12] and [18].

3

In computing systems that support imprecise computation [16], some com-
putations can be run partially, producing less precise results. In our notation, to
produce a result of reasonable quality, the mandatory part of each task j must
be completed, and this takes p(j) time units. If instead of an ideal computa-
tion time p(j) a task is executed for p(j) = p(j)− x(j) time, then computation
is imprecise, and x(j) corresponds to the error of computation. The objective
function W =

∑
w(j)x(j) is interpreted as the total weighted error.

The SCPT problems serve as mathematical models in make-or-buy decision-
making [30], where it is required to determine which part of each order j is
manufactured internally and which is subcontracted. For this model, p(j) =
p(j)− x(j) is understood as the chosen actual time for internal manufacturing,
where x(j) shows how much of the order is subcontracted and w(j)x(j) is the
cost of this subcontracting. Thus, we need to minimize the total subcontracting
cost and to find a deadline-feasible schedule for internally manufactured orders.

These and other versions of the SCPT problems can be formulated as SO
models and handled by SO methods.

3 Submodular Polyhedra and Decomposition Algorithm

In this section, we present some basic facts related to submodular optimization.
Unless stated otherwise, we follow a comprehensive monograph on this topic by
Fujishige [5], see also [14, 26]. We also describe a decomposition algorithm for
solving a linear programming problem subject to submodular constraints.

For a positive integer n, let N = {1, 2, . . . , n} be a ground set, and let 2N

denote the family of all subsets of N . For a subset X ⊆ N , let R
X denote the

set of all vectors p with real components p(j), where j ∈ X. For two vectors p =
(p(1), p(2), . . . , p(n)) ∈ R

N and q = (q(1), q(2), . . . , q(n)) ∈ R
N , we write p ≤ q

if p(j) ≤ q(j) for each j ∈ N . For a vector p ∈ R
N , define p(X) =

∑
j∈X p(j)

for every set X ∈ 2N .
A set function ϕ : 2N → R is called submodular if the inequality ϕ(X) +

ϕ(Y) ≥ ϕ(X ∪ Y) + ϕ(X ∩ Y) holds for all sets X,Y ∈ 2N . For a submodu-
lar function ϕ defined on 2N such that ϕ(∅) = 0, the pair (2N , ϕ) is called a
submodular system on N , while ϕ is referred to as its rank function.

For a submodular system (2N , ϕ), define two polyhedra P (ϕ) = {p ∈ R
N |

p(X) ≤ ϕ(X), X ∈ 2N} and B(ϕ) = {p ∈ R
N | p ∈ P (ϕ), p(N) = ϕ(N)},

called the submodular polyhedron and the base polyhedron, respectively, associ-
ated with the submodular system. The main problem of our interest is as follows:

(LP) : max
∑

j∈N

w(j)p(j)

s.t. p(X) ≤ ϕ(X), X ∈ 2N ,
p(j) ≤ p(j) ≤ p(j), j ∈ N,

(2)

where ϕ : 2N → R is a submodular function with ϕ(∅) = 0, w ∈ R
N
+ is a

nonnegative weight vector, and p,p ∈ R
N are upper and lower bound vectors,

respectively. We refer to (2) as Problem (LP). This problem serves as a mathe-
matical model for many SCPT problems, as demonstrated in Sections 4-5.

4

Problem (LP) can be classified as a problem of maximizing a linear function
over a submodular polyhedron intersected with a box. As shown in [30], Problem
(LP) can be reduced to optimization over a base polyhedron.

Theorem 1 (cf. [30]). If Problem (LP) has a feasible solution, then the set
of its maximal feasible solutions is a base polyhedron B(ϕ̃) associated with the
submodular system (2N , ϕ̃), where the rank function ϕ̃ : 2N → R is given by

ϕ̃(X) = min
Y ∈2N

{ϕ(Y) + p(X \ Y)− p(Y \X)}. (3)

Notice that the computation of the value ϕ̃(X) for a given X ∈ 2N reduces to
minimization of a submodular function, which can be done in polynomial time
[11, 25]. However, the running time of known general algorithms is fairly large.
In many special cases of Problem (LP), including its applications to the SCPT
problems, the value ϕ̃(X) can be computed more efficiently, as shown later.

Throughout this paper, we assume that Problem (LP) has a feasible solution,
which is equivalent to the conditions p ∈ P (ϕ) and p ≤ p. Theorem 1 implies
that Problem (LP) reduces to the following problem:

max
∑

j∈N

w(j)p(j) (4)

s.t. p ∈ B(ϕ̃),

where the rank function ϕ̃ : 2N → R is given by (3).
An advantage of the reduction of Problem (LP) to a problem of the form

(4) is that the solution vector can be obtained essentially in a closed form by a
greedy algorithm. To determine an optimal vector p∗, the algorithm starts with
p∗ = p, considers the components of the current p∗ in non-increasing order of
their weights and gives the current component the largest possible increment
that keeps the vector feasible.

Introduce the sequence σ = (σ (1) , σ (2) , . . . , σ (n)) such that w(σ(1)) ≥
w(σ(2)) ≥ · · · ≥ w(σ(n)) and define Nt(σ) = {σ(1), . . . , σ(t)} , 1 ≤ t ≤ n,
where, for completeness, N0(σ) = ∅.

Theorem 2 (cf. [5]). Vector p∗ ∈ R
N given by

p∗(σ(t)) = ϕ̃ (Nt(σ))− ϕ̃ (Nt−1(σ)) , t = 1, 2, . . . , n,

is an optimal solution to problem (4) (and also to the problem (2)).

