Targeting Multiple Aminoacyl-tRNA Synthetases Overcomes the Resistance Liabilities Associated with Antibacterial Inhibitors Acting on a Single Such Enzyme.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/102777/

Article:
Randall, CP orcid.org/0000-0002-9565-8387, Rasina, D, Jirgensons, A et al. (1 more author) (2016) Targeting Multiple Aminoacyl-tRNA Synthetases Overcomes the Resistance Liabilities Associated with Antibacterial Inhibitors Acting on a Single Such Enzyme. Antimicrobial Agents and Chemotherapy, 60 (10). pp. 6359-6361. ISSN 0066-4804

https://doi.org/10.1128/AAC.00674-16

© 2016, American Society for Microbiology. This is an author produced version of a paper published in Antimicrobial agents and chemotherapy. Uploaded in accordance with the publisher's self-archiving policy.
Targeting multiple aminoacyl tRNA synthetases overcomes the resistance liabilities associated with antibacterial inhibitors acting on a single such enzyme

Christopher P. Randall¹, Dace Rasina², Aigars Jirgensons², and Alex J. O’Neill¹*

¹Antimicrobial Research Centre and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom

²Latvian Institute of Organic Synthesis, Riga, Latvia

*Corresponding author. Mailing address: Antimicrobial Research Centre and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom. Phone +44 (0)113 343 5600, Fax +44 (0)113 343 5638, E-mail: a.j.oneill@leeds.ac.uk

Running title: Resistance to aminoacyl tRNA synthetase inhibitors
Abstract

Bacterial aminoacyl tRNA synthetases (aaRS) represent promising antibacterial drug targets. Unfortunately, the aaRS inhibitors that have to date reached clinical trials are subject to rapid resistance development through mutation, a phenomenon that limits their potential clinical utility. Here we confirm the intuitively correct idea that simultaneous targeting of two different aaRS enzymes prevents the emergence of spontaneous bacterial resistance at high frequency, a finding that supports the development of multi-targeted anti-aaRS therapies.
The aminoacyl-tRNA synthetase (aaRS) family of enzymes possess several features that render them promising prospects as broad-spectrum antibacterial drug targets; they are essential for viability, found in all bacterial pathogens, and are in many cases sufficiently structurally distinct from their eukaryotic counterparts to allow selective targeting (1, 2). Furthermore, there exists both chemical and clinical validation for these enzymes as useful targets for antibacterial chemotherapy (1). However, despite the potential promise of this family of targets, only a single aaRS inhibitor with a relatively limited indication has to date been approved for the management of bacterial infection; mupirocin, an inhibitor of isoleucyl-tRNA synthetase, is a topical agent deployed for nasal decolonization of *Staphylococcus aureus* and for the treatment of superficial skin infection (3).

Unfortunately, in common with other antibacterial agents that act upon a single enzyme target, aaRS inhibitors possess an intrinsic resistance liability (4). Mutants resistant to aaRS inhibitors are selected at high frequency in bacterial populations (~10^{-7}), typically as a result of point mutations within the gene encoding the drug target that lead to alteration of the latter in a manner that negatively impacts inhibitor binding (1). This liability, whilst manageable in the context of aaRS inhibitors such as mupirocin that are applied topically at concentrations sufficiently high to prevent or mitigate resistance, presents a definite problem for the development of aaRS inhibitors for systemic treatment of more serious bacterial disease. Indeed, GSK halted Phase II clinical trials of the leucyl-tRNA synthetase inhibitor GSK2251052 for the treatment of complicated urinary tract infection in adults following the emergence of mutants of *Escherichia coli* resistant to the drug in 3 of 14 patients within two days of administration (5).

It has been proposed that the resistance liabilities associated with aaRS inhibitors could be overcome with an inhibitor capable of targeting two or more aaRS enzymes simultaneously.
(1, 2, 6); an equivalent effect could be achieved with a cocktail of two or more aaRS inhibitors delivered in combination. This proposal is supported by the multi-target hypothesis, which states that antibacterial agents for which resistance is not readily selected by mutation usually act on more than one cellular target (7). By simultaneously targeting two or more aaRS enzymes, a situation is created in which the likelihood of resistance arising as a consequence of mutation in multiple targets becomes extremely low; for two aaRS enzymes, the frequency of mutation to resistance would be predicted to drop to $\sim 10^{-14}$ ($\sim 10^{-7} \times 10^{-7}$). Whilst this idea seems intuitively correct, it is possible to conceive of reasons why it might not hold true (e.g. a single mutation at a site other than the target genes could confer resistance to inhibition of multiple aaRS enzymes), and it has to our knowledge not been tested. Here, we sought to evaluate the potential utility of such an approach by studying the *in vitro* emergence of resistance to combinations of aaRS inhibitors in *Staphylococcus aureus*.

