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Heterogeneity of time delays determines synchronization of coupled oscillators
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(Dated: June 29, 2016)

Network couplings of oscillatory large-scale systems, such as the brain, have a space-time struc-
ture composed of connection strengths and signal transmission delays. We provide a theoretical
framework, which allows treating the spatial distribution of time delays with regard to synchroniza-
tion, by decomposing it into patterns and therefore reducing the stability analysis into the tractable
problem of a finite set of delay-coupled differential equations. We analyse delay-structured networks
of phase oscillators and we find that, depending on the heterogeneity of the delays, the oscillators
group in phase-shifted, anti-phase, steady, and non-stationary clusters, and analytically compute
their stability boundaries. These results find direct application in the study of brain oscillations.

PACS numbers: 05.45.Xt, 87.19.L, 89.75.-k

I. INTRODUCTION

Time delays due to finite signal transmission are un-
avoidable in physical, biological and technical systems.
They are often considered a nuisance and can be mostly
ignored when they are small with regard to the charac-
teristic time scale of the system. In a number of systems
though, foremost in the brain, the delays (10 to 200 ms)
are on the same scale as the signal operation (10 to 250
ms) [1, 2] and contribute critically to the system’s spa-
tiotemporal organization. Rhythms and their synchro-
nization, as one of the key mechanisms of brain func-
tion [3, 4], are ubiquitous in the nervous system and are
particularly sensitive to delays, because shifts in phasing
may easily change the nature of the mutual influences
from excitatory to inhibitory and vice versa.
The spatiotemporal organization of oscillatory net-

works is often studied via coupled phase oscillators, which
arise for weak interactions [5–8]. Phase models repre-
sent a simple class of models for interacting nonlinear
limit-cycle oscillators that exhibit richness in behaviour
while at the same time admit analytic approaches and
a direct link to more complex biophysical models. For
small delays, the delayed interactions between oscillators
are reduced to phase shifts [7–9], but they appear inside
the state variables [7, 8] when delays are of the order of
1/coupling-strength. Transmission delays become partic-
ularly long in large-scale brain models with biologically
realistic connectivity [10, 11], which have become feasible
with the recent advance of non-invasive structural brain
imaging [12, 13]. Together, the connectivity strengths
and time delays, define the Connectome as the final deter-
minant of the brain network behavior [14, 15]. In absence
of delays, the importance of couplings’ topology for the
synchronization of phase oscillators is well understood,
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both in random [16, 17], and in networks structured by
natural frequencies and coupling strengths [18, 19].
Many of the phase network models of the brain use ex-

plicit delays in the state variable (see [8] for review) and
make simplifying assumptions on either their distribution
(such as distance dependence [20]) or the spatial coupling
topology (such as rings in one dimension [21]). In this
letter we will develop a principled approach for decom-
posing the coupling’s structure into modes, which char-
acterize synchronization as a function of the spatial dis-
tribution of the time delays. Phase reduction of weakly
delay-coupled oscillators with long delays in comparison
to the coupling strengths Ki,j or natural frequencies ωi
leads to periodic coupling function with explicit heteroge-
neous time-delays [7, 8]. The general coupling function
may lead to an enormous diversity of collective states
[22] and have been shown to be of interest for the brain
[5, 23]. However, for the reasons of analytical tractability
much research keeps only an initial portion of its Fourier
series, therefore leading to the Kuramoto model (KM)
[6]. Considering the KM for symmetric, link-dependent
delays, τi,j = τj,i, phases θi of each oscillator evolve as

θ̇i = ωi +
1

N

N
∑

j=1

Ki,j sin[θj(t− τi,j)− θi], i = 1 . . . N, (1)

where ωi follow a probability density function (PDF)
g(ω). Recent works on the KM study steady synchroniza-
tion for arbitrary parameters [24], glassy [25] and chimera
[26] states, non-isochronicity [27], non-autonomicity [28],
and networks of spiking neurons [29–31].