For certain problems of type (2) it is possible to get a faster algorithm
in comparison with the greedy algorithm by decomposing Problem (LP) into
subproblems and solving them recursively. We say that a subset N̂ ⊆ N is a
heavy-element subset of N with respect to the weight vector w if it satisfies the
condition minj∈N̂ w(j) ≥ maxj∈N\N̂ w(j). For completeness, we also regard the
empty set as a heavy-element subset of N . For a given set X ⊆ N , in accordance
with (3) define a set Y∗ ⊆ N such that the equality

ϕ̃(X) = ϕ(Y∗) + p(X \ Y∗)− p(Y∗ \X) (5)

holds. In the remainder of this paper, we call Y∗ an instrumental set for set X.

5

Lemma 1 (cf. [33, 35]). Let N̂ ⊆ N be a heavy-element subset of N with
respect to w, and Y∗ ⊆ N be an instrumental set for set N̂ . Then, there exists
an optimal solution p∗ of Problem (LP) such that

(a) p∗(Y∗) = ϕ(Y∗), (b) p∗(j) = p(j), j ∈ N̂\Y∗, (c) p∗(j) = p(j), j ∈ Y∗\N̂ .

In what follows, we use two fundamental operations on a submodular system(
2N , ϕ

)
, as defined in [5, Section 3.1]. For a set A ∈ 2N , define a set function

ϕA : 2A → R by ϕA(X) = ϕ(X), X ∈ 2A. Then, (2A, ϕA) is a submodular
system on A and it is called a restriction of (2N , ϕ) to A. On the other hand,
for a set A ∈ 2N define a set function ϕA : 2N\A → R by ϕA(X) = ϕ(X ∪ A)−
ϕ(A), X ∈ 2N\A. Then, (2N\A, ϕA) is a submodular system on N \ A and it
is called a contraction of (2N , ϕ) by A.

Theorem 3 (cf. [33, 35]). Let N̂ ⊆ N be a heavy-element subset of N with
respect to w, and Y∗ be an instrumental set for set N̂ . Let p1 ∈ R

Y ∗

and
p2 ∈ R

N\Y ∗

be optimal solutions of the linear programs (LPR) and (LPC),
respectively, given by

(LPR) : max
∑

j∈Y∗

w(j)p(j)

s.t. p(X) ≤ ϕ(X), X ∈ 2Y∗ ,

p(j) ≤ p(j) ≤ p(j), j ∈ Y∗ ∩ N̂ ,

p(j) = p(j), j ∈ Y∗ \ N̂ .

(LPC) : max
∑

j∈N\Y∗

w(j)p(j)

s.t. p(X) ≤ ϕ(X ∪ Y∗)− ϕ(Y∗), X ∈ 2N\Y∗ ,

p(j) ≤ p(j) ≤ p(j), j ∈ (N \ Y∗) \
(
N̂ \ Y∗

)
,

p(j) = p(j), j ∈ N̂ \ Y∗.

Then, the vector p∗ ∈ R
N given by the direct sum p∗ = p1 ⊕ p2, where

(p1 ⊕ p2)(j) =

{
p1(j), if j ∈ Y∗,
p2(j), if j ∈ N \ Y∗.

is an optimal solution of Problem (LP).

Notice that Problem (LPR) is obtained from Problem (LP) as a result of
restriction to Y∗ and the values of components p(j), j ∈ Y∗ \ N̂ , are fixed to their
lower bounds in accordance with Property (c) of Lemma 1. Similarly, Problem
(LPC) is obtained from Problem (LP) as a result of contraction by Y∗ and
the values of components p(j), j ∈ N̂ \ Y∗, are fixed to their upper bounds in
accordance with Property (b) of Lemma 1.

Now we explain how the original Problem (LP) can be decomposed recur-
sively based on Theorem 3, until we obtain a collection of trivially solvable
problems with no non-fixed variables. As described in [33, 35], in each stage of
the recursive procedure, we need to solve a subproblem that can be written in
the following generic form:

6

LP(H,F,K, l,u) : max
∑

j∈H

w(j)p(j)

s.t. p(X) ≤ ϕH
K(X) = ϕ(X ∪K)− ϕ(K), X ∈ 2H ,

l(j) ≤ p(j) ≤ u(j), j ∈ H \ F,
p(j) = u(j) = l(j), j ∈ F,

(6)

where H ⊆ N is the index set of components of vector p; l = (l(j) | j ∈ H) and
u = (u(j) | j ∈ H) are, respectively, the current vectors of the lower and upper
bounds on variables p(j), j ∈ H; F ⊆ H is the index set of fixed components,
i.e., l(j) = u(j) holds for each j ∈ F ; K ⊆ N \H is the set that defines the rank
function ϕH

K : 2H → R such that ϕH
K(X) = ϕ(X ∪K)− ϕ(K), X ∈ 2H .

Suppose that Problem LP(H,F,K, l,u) of the form (6) contains at least one
non-fixed variable, i.e., |H \ F | > 0. We define a function ϕ̃H

K : 2H → R by

ϕ̃H
K(X) = min

Y ∈2H
{ϕH

K(Y) + u(X \ Y)− l(Y \X)}. (7)

By Theorem 1, the set of maximal feasible solutions of Problem LP(H,F,K, l,u)
is given as a base polyhedron B(ϕ̃H

K) associated with the function ϕ̃H
K . Therefore,

if |H \ F | = 1 and H \ F = {j′}, then an optimal solution p∗ ∈ R
H is given by

p∗(j) =

{
ϕ̃H
K({j′}), j = j′,

u(j), j ∈ F.
(8)

Suppose that |H\F | ≥ 2. Then, we call a recursive Procedure Decomp(H,F,
K, l,u) explained below. Let Ĥ ⊆ H be a heavy-element subset ofH with respect
to the vector (w(j) | j ∈ H), and Y∗ ⊆ H be an instrumental set for set Ĥ, i.e.,

ϕ̃H
K(Ĥ) = ϕH

K(Y∗) + u(Ĥ \ Y∗)− l(Y∗ \ Ĥ). (9)

Without going into implementation details, we follow [33, 35] and give a for-
mal description of the recursive procedure. For the current problem LP(H,F,K,
l, u), we compute optimal solutions p1 ∈ R

Y∗ and p2 ∈ R
H\Y∗ of the two sub-

problems by calling Procedures Decomp(Y∗, F1,K, l1,u1) and Decomp(H \Y∗,
F2,K ∪ Y∗, l2,u2). By Theorem 3, the direct sum p∗ = p1 ⊕ p2 is an optimal
solution of Problem LP(H,F,K, l,u), which is the output of Procedure De-

comp(H,F,K, l,u).