The antibacterial aaRS inhibitors used in this study were mupirocin (MUP; Sigma-Aldrich, Poole, UK), GSK2251052 (GSK) which was synthesised as described (8, 9), and the methionyl-tRNA synthetase inhibitor, REP8839 (REP; Axon Medchem, Groningen, Netherlands). Minimum inhibitory concentrations (MIC) of each compound for *S. aureus* SH1000 (10, 11) were determined by broth microdilution in Mueller Hinton II (MHII) following CLSI guidelines (12), and the frequency at which mutants resistant to each individual compound arose was measured at 4XMIC on MHII agar, essentially as described (13). MUP, REP and GSK inhibited growth of *S. aureus* SH1000 at concentrations of 0.25, 0.125 and 4 µg/ml, respectively, and at 4XMIC, all three compounds selected resistant mutants at frequencies of 10^{-7}-10^{-8} (Table 1). For MUP and REP, these frequencies are comparable to those previously reported for *S. aureus* (14, 15); for GSK, mutation frequencies to resistance have not been reported for *S. aureus*, but the values obtained here are comparable to those reported for *E. coli* (5). To confirm that colonies recovered on agar
containing these agents at 4XMIC were indeed mutants exhibiting reduced susceptibility to
the corresponding aaRS inhibitor (not ‘break-through’ growth), they were subjected to MIC
determinations and PCR amplification/DNA sequencing of the gene encoding the drug target
(ileS, metRS and leuS in strains selected with MUP, REP and GSK, respectively). All colonies
tested exhibited ≥4-fold reductions in susceptibility to the aaRS inhibitor used for their
selection. DNA sequence analysis of two MUPR and two REP R strains identified
nonsynonymous mutations in ileS encoding amino acid substitutions V588F or V631F, and in
metRS encoding I57N or V242F, respectively; all of these mutations have been reported
previously in the context of resistance to these aaRS inhibitors (14, 15, 16). In two GSK R
mutants, nonsynonymous mutations were independently identified in leuS that encode the
amino acid substitutions G303V or D346N; the latter substitution has previously been identified
in a GSK R mutant of E. coli (5).

To determine the mutation frequency for resistance to simultaneous inhibition of two aaRS
enzymes, cultures of SH1000 were concentrated by centrifugation and plated onto MHII
agar containing all three possible combinations of aaRS inhibitors (MUP/REP, MUP/GSK and
REP/GSK), with each inhibitor included at 4X their respective MIC. No mutants resistant to
any combination were recovered (limit of detection ~1x10^-12) after 72 hours incubation.
Since potential synergistic interactions between aaRS inhibitors could complicate
interpretation of these results by dramatically enhancing the antibacterial activity of
individual compounds and thereby increasing the effective level of selection from 4XMIC to
higher multiples of the MIC, we determined the Fractional Inhibitory Concentrations (FIC)
index for each combination to exclude such effects (17). All three combinations were found
to be additive (i.e. not synergistic), yielding FIC index values between 0.8 and 1.0 (data not
shown). Thus, targeting two aaRS enzymes simultaneously does indeed prevent the rapid
development of resistance associated with targeting one aaRS enzyme.
Whilst a dual-targeted aaRS inhibitor/ inhibitor combination would therefore overcome the gross resistance liability associated with single-target aaRS inhibitors, it seems likely that resistance would nonetheless arise over time by step-wise accumulation of resistance mutations as has been observed for other multi-targeted antibacterials (e.g. fluoroquinolones, beta-lactams (18,19)). To assess this, the SH1000 mutants resistant to a single aaRS inhibitor described above were used to independently select resistance to each of the other two aaRS inhibitors at 4X MIC (Table 1). In all cases, resistance to the second aaRS inhibitor in these resistant mutants arose at a similar frequency to that observed for selection of resistance to the same aaRS inhibitor in the fully susceptible SH1000 strain (Table 1). Thus, it is not difficult to select resistance to multiple aaRS inhibitors when the bacterium is challenged with both agents sequentially rather than simultaneously. To further evaluate the likelihood that strains resistant to multiple aaRS inhibitors could emerge, spread and persist in the clinical setting, we examined whether the resulting resistance genotypes were associated with a reduction in competitive fitness. Pair-wise competition assays were conducted between resistant strains and SH1000 over 24 hours, following an established protocol (14). Fitness costs were relatively modest for mutants resistant to a single aaRS inhibitor (7-14%; Table 1), whilst a more considerable fitness cost was observed for mutants concurrently resistant to two aaRS inhibitors (30-42%; Table 1). Thus, even when mutants resistant to multi-targeted or multiple aaRS inhibitors do arise they incur fitness burdens that may act to limit their clinical prevalence.