II. MODEL

Upon analysis of human connectomes, each consisting
of few millions tracts identified with magnetic resonance
imaging and connecting 68 cortical regions [32] where for
each link weights are numbers of the individual tracts
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FIG. 1. (color online) Tract lengths and weights from 100
healthy subjects. Joint distribution (a), and histogram of
weighted lengths for (b) intra- and (c) inter-hemisphere links.

and lengths are their averages, the results imply that the
lengths of connection routes between brain areas are mul-
timodaly distributed, Fig. 1 (a). Moreover, the modes in
the lengths distribution are spatially heterogeneous and
as a first approximation two main modes correspond to
the intra- and inter-hemispheric links, Fig. 1 (b, c). This
insight suggests that the complex space-time structure
of the connectivity maybe approximated by a less com-
plex mode decomposition in the parameter space, which
will aid in the mathematical analysis of the large-scale
brain dynamics. These ideas have been previously ex-
ploited by mean field techniques [33] in which degrees of
freedom are associated with variation of a parameter. In
neuroscience, this approach has been successfully applied
to neural populations with heterogeneous thresholds [34].
We take here an equivalent approach for distributed de-
lays. To emphasize the influence of temporal component
of the space-time structure upon the network dynamics,
we only consider homogeneous strength for the connec-
tions, Ki,j = K, and the extension to distributed con-
nection weights is straight forward. Besides, unimodal
positive couplings, as observed in Fig. 1 (a), do not
bring novel mean-field behavior for the KM with ran-
domly distributed frequencies [16, 35, 36]. The network
dynamics is then described by order parameters, which
either represent the collective behavior from the instan-
taneous phases [6],

z(t) ≡ r(t)eiψ(t) = N−1
∑

j

eiθj , (2)

or the delayed, node-dependent mean-field [37] that acts
as forcing on each oscillator

ξi(t) = N−1
∑

j

eiθj(t−τi,j), (3)

hereafter referred to as global and local order parameters.

FIG. 2. (color online) Sketch of delay-imposed structure and
connectivity matrices for oscillators in models A and B with
link delays τ1 dark (blue) dashed lines and τ2 light (red) lines.

At least two modes can then be identified from the
distribution of tract lengths, Fig. 1 (a), which as first
approximation for simplicity is assumed to be bimodal-δ

h(τ) = p′1δ(τ − τ1) + p′2δ(τ − τ2), p′1 + p′2 = 1. (4)

We apply this distribution of delays on three architec-
tures: (i) random; (ii) identical internal and external
delays, model A (see Fig. 2); and (iii) different inter-
nal and randomly, equally-distributed external delays,
model B. Besides representing distinct phenomenological
structures, these are motivated from the connectome. Its
simplest decomposition on a left and a right hemisphere
identifies the peaks in h(τ) as internal and external links,
Fig. 1 (b-c), leading to model A. Other more complex
divisions of the brain network could possibly identify pat-
terns of the other architectures, or their combination.
To preserve the distribution h(τ), which is over the

links, the division of the nodes, p1,2, for model A satisfies
[p′21 + (1− p′1)

2]/[2p′1(1− p′1)] = p1/(1− p1), which gives

p1,2 = Re{[1∓
√

±(1− 2p′1,2)]/2}, whereas for model B,

p1,2 = p′1,2. The global order parameters hence read

z(t) = p1z
I + p2z

II . (5)

Superscripts correspond to the particular populations of
models A or B, whereas because of the spatial homogene-
ity for the non-structured network, zI,II = z can repre-
sent any proportion of nodes. Similarly, the homogeneity
of the internal links delays of subpopulations implies

ξI,IIi (t) = ξI,II(t) = zI,II(t− τint) = zI,IIt−τint
, (6)

where τint are the internal delays of the populations.
Substituting Eqs. (5, 6) to Eq. (1), governing equations
for all three topologies read

θ̇i = ωi −K[p1rt−τ1 sin(θi − ψt−τ1) +

p2rt−τ2 sin(θi − ψt−τ2)]. (7)

θ̇I,IIi = ωI,IIi −K[p1,2r
I,II
t−τ1

sin(θI,IIi − ψI,IIt−τ1
) +

p2,1r
II,I
t−τ2

sin(θI,IIi − ψII,It−τ2
)]. (8)

