Aqueous hydroxylation mediated synthesis of crystalline calcium uranate particles

Weixuan Ding a, *, Johannes A. Botha a, Bruce C. Hanson a, Ian T. Burke b

a School of Chemical & Process Engineering, University of Leeds, Leeds LS2 9JT, UK
b School of Earth & Environment, University of Leeds, Leeds LS2 9JT, UK

A R T I C L E I N F O

Article history:
Received 19 May 2016
Received in revised form 13 July 2016
Accepted 14 July 2016
Available online 18 July 2016

Keywords:
Uranate
U(VI)
Synthesis
Precipitation
Particles
Crystallisation

A B S T R A C T

Metal uranates(VI) are solubility limiting U(VI) phases under high pH conditions and may act as suitable long-term wasteforms. The precipitation and thermal phase development mechanisms of calcium uranate particles formed via aqueous hydroxylation reactions are studied in order to address the lack of aqueous synthesis methods currently available. Hydrous Ca-deficient uranate particles formed from aqueous solutions saturated in U(VI) oligomers were found to thermally decompose via several weight-loss steps between 100 and 800 °C. Crystalline calcium uranate (Ca₂U₃O₁₁) is initially formed at 700 °C via dehydration and dehydroxylation-olation reactions under redox-neutral conditions. This initial phase decomposes to biphasic CaUO₄-UO₂ particles at 800 °C via a reductive pathway.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Global legacy civil and military nuclear activities have accumulated ~1200 kt [1] of depleted uranium (dU at ~0.3% U-235). The low market cost of natural uranium and a lack in fast reactor technology until at least 2030 [2] reduces the economic case for using dU in civil power generation. Whilst down-blending of highly enriched U stocks (1.44 kt, ~90% U-235 [3]) with dU towards thermal fission fuel (~4% U-235 equivalent) is possible, this would consume only ~55 kt dU. The dU is therefore regarded as being a zero value asset [4] and may require long-term storage or disposal. In most nuclear states, some 80% of legacy dU is stored as uranium hexafluoride (UF₆) [1]; a hygroscopic crystalline solid that reacts violently with moisture to release highly chemo-toxic uranyl and hydrogen fluoride.

Currently, dU disposal is envisioned to be within deep cementitious geological disposal facilities (dGDF) [5]. The majority of dGDF post closure safety cases predict infiltration of groundwater, resulting in dissolution/re-precipitation of radionuclides present in the waste packages. This precludes direct dGDF disposal as a viable option for UF₆, instead deconversion to U₃O₈ may be achieved through steam quench-calcination processes [6].

The majority of ILW will be encapsulated in Portland grouts and contained in stainless steel drums. When a dGDF is re-saturated with groundwater, Na, K and Ca ions will be released into porewater and near-field groundwater. Dissolution of K/Na hydroxide will initially alkalise groundwater towards pH 13.5, which is then buffered towards pH ~12.5 by Portlandite present in grouts. This hyperalkaline plume will be enriched with radionuclides such as Cs, Sr and more so uranium as the largest radionuclide faction by mass. Although U(VI) exhibits low solubility under these pH 12.5–13.5 conditions, its ubiquity in the dGDF will increase U(VI) concentrations. U(VI) is present in almost all aqueous solutions as the uranyl ion (UO₂⁺) which forms uranyl hydroxide clusters in the presence of hydroxyl ions [7–9]. Subsequent inorganic polymerisation will result in nucleation of uranyl hydroxide precipitates that crystallise with aging towards uranyl oxide hydrates (Schoepite, meta-Schoepite [10]):
Incorporation of background cations will cause phase alteration [11,12] towards Ca/Sr-Becquerelite [13] or solubility-controlling uranates (CaUO₄, CaU₂O₇) [14,15]. These geologically persistent U(VI)-phases could further sequester key radionuclides (e.g., Cs, Sr, Np), affecting the long-term safety case of a DcDF [16–19].

Whilst crystalline metal uranates may become a suitable wasteform for permanent disposal or interim storage of uranic wastes, their synthesis pathways are often limited in the literature to ceramic methods involving direct calcination. Poor mixing between uranium and alkali metal salt particles will result in repeated grinding and prolonged calcination at high temperatures being required; reducing the overall process efficiency. Despite this, the ease of tuning Ca/U stoichiometry has resulted in the successful synthesis of Ca-uranates with Ca/U ratios of 0.25 [20], 0.5 [21], 0.337 [20], 1 [22], 2 [23], 3 [24]; in addition to other alkali uranates [25–27].