In conclusion, we have demonstrated that simultaneous targeting of two aaRS enzymes overcomes the considerable resistance liabilities associated with inhibitors acting against a single aaRS enzyme. Although mutants resistant to inhibitors of two aaRS enzymes can become selected in a sequential manner, suggesting that such genotypes would emerge in the clinical setting following prolonged selection, the double mutants are less fit and may be compromised in respect of clinical spread or persistence. Our findings therefore support the
idea of discovering/developing aaRS inhibitor combinations or single agents that achieve
dual-targeting of aaRS enzymes. The latter would appear to represent a particularly
appealing prospect, and in view of the high degree of structural similarity shared by the
catalytic sites of subsets of the aaRS family (1), one that may prove feasible.
Acknowledgements

This work was supported by a grant from the European Union Framework 7 (FP7) program, Health.2013.2.31-1- NABARSI (grant agreement no: 601725). The funders had no role in the study design or the decision to submit the work for publication. We declare no conflicts of interest.
Table 1: Selection and characterization of *S. aureus* SH1000 mutants resistant to aaRS inhibitors. Results are the means of at least three independent experiments, with numbers in parentheses representing standard deviations. ND= not determined
<table>
<thead>
<tr>
<th>Strain</th>
<th>Competitive fitness</th>
<th>Mupirocin</th>
<th>REP8839</th>
<th>GSK2251052</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH1000</td>
<td>1</td>
<td>5.3 ±0.6x10^{-8}</td>
<td>7.1 ±0.2x10^{-7}</td>
<td>2.5 ±0.5x10^{-7}</td>
</tr>
<tr>
<td>SH1000 IleRS V588F</td>
<td>0.93 ±0.04</td>
<td>ND</td>
<td>7.3 ±0.1x10^{-7}</td>
<td>2.7 ±0.3x10^{-7}</td>
</tr>
<tr>
<td>SH1000 IleRS V631F</td>
<td>0.98 ±0.04</td>
<td>ND</td>
<td>7.9 ±0.5x10^{-7}</td>
<td>3.1 ±0.5x10^{-7}</td>
</tr>
<tr>
<td>SH1000 MetRS I57N</td>
<td>0.90 ±0.08</td>
<td>7.8 ±0.4x10^{-8}</td>
<td>ND</td>
<td>3.1 ±0.1x10^{-7}</td>
</tr>
<tr>
<td>SH1000 MetRS V242F</td>
<td>0.87 ±0.02</td>
<td>7.3 ±0.1x10^{-8}</td>
<td>ND</td>
<td>3.4 ±0.5x10^{-7}</td>
</tr>
<tr>
<td>SH1000 LeuRS G303V</td>
<td>0.86 ±0.02</td>
<td>7.4 ±0.4x10^{-8}</td>
<td>7.6 ±0.4x10^{-7}</td>
<td>ND</td>
</tr>
<tr>
<td>SH1000 LeuRS D346N</td>
<td>0.91 ±0.01</td>
<td>7.8 ±0.3x10^{-8}</td>
<td>7.2 ±0.1x10^{-7}</td>
<td>ND</td>
</tr>
<tr>
<td>SH1000 IleRS V588F MetRS V242F</td>
<td>0.62 ±0.02</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>SH1000 IleRS V588F LeuRS G303V</td>
<td>0.68 ±0.07</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>SH1000 IleRS V631F MetRS V242F</td>
<td>0.58 ±0.04</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>SH1000 IleRS V631F LeuRS G303V</td>
<td>0.65 ±0.01</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>SH1000 MetRS I57N LeuRS G303V</td>
<td>0.65 ±0.04</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>SH1000 MetRS V242F LeuRS D346N</td>
<td>0.61 ±0.01</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>SH1000 MetRS I57N IleRS V588F</td>
<td>0.64 ±0.09</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>SH1000 LeuRS G303V MetRS V242F</td>
<td>0.69 ±0.02</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>SH1000 LeuRS D346N IleRS V588F</td>
<td>0.66 ±0.05</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

is not associated with a significant fitness burden, *Journal of Antimicrobial Chemotherapy* 53, 102-104.