θ̇I,IIi = ωI,IIi −K{p1,2r
I,II
t−τ1,2

sin(θi − ψI,IIt−τ1,2
) +

p2,1/2[r
II,I
t−τ1

sin(θi − ψI,IIt−τ1
) + rII,It−τ2

sin(θi − ψII,It−τ2
)]}. (9)
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III. LOW-DIMENSIONAL DYNAMICS

For infinitely large populations the dynamics of the
system is described by PDFs for the phases of single
oscillators, ρI,II(θ, ω, t), which using continuum limit of
Eqs. (7, 8, 9) evolve according to continuity equations

∂ρI,II

∂t
= −

∂

∂θI,II
(θ̇I,IIρI,II). (10)

Applying the OA ansatz [38], PDFs for the phases yield

ρI,II(θ, ω, t) =
g(ω)

2π
{1 +

∞
∑

k=1

[αI,IIk(ω, t)eikθ + c.c]},

and consequently the global order parameters become

zI,II(t) =

∫ ∞

−∞

αI,II∗(ω, t)g(ω)dω. (11)

For a Lorentzian distribution g(ω) = γ/π/[(ω−µ)2+γ2]
with mean µ and scale γ, the populations’ low dimen-
sional dynamics [24, 26–28, 37–39] become

ż = (iµ− γ)z −K/2[p1,2(z
2 z∗t−τ1,2 − zt−τ1,2) + p2,1(z

2z∗t−τ2,1 − zt−τ2,1)]. (12)

żI,II = (iµ− γ)zI,II −K/2[p1,2(z
I,II 2 zI,II ∗

t−τ1
− zI,IIt−τ1

) + p2,1(z
I,II 2zII,I ∗

t−τ2
− zII,It−τ2

)]. (13)

żI,II = (iµ− γ)zI,II −K/2{p1,2(z
I,II 2 zI,II ∗

t−τ1,2
− zI,IIt−τ1,2

) + p2,1/2[z
I,II 2( zII,I ∗

t−τ1
+ zII,I ∗

t−τ2
)− zII,It−τ1

− zII,It−τ2
]}.(14)

A. Critical couplings

The incoherent state, {z = 0, ρ = 1/2π}, is a trivial
solution to these systems, and due the non-negative inter-
population contributions, Eqs. (13, 14), the possibility of
only one incoherent populations is restricted. The low-
est couplings for which the incoherence becomes unsta-
ble and synchronisation appears are determined from the
purely imaginary eigenvalues of Jacobian matrices of the
vector [zI , zII ]

T for structured, and of z for random het-
erogeneity. For the latter these are solutions of

γ + i(β − µ) = K/2[p1e
−iβτ1 + p2e

−iβτ2 ], (15)

whereas for models A and B respectively the following
global conditions appear

[γ + i(β − µ)][γ + i(β − µ)−K/2 e−iβτ1 ]

= p1p2K
2/4(e−i2βτ2 − e−i2βτ1), (16)

[γ + i(β − µ)][γ + i(β − µ)−K/2(p1e
−iβτ1 + p2e

−iβτ2)]

= p1p2K
2/16(e−iβτ2 − e−iβτ1)2. (17)

It is worth noting that the evolutions of zI,II , Eqs. (12,
13, 14), depend only on the first Fourier harmonics of
ρI,II , Eq. (11), and the same harmonic is the only one
left in the linearised continuity equation (10) [40], hence,
studying the dynamics of a small perturbation in the
PDF of the phases ρI,II(θ, ω, t) would yield the same con-
ditions.
The critical couplings, Fig. 3, show the crucial role of

the delay’s topology in shaping the synchronization land-
scape. For the case with no structure in the couplings,
the ridges of Kc are highest at |τ1 − τ2| = nT/2, where
T = 2π/µ is a mean period of the natural frequencies
and n is a positive odd integer. These are followed by
smaller peaks at τ1,2 = nT/2, Fig. 3 (a, b). For model