Procedure Decomp(H,F,K, l,u)
Step 1. If |H \ F | = 0, then output the vector p∗ = u ∈ R

H and return.
If |H \ F | = 1 and H \ F = {j′}, then compute the value ϕ̃H

K({j′}), output
the vector p∗ given by (8) and return.

Step 2. Select a heavy-element subset Ĥ of H \ F with respect to w, and
determine an instrumental set Y∗ ⊆ H for set Ĥ satisfying (9).

Step 3. Define the vectors l1,u1 ∈ RY∗ and set F1 by

l1(j) = l(j), j ∈ Y∗, u1(j) =

{
l(j), j ∈ Y∗ \ Ĥ,

u(j), j ∈ Y∗ ∩ Ĥ,
; F1 = Y∗ \ Ĥ,

7

Call ProcedureDecomp(Y∗, F1,K, l1,u1) to obtain an optimal solution p1 ∈
R

Y∗ of Problem LP(Y∗, F1,K, l1,u1).
Step 4. Define the vectors l2,u2 ∈ RH\Y∗ and set F2 by

l2(j) =

{
u(j), j ∈ Ĥ \ Y∗,

l(j), j ∈ H \ (Y∗ ∪ Ĥ),
u2(j) = u(j), j ∈ H \ Y∗;

F2 = (Ĥ ∪ (H ∩ F)) \ Y∗.

Call Procedure Decomp(H \ Y∗, F2,K ∪ Y∗, l2,u2) to obtain an optimal
solution p2 ∈ R

H\Y∗ of Problem LP(H \ Y∗, F2,K ∪ Y∗, l2,u2).
Step 5. Output the direct sum p∗ = p1 ⊕ p2 ∈ R

H and return.

The original Problem (LP) is solved by calling Procedure Decomp(N, ∅, ∅,
p,p). Its actual running time depends on the choice of a heavy-element subset

Ĥ in Step 2 and on the time complexity of finding an instrumental set Y∗. As
proved in [33], if at each level of recursion a heavy-element set is chosen to contain
roughly a half of the non-fixed variables, then the overall depth of recursion of
Procedure Decomp applied to Problem LP(N, ∅, ∅,p,p) is O(log n).

For a typical iteration of ProcedureDecomp applied to Problem LP(H,F,K,
l,u) with |H| = h and |H \F | = g, let TY∗

(h) denote the running time for com-
puting the value ϕ̃H

K(Ĥ) for a given set Ĥ ⊆ H and finding an instrumental set Y∗
in Step 2. In Steps 3 and 4, Procedure Decomp splits Problem LP(H,F,K, l,u)
into two subproblems: one with h1 variables among which g1 ≤ min{h1, ⌈g/2⌉}
variables are not fixed, and the other one with h2 = h − h1 variables, among
which g2 ≤ min{h2, ⌊g/2⌋} variables are not fixed. Let TSplit (h) denote the
time complexity for setting up the instances of these two subproblems. It is
shown in [33, 35] that Problem (LP) can be solved by Procedure Decomp in
O((TY∗

(n) + TSplit(n)) log n) time.

4 SCPT Problems with a Common Deadline

In this section, we review the results on the SCPT problems α|r(j), pmtn,C(j) ≤
d|W , where α ∈ {1, P,Q}, provided that the jobs have a common deadline d. We
also report the results on the makespan minimization versions α|r(j), pmtn|Cmax

and the bicriteria versions α|r(j), pmtn,C(j) ≤ d| (Cmax,W). For the latter type
of problems, it is required to minimize both objective functions Cmax and W
simultaneously, in the Pareto sense, so that the solution is delivered in the form
of an efficiency frontier.

First, assume that the release dates are equal to zero, so that the prob-
lems with a single machine are trivial. Solving problem P |pmtn|Cmax with fixed
processing times can be done by a linear-time algorithm [19]. As shown in
[13], problem P |p(j) = p(j) − x(j), pmtn,C(j) ≤ d|W reduces to a continu-
ous knapsack problem and can be solved in O(n) time. The bicriteria problem
P |p(j) = p(j) − x(j), pmtn| (Cmax,W) is solved in [28] by an O(n log n)-time
algorithm, which is the best possible.

8

In the case of uniform machines, the best known algorithm for solving prob-
lem Q|pmtn|Cmax with fixed processing times is due to [7]. For problem Q|p(j) =
p(j) − x(j), pmtn,C(j) ≤ d|W , it is shown in [22] how to find the actual
processing times in O(nm + n log n) time. For the latter problem, Shakhle-
vich and Strusevich [29] use the SO reasoning to design an algorithm of the
same running time and extend it to solving a bicriteria problem Q|p(j) =
p(j) − x(j), pmtn| (Cmax,W). The best known algorithms for solving problems
Q|p(j) = p(j) − x(j), pmtn| (Cmax,W) and Q|p(j) = p(j) − x(j), pmtn,C(j) ≤
d|W are discussed in Section 4.2 and in Section 4.3, respectively; their time
complexity is O(nm logm) and O(n log n).

For the models with different release dates, problem 1|r(j), p(j) = p(j)−x(j),
pmtn,C(j) ≤ d (j) |W is one of the most studied SCPT problems. The first
algorithm that requires O(n log n) time and provides all implementation details
is developed in [28].

Problem P |r(j), pmtn|Cmax with fixed processing times on m identical par-
allel machines can be solved in O(n log n) time, as proved in [23]. For problem
Q|r(j), pmtn|Cmax, an algorithm for that requires O(mn + n log n) time is due
to [24]. Prior to work of our team on the links between the SCPT problems and
SO [32], no purpose-built algorithms had been known for problems Q|p(j) =
p(j)−x(j), pmtn,C(j) ≤ d|W and α|r(j), p(j) = p(j)−x(j), pmtn,C(j) ≤ d|W
with α ∈ {P,Q}, as well as for their bicriteria counterparts. We consider these
problems in Section 4.3 and Section 4.2, respectively.

4.1 Production Capacity Rank Functions

In this subsection, we present reformulations of the SCPT problems with a com-
mon deadline in terms of Problem (LP) with appropriately defined rank func-
tions.

We assume that if the jobs have different release dates, they are numbered
to satisfy

r(1) ≤ r(2) ≤ . . . ≤ r(n). (10)

If the machines are uniform, they are numbered in accordance with (1). We
denote

S0 = 0, Sk = s1 + s2 + · · ·+ sk, 1 ≤ k ≤ m. (11)

Sk represents the total speed of k fastest machines; if the machines are identical,
Sk = k holds.

For each problem Q|p(j) = p(j) − x(j), C(j) ≤ d, pmtn|W , P |r(j), p(j) =
p(j)−x(j), C(j) ≤ d, pmtn|W and Q|r(j), p(j) = p(j)−x(j), C(j) ≤ d, pmtn|W ,
we need to find the actual processing times p(j) = p(j)− x(j), j ∈ N , such that
all jobs can be completed by a common deadline d and the total compression cost
W =

∑
j∈N w(j)x(j) is minimized. Each of these problems can be formulated as

Problem (LP) with p(j), j ∈ N , being decision variables, and the objective func-
tion to be maximized being

∑
j∈N w(j)p(j) =

∑
j∈N w(j) (p(j)− x(j)). Since

each decision variable p(j) has a lower bound p(j) and an upper bound p(j),

9

the set of constraints of Problem (LP) includes the box constraints of the form
p(j) ≤ p(j) ≤ p(j), j ∈ N . Besides, the inequality

p (X) ≤ ϕ(X) (12)

should hold for each subset X ⊆ N of jobs, where a meaningful interpretation
of a rank function ϕ(X) is the largest capacity available for processing the jobs
of set X.

To determine ϕ(X) for each of these SCPT problems, an important generic
condition is available, which, according to [2] can be stated as follows: for a given
deadline d a feasible schedule exists if and only if: (i) for each k, 1 ≤ k ≤ m− 1,
k longest jobs can be processed on k fastest machines by time d, and (ii) all n
jobs can be completed on all m machines by time d.

For example, problem Q|p(j) = p(j) − x(j), C(j) ≤ d, pmtn|W , in which all
jobs are simultaneously available from time zero, reduces to Problem (LP) of the
form (2) with the rank function

ϕ(X) = dSmin{|X|,m} =

{
dS|X|, if |X| ≤ m− 1,
dSm, if |X| ≥ m.

(13)

It is clear that the conditions p(X) ≤ ϕ(X), X ∈ 2N , for the function
ϕ(X) defined by (13) correspond to the conditions (i) and (ii) above, provided
that |X| ≤ m − 1 and |X| ≥ m, respectively. As proved in [29], function ϕ is
submodular.

Given problem Q|r(j), p(j) = p(j) − x(j), C(j) ≤ d, pmtn|W , for a set of
jobs X ⊆ N , we define ri(X) to be the i-th smallest release date in set X ∈ 2N ,
1 ≤ i ≤ |X|. Then, for a non-empty set X of jobs, the largest processing capacity
available on the fastest machineM1 is s1 (d− r1(X)), the total largest processing
capacity on two fastest machines M1 and M2 is s1 (d− r1(X)) + s2 (d− r2(X)),
etc. We deduce that

ϕ(X) =

{
dS|X| −

∑|X|
i=1 siri(X), if |X| ≤ m− 1,

dSm −
∑m

i=1 siri(X), if |X| ≥ m,
(14)

which in the case of problem P |r(j), p(j) = p(j) − x(j), C(j) ≤ d, pmtn|W
simplifies to

ϕ(X) =

{
d|X| −

∑|X|
i=1 ri(X), if |X| ≤ m− 1,

dm−
∑m

i=1 ri(X), if |X| ≥ m.
(15)

It can be verified that functions (14) and (15) are submodular.
Thus, each of the three SCPT problems above reduces to Problem (LP) and in

principle can be solved by the greedy algorithm discussed in Theorem 2. Similar
reductions can be provided for other SCPT problems [30]. In what follows, we
show that using the decomposition algorithm from Section 3, these problems can
be solved faster.

Notice that the greedy reasoning has always been the main tool for solving
the SCPT problems. However, in early papers on this topic, each individual

10

problem was considered separately and a justification of the greedy approach
was often lengthy and developed from the first principles. In fact, as seen from
above, the greedy nature of the solution approaches is due to the fact that many
SCPT problems can be reformulated in terms of linear programming problems
with submodular constraints.

4.2 Solving Bicriteria Problems by Submodular Methods

Theorem 2 provides the foundation to an approach that finds the efficiency fron-
tier of the bicriteria scheduling problems Q|p(j) = p(j)− x(j), pmtn| (Cmax,W)
and αm|r(j), p(j) = p(j) − x(j), pmtn| (Cmax,W) with α ∈ {P,Q} in a closed
form [32].