A, the internal delays (τint = τ1 in Fig. 3 (c)) are the
main factor for preventing the synchronization around
nT/2 , same as for unimodal delays [37, 40]. On the
other hand, the interpopulation influence is T/2 periodic,
with largest Kc around τ2 = nT/4. This is due to the
anti-phase arrangement of the synchronized populations
(see Fig. 4), which causes them to enhance coherence for
τ2 around nT/2. For model B, the synchronizabillity is
more complex, but it is still a combination of the former
two: Kc has T periodic peaks at τ1,2 = nT/2 due to the
internal antiresonance of populations, and T/2 periodic
at |τ1 − τ2| = nT/4, corresponding to the interpopula-
tion influence, Fig. 3 (d). In all scenarios the peaks are
dampened at consecutive periods.
Randomly distributed delays imply spatial homogene-

ity, where each oscillator is forced by a mean field from
oscillators linked with delay τ1, and from those with τ2,
Eq. (7). These local order parameters, Eq. (3), are at dis-
tance Ω(τ2−τ1), where Ω is the frequency of synchroniza-
tion. For a steady, ṙ = 0, travelling wave synchronization
[24, 36], the mean field, z = reΩt, has parameters

Ω = µ−K/2(r2 + 1)(p1 sinΩτ1 + p2 sinΩτ2),

r =
√

1− 2γ/[K(p1 cosΩτ1 + p2 cosΩτ2)]. (18)

Their stability is obtained by introducing a small per-
turbation δz = (e(λ+iβ)t + e(λ−iβ)t)eiΩt, and looking for
solutions of Eq. (12) with non-negative λ [37]. This yields

γ − i(Ω− µ− β) +K/2(p1A1 + p2A2) = 0, (19)

where A1,2 = 2r2e−iΩτ1,2 − e−i(β−Ω)τ1,2 − r2e−i(β+Ω)τ1,2 ,
and if solutions exist, then reΩt is not stable. Hence,
the lower bounds of synchronization, the black surface in
Fig. 3 (a), are determined by exploring stable solutions
for K < Kc, and they follow the same resonant patterns
as the critical couplings. Numerical results in Fig. 3
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FIG. 3. (color online) Critical couplings for incoherence for
random bimodal-δ delays, Eq. (15), (a, b), and for structured
models A, Eq. (16), (c) and B, Eq. (17), (d). (a) Lowest
couplingsK < Kc (black surface) for steady, Eqs. (18), stable,
Eq. (19) solutions. (b) Intersection of plot (a) for τ2 = 0.6
(upper surface is thin blue and lower is dashed black line) and
numerical results, Eq. (1), for incoherence (blue trriangles),
coherence (black squares) and bistabillity (grey shaded areas).
Parameters: µ = 2π, γ = 0.1 and p1 = 0.5.

(b) confirm the regions where the population either syn-
chronises, or becomes incoherent, for any of the many
initial states in the range r(t)|t∈[−max(τ),0] = [0, 1] that
we checked. However, time delays imply infinitely many
possible initial states and it is very probable that some of
the solutions have extremely small basins of attractions,
as was also reported in [37, 41], and are difficult to be
numerically recovered.

Bistabillity, where synchronizabillity depends on the
initial history, was recovered in between the critical sur-
faces. The integration was performed on both, the full
system with N = 1000 oscillators, Eq. (1) and the low-
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FIG. 4. Anti-phase clusters for model A with (a) 2, (b) 3
and (c) 9 equal populations. (a, b) Blue and red are for
the first and second, and grey is for the overall population.
(a) Magnitude of order parameters, theoretical (dashed blue,
thick red and dotted grey), Eq. (13) and numerical results
(blue squares, red circles and grey triangles), Eq. (1) for N =
100000 oscillators. Inset: PDF of the phases. (b, c) Order
parameters zm. (c) Each of the three thicker arrows accounts
for two identical mean-fields. Parameters: K = 2, µ = 2π,
γ = 0.1, (a) τ = [0.3, 0.7], (b, c) τ = [0.15, 0.55].

dimensional dynamics, Eq. (12). Interestingly, beside
multiple stable solutions of Eq. (18), the same proce-
dure unveils non-steady synchronization, ṙ 6= 0, for ini-
tial states close to the incoherence, in regions around
τ = [nT/2, (n + 1)T/2] that decrease in size for increas-
ing n [42]. These are consequence of the bimodallity of
delays, since they are not reported for non-identical oscil-
lators with homogeneous [40, 41] or with unimodal het-
erogeneous delays [37].