Given an instance of the problem, let S∗(d) denote a schedule with a makespan
Cmax = d that minimizes the total compression cost. The solution to the bicri-
teria problem will be delivered as a collection of break points of the efficiency
frontier (d,W (d)), where d is a value of the makespan of schedule S∗(d) and
W (d) is a (piecewise-linear in d) function that represents the total optimal com-
pression cost. Let also p∗(j, d) denote the optimal value of the actual processing
time of job j in schedule S∗(d). It follows that

W (d) =

n∑

t=1

w (σ(t)) p∗ (σ(t), d) . (16)

For the problems under consideration, due to (13), (14) and (15), the rank
function ϕ(X) as well as the function ϕ̃(X) of the form (3) are functions of d;
therefore in this paper we may write ϕ(X, d) and ϕ̃(X, d) whenever we want to
stress that dependence.

Given a value of d such that all jobs can be completed by time d, define a
function

ψt(d) = ϕ̃(Nt(σ), d), 1 ≤ t ≤ n, (17)

computed for this value of d. By (5),

ψt(d) = p(Nt(σ)) + min
Y ∈2N

{
ϕ(Y)− p(Nt(σ) ∩ Y)− p(Y \Nt(σ))

}
.

For all scheduling problems under consideration, due to (13), (14) and (15),
there arem expressions for ϕ(X), depending on whether |X| ≤ m−1 or |X| ≥ m,
and ψt(d) can be represented as a piecewise-linear function of the form of an
envelope with m+ 1 pieces.

Setting for completeness w (σ(n+ 1)) = 0, we deduce from Theorem 2 that

W (d) =

n∑

t=1

w (σ(t)) (ψt(d)− ψt−1(d)) =

n∑

t=1

(w (σ(t))− w (σ(t+ 1)))ψt(d).

(18)
Thus, in order to be able to compute the (piecewise-linear) function W (d), we
first have to compute the functions ψt(d), 1 ≤ t ≤ n, for all relevant values of d. It

11

is shown in [32], that after the functions ψt(d), 1 ≤ t ≤ n, for all relevant values
of d are found, their weighted sum by (18) can be computed in O (nm log n)
time. This (piecewise-linear) function W (d) fully defines the efficiency frontier
for the corresponding bicriteria scheduling problem.

Adapting this general framework to problem Q|p(j) = p(j) − x(j),
pmtn|(Cmax,W), it can be proved that all required functions ψt(d), 1 ≤ t ≤ n,
can be found in O (n log n+ nm) time, and the overall problem is solvable in
O (nm logm) time, while problems αm|r(j), p(j) = p(j)−x(j), pmtn| (Cmax,W)
can be solved in O

(
n2 logm

)
time and in O(n2m) time for α = P and α = Q,

respectively.

4.3 Solving Single Criterion Problems by Decomposition

We now show that problems Q|p(j) = p(j) − x(j), pmtn,C (j) ≤ d|W and
αm|r(j), p(j) = p(j) − x(j), pmtn,C (j) ≤ d|W with α ∈ {P,Q} can be solved
faster than is guaranteed by the algorithms for the respective bicriteria prob-
lems considered in Section 4.2. This is achieved by adapting the decomposition
algorithm based on Procedure Decomp presented in Section 3. The crucial issue
here is the computation of the instrumental set Y∗ in each iteration.

For an initial Problem LP(N, ∅, ∅, l,u), associated with one the of three
scheduling problems above, assume that the following preprocessing is done
in O(n log n) time before calling Procedure Decomp(N, ∅, ∅, l,u): the jobs are
numbered in non-decreasing order of their release dates in accordance with (10);
the machines are numbered in non-increasing order of their speeds in accordance
with (1), and the partial sums Sv are computed for all v, 0 ≤ v ≤ m, by (11); the
lists (l(j) | j ∈ N) and (u(j) | j ∈ N) are formed and their elements are sorted
in non-decreasing order.

In a typical iteration of Procedure Decomp applied to Problem LP(H,F,K,
l,u) of the form (6) related to the rank function ϕH

K(Y) = ϕ(Y ∪K)− ϕ(K), it
is shown in [33] that for a given set X ⊆ H the function ϕ̃H

K : 2H → R can be
computed as

ϕ̃H
K(X) = u(X)− ϕ(K) + min

Y ∈2H
{ϕ(Y ∪K)− b(Y)}, (19)

where ϕ is the initial rank function associated with the scheduling problem under
consideration, and

b(j) =

{
u(j), if j ∈ X,
l(j), if j ∈ H \X.

(20)

Notice that if the minimum in the right-hand side of (19) is achieved for
Y = Y∗, then Y∗ is an instrumental set for set X.

For Problem LP(H,F,K, l,u) associated with problem Q|p(j) = p(j) −
x(j), pmtn,C (j) ≤ d|W due to (13) and (19) we deduce that

ϕ̃H
K(X) = u(X)− dSmin{m,k} +min{Φ′, Φ′′}. (21)

12

Here, Φ′ = +∞ if h > m− k − 1; otherwise

Φ′ = min
0≤v≤m−k−1

{dSv+k −
v∑

i=1

bi}, (22)

where bi is the i-th largest value in the list (b(j) | j ∈ H), while Φ′′ = +∞ if
h ≤ m− k− 1; otherwise Φ′′ = dSm − b(H). In any case, in terms of the notions
introduced in Section 3 we deduce that TY∗

(h) = TSplit(h) = O (h), so that the
overall running time needed to solve problem Q|p(j) = p(j)−x(j), pmtn,C (j) ≤
d|W by the decomposition algorithm based on recursive applications of Proce-
dure Decomp is O (n log n). An alternative implementation of the same ap-
proach, also presented in [33], does not involve a full preprocessing and requires
O(n+m logm log n) time.

Problem P |r(j), p(j) = p(j) − x(j), C(j) ≤ d, pmtn|W and Problem Q|r(j),
p(j) = p(j)− x(j), C(j) ≤ d, pmtn|W can be solved by the decomposition algo-
rithm in O(n logm log n) time and in O(nm log n) time, respectively.

5 SCPT Problems with Distinct Deadlines

We start with a brief review of the feasibility problems α|r(j), pmtn,C(j) ≤
d(j)|◦, where α ∈ {1, P,Q} , in which for each job j ∈ N the processing time p (j)
is fixed and the task is to verify the existence of a deadline-feasible preemptive
schedule.

Divide the interval [minj∈N r(j),maxj∈N d(j)] into subintervals by using the
release dates r(j) and the deadlines d(j) for j ∈ N . Let T = (τ0, τ1, . . . , τγ),
where 1 ≤ γ ≤ 2n− 1, be the increasing sequence of distinct numbers in the list
(r(j), d(j) | j ∈ N). Introduce the intervals Ik = [τk−1, τk], 1 ≤ k ≤ γ. Denote
the length of interval Ik by ∆k = τk − τk−1.

For a set of jobs X ⊆ N , let ϕ(X) be a set function that represents the total
production capacity available for the feasible processing of the jobs of set X.

For a particular problem, the function ϕ(X) can be suitably defined. Interval
Ik is available for processing job j if r(j) ≤ τk−1 and d(j) ≥ τk. For a job
j, denote the set of the available intervals by Γ (j). For a set of jobs X ⊆ N ,
introduce the set function

ϕ1(X) =
∑

Ik∈∪j∈XΓ (j)

∆k. (23)

Then for problem 1|r(j), pmtn,C(j) ≤ d(j)|◦ a feasible schedule exists if and
only if inequality (12) holds for all sets X ⊆ N for ϕ(X) = ϕ1 (X). Such a state-
ment (in different terms) was first formulated in [8] and [10]. For the problems
on parallel machines, the corresponding representation of the total processing
capacity in the form of a set function is defined in [29]. For all versions of the
problem, with a single or parallel machines, the set function ϕ is submodular.

The single machine feasibility problem 1|r(j), pmtn,C(j) ≤ d(j)|◦ in princi-
ple cannot be solved faster than finding the ordered sequence T = (τ0, τ1, . . . , τγ)

13

of the release dates and deadlines. The best possible running time O (n log n)
for solving problem 1|r(j), pmtn,C(j) ≤ d(j)|◦ is achieved by the EDF (Earliest
Deadline First) algorithm designed in [10].

For parallel machine problems, it is efficient to reformulate the problem of
checking the inequalities (12) in terms of finding the maximum flow in a spe-
cial bipartite network; see, e.g., [4]. Using an algorithm from [1], such a net-
work problem can be solved in O

(
n3

)
time and in O

(
mn3

)
time, for problem

P |r(j), pmtn,C(j) ≤ d(j)|◦ and problem Q|r(j), pmtn,C(j) ≤ d(j)|◦, respec-
tively.

Most studies on the SCPT problems α|r(j), p(j) = p(j)−x(j), pmtn,C(j) ≤
d(j)|W , where α ∈ {1, P,Q} have been conducted within the body of research
on imprecise computation scheduling [16]; however, the best known algorithms
have been produced by alternative methods.

For the SCPT problems on parallel machines, the most efficient algorithms
are based on reductions to the parametric max-flow problems in bipartite net-
works. McCormick [18] develops an extension of the parametric flow algorithm in
[6] and this approach gives the running times ofO

(
n3

)
for problem P |r(j), p(j) =

p(j) − x(j), pmtn,C(j) ≤ d(j)|W and of O
(
mn3

)
for problem Q|r(j), p(j) =

p(j)− x(j), pmtn,C(j) ≤ d(j)|W , matching the best known times for the corre-
sponding problems with fixed processing times.

Notice that in most papers on imprecise computation scheduling it is claimed
that P |r(j), p(j) = p(j) − x(j), pmtn,C(j) ≤ d(j)|W can be solved faster, in
O
(
n2 log2 n

)
time, by reducing it to the min-cost flow problem in a special

network; see [16]. However, as demonstrated in [34], such a representation, al-
though possible for a single machine problem, cannot be extended to the paral-
lel machines models, so that the best known running time for solving problem
P |r(j), p(j) = p(j)− x(j), pmtn,C(j) ≤ d(j)|W , as well as its counterpart with
fixed processing times, is O

(
n3

)
.

Problem 1|r(j), p(j) = p(j)− x(j), pmtn,C(j) ≤ d(j)|W , for many years has
been an object of intensive study, mainly within the body of research on imprecise
computation. The history of studies on this problem is a race for developing an
O (n log n)-time algorithm, matching the best possible estimate achieved for a
simpler feasibility problem 1|r(j), pmtn,C(j) ≤ d(j)|◦.

Hochbaum and Shamir [9] present two algorithms, one solves problem 1|r(j),
p(j) = p(j) − x(j), pmtn,C(j) ≤ d(j)|W in O(n2) time and the other solves
its counterpart 1|r(j), p(j) = p(j) − x(j), pmtn,C(j) ≤ d(j)|

∑
x(j) with the

unweighted objective function in O (n log n) time. An algorithm for problem
1|r(j), p(j) = p(j) − x(j), pmtn,C(j) ≤ d(j)|W developed in [17] requires
O(n log n + κn) time, where κ is the number of distinct weights w(j), while an
algorithm in [31] takes O

(
n log2 n

)
time, provided that the numbers p(j), p(j),

r(j), d(j) are integers.

5.1 Solving Single Machine Problem by Decomposition

The time complexity of problem 1|r(j), p(j) = p(j)−x(j), pmtn,C(j) ≤ d(j)|W
is finally settled in [35], where an O (n log n)-time algorithm is given. The al-

14

gorithm is based on a decomposition algorithm for Problem (LP) and uses an
algorithm from [9] as a subroutine.

The efficient implementation of the decomposition algorithm developed in
[35] is based on the following statement.

Theorem 4 (cf. [5, Corollary 3.4]). For a submodular system (2H , ϕ) and a
vector b ∈ R

H , the equality

min
Y ∈2H

{ϕ(Y) + b(H \ Y)} = max{p(H) | p ∈ P (ϕ), p ≤ b}

holds. In particular, if b ≥ 0 and ϕ (X) ≥ 0 for all X ⊆ N then the right-hand
side is equal to max{p(H) | p ∈ P (ϕ), 0 ≤ p ≤ b}.