B. In and anti-phase clustering

In model A, if equally divided, identical r and Ω can
be assumed for each populations. Stationarity conditions
then read

zI = reiΩt, zII = rei(Ωt+φ), ṙ = 0, ∆φ̇21 = φ̇ = 0, (20)

and substituting them into Eq. (13), yields

φ̇ = −K/2(r2 + 1) cosΩτ2 sinφ.

This implies φ = 0 ± π, with stable zero phase shift for
Ωτ2 ∈ (−π/2, π/2) and φ = π stable otherwise. Thus,
by increasing the delay between the populations, they
rearrange from in- to anti-phase, Fig. 4 (a). Notably,
non-steady states occur for certain low coherence initial
states, around the same parameter’s space as for the ran-
dom case [42].
The same clustering phenomenon persists for more

than two equal populations: their order parameters are
identical for Ωτ2 in the right half-plane, or they arrange
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to cancel each other otherwise. In this case however the
PDF of the delays Eq. (4) changes and since the sys-
tem is symmetric the distribution of the links follows the
division of the network nodes. Thereupon,

h(τ) = 1/Mδ(τ − τ1) + (M − 1)/Mδ(τ − τ2),

and the model no longer corresponds to a simple spa-
tial rearranging of the same global distribution of time-
delays. Continuing Eq. (13) for M populations with
pm = 1/M, ∀m ∈ [1..M ], mean-phases φm evolve as

φ̇m = µ−
Kr(r2 + 1)

2M
[sinΩτ1 +

∑

j 6=m

sin(Ωτ2 +∆φmj)].(21)

Therefore the stationarity of r and ∆φ̇mn for all pairs of
populations (m,n) implies

∑

j

ei∆φmj =
∑

j

ei∆φnj .

This is satisfied either if all complex order parameters
are aligned, or if they cancel each other in the station-
ary state. For the latter, an equidistant arrangement is
the exclusive pattern for 2 and 3 populations with mean
phase distances of π and 2π/3 respectively, Fig. 4 (a,
b). For M > 3 this is no longer unique and there are
infinite possible arrangements. In some of these it is pos-
sible identical order parameters to occur for some of the
populations, while the sum of all of them is still 0, Fig. 4
(c). As for the mean-field parameters, their steady state
values are given by

Ω = µ−M
K

2
(r2 + 1)[sinΩτ1 +

∑

j 6=m

sin(Ωτ2 +∆φmj)],

r =

√

1−
2Mγ

K[cosΩτ1 +
∑

j 6=m cos(Ωτ2 +∆φmj)]
. (22)

For in-phase arrangement, ∆φmj = 0, ∀ m, j ∈ [1..M ],
and the above trigonometric sums become (M−1) sinΩτ2
and (M − 1) cosΩτ2, respectively, whilst for the anti-
phase state they yield − sinΩτ2 and | cosΩτ2|. Conse-
quently, increasing the number of populations decreases
the level of coherence, as shown in Fig. 4 (b-c) for 3 and
for 9 populations.

C. Time-varying synchronization

For model B with equal populations, assuming that
they settle to same r and Ω, Eqs. (14, 20) give

φ̇ = −
K

4
(r2 + 1)(cosΩτ1 + cosΩτ2)(sinφ+ tan

Ω∆τ

2
),(23)

∆ṙ =
Kr

4
(r2 − 1)(sinΩτ1 + sinΩτ2)(sinφ+ tan

Ω∆τ

2
).(24)

Hence, |Ω∆τ | ∈ (−π/2, π/2) is a necessary condition for
this stationarity and the synchronized clusters are at dis-
tance φ = − arcsin tan(Ω∆τ/2). However, if |Ω∆τ | /∈
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FIG. 5. (color online) (a) Magnitudes of non-steady global
order parameters, (b) mean field frequencies, and (c - e) ad-
justed frequencies for model B. (Green) arrows in (a, b) indi-
cate the time points t = [18.2, 19.1, 20] for the results in plots
(c - e). Blue, red and grey correspond to the first, second,
and the overall population. (a, b) Theoretical (dashed blue,
thick red and dotted grey), Eq. (14), and numerical results
(blue squares, red circles and grey triangles), Eq. (1). Param-
eters: K = 3, p1 = 0.5, µ = 2π, γ = 0.1, τ = [0.23, 0.74],
N = 100000.