Given Problem LP(H,F,K, l,u) of the form (6), for a set X ⊆ H define the
vector b ∈ R

H by (20), and for a set X ⊆ H represent ϕ̃H
K(X) in the form

ϕ̃H
K(X) = min

Y ∈2H
{ϕH

K(Y) + u(X \ Y)− l(Y \X)} = −l(H \X)

+ min
Y ∈2H

{ϕH
K(Y) + b(H \ Y)}.

Since −l(H \X) is a constant, in order to find an instrumental set Y∗ that de-
fines ϕ̃H

K(X) it suffices to find the set-minimizer for minY ∈2H{ϕH
K(Y)+b(H\Y)}.

By Theorem 4, the latter minimization problem is equivalent to the following
auxiliary problem:

(AuxLP) : max
∑

j∈H

q(j)

s.t. q(Y) ≤ ϕH
K(Y), Y ∈ 2H ;

0 ≤ q(j) ≤ b(j), j ∈ H.

(24)

Let q∗ ∈ R
H be an optimal solution to Problem (AuxLP) with the values

b (j) defined with respect to a set X ⊆ H. It is proved in [35] that a set Y∗ is the
required instrumental set for Problem LP(H,F,K, l,u) of the form (6) if and
only if

q∗(Y∗) = ϕH
K(Y∗); q(j) = b(j), j ∈ H \ Y∗.

Problem 1|r(j), p(j) = p(j) − x(j), pmtn,C(j) ≤ d(j)|
∑
w(j)x(j) reduces

to Problem (LP) with the rank function ϕ = ϕ1 defined by (23). Consider a
typical iteration of Procedure Decomp applied to Problem LP(H,F,K, l,u) of
the form (6) related to the rank function ϕH

K(Y) = ϕ(Y ∪K)− ϕ(K). For a set
X ⊆ H of jobs, a meaningful interpretation of ϕH

K(X) is the total length of the
time intervals originally available for processing the jobs of set X ∪K after the
intervals for processing the jobs of set K have been completely used up.

Select a heavy-element set Ĥ and define the values b(j) by (20) applied to
X = Ĥ. Our goal is to find an instrumental set Y∗ for set Ĥ. As described above,
for this purpose we may solve the auxiliary Problem (ULP)

(ULP) : max
∑

j∈H

q(j)

s.t. q(X) ≤ ψ(X), X ∈ 2H ,
0 ≤ q(j) ≤ b(j), j ∈ H.

(25)

15

Problem (ULP) can be seen as a version of a scheduling problem 1|r(j), q(j) =
b(j) − x(j), pmtn,C(j) ≤ d(j)|

∑
x(j), in which it is required to determine the

actual processing times q(j) of jobs of set H to maximize the total (unweighted)
actual processing time, provided that 0 ≤ q(j) ≤ b(j) for each j ∈ H. It can be
solved by an algorithm developed by Hochbaum and Shamir [9], which uses the
UNION-FIND technique and guarantees that the actual processing times of all
jobs and the corresponding optimal schedule are found in O(h) time, provided
that the jobs are renumbered in non-increasing order of their release dates. The
algorithm is based on the latest-release-date-first rule. Informally, the jobs are
taken one by one in the order of their numbering and each job j ∈ H is placed
into the current partial schedule to fill the available time intervals consecutively,
from right to left, starting from the right-most available interval. The assignment
of a job j is complete either if its actual processing time q(j) reaches its upper
bound b(j) or if no available interval is left. Only a slight modification of the
Hochbaum-Shamir algorithm is required to find not only the optimal values q∗(j)
of the processing times, but also an associated instrumental set. The running
time of modified algorithm is still O (h).

In terms of the notions introduced in Section 3 we deduce that TY∗
(h) =

TSplit(h) = O (h), so that the overall running time needed to solve problem
1|r(j), p(j) = p(j)−x(j), pmtn,C (j) ≤ d (j) |W by the decomposition algorithm
based on recursive applications of Procedure Decomp is O (n log n).

6 Conclusions

In this paper, we demonstrate how the SCPT problems on parallel machines
can be solved efficiently by applying methods of submodular optimization. For
single criterion SCPT problems to minimize the total compression costs a devel-
oped decomposition recursive algorithm for maximizing a linear function over a
submodular polyhedron intersected with a box is especially useful, since it leads
to fast algorithms, some of which are the best possible. Another area of appli-
cations of submodular reformulations of the SCPT problems includes bicriteria
problems, for which either faster than previously known algorithms are obtained
or first polynomial algorithms are designed.

We intend to extend this approach to other scheduling models with control-
lable processing parameters, in particular to speed scaling problems. It will be
interesting to identify problems, including those outside the area of scheduling,
for which an adaptation of our approach is beneficial.

Acknowledgement

This research was supported by the EPSRC funded project EP/J019755/1 “Sub-
modular Optimisation Techniques for Scheduling with Controllable Parameters”.
The first author was partially supported by the Humboldt Research Fellowship
of the Alexander von Humboldt Foundation and by Grant-in-Aid of the Ministry
of Education, Culture, Sports, Science and Technology of Japan.

16

References

1. Ahuja, R.K., Orlin, J.B., Stein, C., Tarjan, R.E.: Improved algorithms for bipartite
network flow. SIAM J Comput. 23, 906–933 (1994)

2. Brucker, P.: Scheduling Algorithms. 5th edition, Springer, Berlin (2007)

3. Chen, Y.L.: Scheduling jobs to minimize total cost. Eur. J. Oper. Res. 74, 111–119
(1994)

4. Federgruen, A., Groenevelt, H.: Preemptive scheduling of uniform machines by
ordinary network flow techniques. Manag. Sci. 32, 341–349 (1986)

5. Fujishige, S.: Submodular Functions and Optimization. 2nd Edition, Ann. Discr.
Math. 58, Elsevier (2005)

6. Gallo, G., Grigoriadis, M.D., Tarjan, R.E. A fast parametric maximum flow algo-
rithm and applications. SIAM J Comput. 18, 30–55 (1989)

7. Gonzales, T.F., Sahni, S., Preemptive scheduling of uniform processor systems. J.
ACM 25, 92–101 (1978)

8. Gordon, V.S., Tanaev, V.S.: Deadlines in single-stage deterministic scheduling.
Optimization of Systems for Collecting, Transfer and Processing of Analogous and
Dscirete Data in Local Information Computing Systems. Materials of the 1st Joint
Soviet-Bulgarian seminar (Institute of Engineering Cybernetics of Academy of Sci-
ences of BSSR – Institute of Engineering Cybernetics of Bulgarian Academy of
Sciences, Minsk), 53–58 (in Russian) (1973)

9. Hochbaum, D.S., Shamir, R.: Minimizing the number of tardy job unit under
release time constraints. Discr. Appl. Math. 28, 45–57 (1990)

10. Horn. W.: Some simple scheduling algorithms. Naval Res. Logist. Quart. 21, 177–
185 (1974)

11. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial, strongly polynomial-time
algorithm for minimizing submodular functions. J. ACM 48, 761–777 (2001)

12. Janiak, A., Kovalyov, M.Y., Single machine scheduling with deadlines and resource
dependent processing times. Eur. J. Oper. Res. 94, 284–291 (1996)

13. Jansen, K., Mastrolilli, M.: Approximation schemes for parallel machine scheduling
problems with controllable processing times. Comput. Oper. Res. 31, 1565–1581
(2004)

14. Katoh, N., Ibaraki, T.: Resource allocation problems. In Du, D.-Z., Pardalos, P.M.
(eds) Handbook of Combinatorial Optimization, Vol. 2, pp. 159–260. Kluwer, Dor-
drecht (1998)

15. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and
scheduling: algorithms and complexity. In Graves, S.C., Rinnooy Kan, A.H.G. Zip-
kin, P.H. (eds.) Handbooks in Operations Research and Management Science, Vol.
4, Logistics of Production and Inventory, pp. 445–522. Elsevier, North–Holland,
Amsterdam (1993)

16. Leung, J.Y.-T.: Minimizing total weighted error for imprecise computation tasks. In
Leung, J.Y.-T. (ed) Handbook of Scheduling: Algorithms, Models and Performance
Analysis, pp. 34-1 – 34-16. Chapman & Hall/CRC (2004)

17. Leung, J.Y.-T., Yu, V.K.M., Wei, W.-D.: Minimizing the weighted number of tardy
task units. Discr. Appl. Math. 51: 307–316 (1994)

18. McCormick, S. T.: Fast algorithms for parametric scheduling come from extensions
to parametric maximum flow. Oper. Res. 47, 744–756 (1999)

19. McNaughton, R.: Scheduling with deadlines and loss functions. Manage. Sci. 12,
1–12 (1959)

17

20. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley
(1988)

21. Nowicki, E., Zdrza lka, S.: A survey of results for sequencing problems with con-
trollable processing times. Discr. Appl. Math. 26, 271–287 (1990)

22. Nowicki, E., Zdrza lka, S.: A bicriterion approach to preemptive scheduling of paral-
lel machines with controllable job processing times. Discr. Appl. Math. 63, 237–256
(1995)

23. Sahni, S.: Preemptive scheduling with due dates. Oper. Res. 27, 925–934 (1979)
24. Sahni, S., Cho, Y. Scheduling independent tasks with due times on a uniform

processor system. J. ACM 27, 550–563 (1980)
25. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in

strongly polynomial time. J. Comb. Theory B 80, 346–355 (2000)
26. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer,

Berlin (2003)
27. Shabtay, D., Steiner, G.: A survey of scheduling with controllable processing times.

Discr. Appl. Math. 155, 1643–1666 (2007)
28. Shakhlevich, N. V., Strusevich, V. A.: Pre-emptive scheduling problems with con-

trollable processing times. J. Sched. 8, 233–253 (2005)
29. Shakhlevich, N.V. Strusevich, V.A.: Preemptive scheduling on uniform parallel

machines with controllable job processing times. Algorithmica 51, 451–473 (2008)
30. Shakhlevich, N.V., Shioura, A., Strusevich, V.A.: Single machine scheduling with

controllable processing times by submodular optimization. Int. J. Found. Comput.
Sci. 20, 247–269 (2009)

31. Shih, W.-K., Lee, C.-R., Tang, C.H.: A fast algorithm for scheduling imprecise
computations with timing constraints to minimize weighted error. Proc. 21th IEEE
Real-Time Systems Symposium (RTSS2000), 305–310 (2000)

32. Shioura, A., Shakhlevich, N.V., Strusevich, V.A.: A submodular optimization ap-
proach to bicriteria scheduling problems with controllable processing times on par-
allel machines. SIAM J. Discr. Math. 27, 186–204 (2013)

33. Shioura, A., Shakhlevich, N.V., Strusevich, V.A.: Decomposition algorithms for
submodular optimization with applications to parallel machine scheduling with
controllable processing times. Math. Progr. A 153: 495–534 (2015)

34. Shioura, A., Shakhlevich, N.V., Strusevich, V.A.: Scheduling imprecise compu-
tation tasks on parallel machines to minimize linear and non-linear error penal-
ties: Reviews, links and improvements. University of Greenwich, London, Report
SORG-04-2015 (2015)

35. Shioura, A., Shakhlevich, N.V., Strusevich, V.A.: Application of submodular opti-
mization to single machine scheduling with controllable processing times subject
to release dates and deadlines. INFORMS J. Comp. 28, 148–161 (2016)