(−π/2, π/2), Eqs. (23, 24) cannot be zero and these in-
stabilities continuously persist, implying non-stationary
synchronization, Fig. 5 (a). This is characterized with
fast spikes of the overall mean frequency, Fig. 5 (b), and
continuous rearrangement of oscillators, so that some of
them are always entrained with the mean field of the
other population, as can be seen from the adjusted versus
the natural frequencies of the individual oscillators, θ̇(ω),
captured at different moments in Fig. 5 (c-e). Contrary
to the previous scenarios, the non-steady states here can
appear for all initial conditions and for a wider parameter
space [42].

D. Realistic brain delays and EEG frequencies

If we set identical propagation velocity from within the
physiological range for brain signals [2], e.g. at 2 m/s,
then for the human brain tract lengths data shown in
Fig. 1, the time-delays due to tracts have peaks around
18 ms and 42 ms with proportion p1 = 0.7 for the the bi-
modal δ approximation Eq. (4). Taking these values for
networks with Lorentizan natural frequencies with spread
γ = 0.1 rad/s as in the earlier examples, but with means
µ at realistic EEG frequency range, using Eqs. (15, 16,
17) we calculate the regions of synchronizabillity for the
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three discussed delay-imposed networks (random, model
A and model B), Fig. 6. For comparison, the critical
coupling for an identical delay 〈τ〉 corresponding to the
mean of all delays 〈h(τ)〉 for these parameters, and for
absent delays, τ = 0, is also shown.

The positions of the peaks of the critical couplings Kc

relatively to the period T are as discussed in Sec. III A,
with the delays now being fixed, instead of the natural
frequencies. We see that Kc can differ by 3 orders of
magnitude depending on the frequency and the network
architecture, with bimodal scenarios showing distant pat-
terns from the case with a single delay, while each struc-
tured case is also specific.

Note that for fully realistic description of the brain syn-
chronizabillity, the heterogeneous connectivity weights,
Fig. 1 (a), which imply a complex network [17], would
also need to be taken into account.

IV. SUMMARY

Transforming many time delays into spatial patterns
within the couplings’ space-time structure provides a
novel concept for a better understanding of large-scale
network dynamics. Together with the various dynamical

regimes discussed earlier, these findings unveil the critical
importance of spatial heterogeneity of the time-delays in
the coupling matrix. Unlike populations defined by cou-
pling strengths or natural frequencies [18], the structure
here stems solely from the link-delays, and introduces
non-trivial spatiotemporal dynamics compared to homo-
geneous [39–41], or random unimodal heterogeneous de-
lays [37]. Future work should extend these results for
other coupling functions of the phase reduced model, e.g.
similar to those in [5], and for realistic neurons.
We have here provided a theoretical framework, which

allows treating the space-time structure of couplings as
a whole with regard to its effects upon network synchro-
nization. A relevant real-world example is found in clin-
ical neuroscience, where the reshaping of the time delays
is common in neurodegenerative diseases such as multi-
ple sclerosis [43], but also known to be critical in aging
[44] and neuroplasticity [45].
Finally, anti-phase spatio-temporal brain patterns as

a paradigm [46], analogous to those observed for model
A as a first approximation of the connectome, have been
observed and modelled across different frequency bands,
and imaging [11] and electrophysiological data [47]. Sim-
ilarly, many recent models for the pair-wise coherence in
connectome-based networks of phase oscillators [10, 48]
that try to reproduce the patterns of coherence and inco-
herence observed in resting brain, would be simplified by
several orders of magnitude by applying our reduction.
This becomes even more important for finer brain parcel-
lations, where the numerical analysis of the full-delayed
system is tremendously computational extensive.
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