Sol-gel or co-precipitation chemistry is an attractive solution based route to synthetic metal oxides [28,29] that are low cost and typically require low temperatures, making processing convenient whilst also permitting control of particle morphology via frameworking agents [30]. Traditionally, metal alkoxides are used as solution phase precursors that readily undergo condensation [31] which may be expensive or complex to prepare as well as being heat, moisture and photo- sensitive. With the exception of titanium and zirconium alkoxides, most transition and actinide metal alkoxides are commercially unavailable.

Inorganic uranyl salts have been used during the synthesis of UO₂, U₂O₅ and UO₃ via direct [32] or indirect [33] alkalisation of uranyl nitrate solution. Precipitates are often amorphous, requiring calcination at 600 °C to crystallise the anhydrous uranium oxides [34,35].

Thus far, sol-gel syntheses have only been used to explore pure uranium oxides, whilst uranates have been formally explored only via the aforementioned anhydrous processes [36]. This study explores a simple and rapid aqueous based route towards calcium uranate particles, with potential for integration with current uranic waste stabilisation or dUF₆ deconversion processes [37]. It forms part of an effort to understand the underlying mechanisms leading to aqueous nucleation of hydrous metal uranates, whilst defining changes in their chemo-physical properties during anhydrous crystallisation.

2. Experimental

2.1. Materials and preparation

All reagents were of Analar grade and used as supplied without further purification.

Uranyl nitrate stock solution A 1.04 M uranyl nitrate solution was prepared by dissolving 1.51 g of uranyl nitrate hexahydrate ([UO₂(NO₃)₂·6H₂O, BDH Laboratory supplies]) in 2.89 ml of deionised water (18 MΩ) to form a clear bright yellow solution.

Calcium nitrate stock solution: 0.28 g of calcium nitrate tetrahydrate ([Ca(NO₃)₂·4H₂O, BDH Laboratory supplies]) was added to 1.145 ml of deionised water to give a 1.04 M solution.

Calcium hydroxide stock solution: 0.7 g of calcium oxide (CaO, Sigma Aldrich) was added to 1 l of deionised water (20 min N₂ sparged) in a stirred borosilicate Duran bottle. After solution becomes clear, a sealed cellulose semi-permeable tube containing 3 g/ml calcium hydroxide slurry was added to the solution and allowed to equilibrate to ~ pH 12.5 over 14 days at 20 °C.

Experimental procedure: In a typical synthesis, a 2.29 ml calcium enriched uranyl solution was prepared from mixing 1.145 ml of calcium and 1.145 ml of uranyl stock solutions to give 2.29 ml of preliminary reaction solution (pH 1.5) at 0.52 M: 0.52 M U(VI):Ca(II) concentrations respectively. To this initial solution, saturated calcium hydroxide solution was added slowly dropwise under vigorous stirring until pH 12 was reached. The reaction mixture was centrifuged at 14400 g for 3 min to collect and pelletize the bright orange precipitate. The remaining colourless clear supernatant was removed with pipette. The precipitated particles were rinsed with DI water and pelletised. The rinsed solids were re-suspended in 40 ml of propan-2-ol and centrifuged to prevent further ripening/hydratisation reactions via displacement of surface water with alcohol groups. This was repeated twice and the solids were concentrated into 5 ml of propan-2-ol for storage, allowing rapid drying prior to analysis using the methods described below.

2.2. Sample analyses

Quartz crystal microbalance (QCM) A chrome-gold quartz crystal (d = 25.4 mm) (Stanford Research Systems, Sunnyvale, California) was rinsed using Millipore water followed by isopropanol then air dried. The crystal was mounted onto a 5 MHz Stanford Research Systems QCM200 probe and the sensor was left to reach a stable frequency and resistance reading in air, then repeated upon submersion in the stirring reaction solution. A shift of at least 0.75 Hz h⁻¹ and 0.34 Ohm h⁻¹ in air and 3 Hz h⁻¹ and 1.65 Ohm h⁻¹ in solution was considered stable. Calcium hydroxide solution was added to the reaction solution until pH 12 and the frequency and resistance data was recorded throughout the process.

Zeta potential measurements Precipitates were disaggregated using pestle and mortar then suspended in deionised water (18 MΩ). Remaining aggregates were allowed to settle and aliquots of the suspended fraction were added to prepared pH solutions buffered using 0.1 M HNO₃ and (CH₃)₄NOH solutions to a final concentration of ~1000 ppm immediately prior to measurement. Triplicate samples were loaded into folded capillary zeta cells then analysed using a Malvern Instruments Zetasizer Nano. The refractive index was taken to be 1.63 (see Dynamic light scattering measurements below).

UV–Vis analyses Aliquots of reaction solution were removed at selected solution pH values followed by centrifugation to pelletize solids. The supernatant was removed and their single wavelength absorbance at 414 nm (A₄₁₄) in a UV–Vis spectrometer recorded using a quartz cell of length 1 cm.

A control experiment was conducted using 414 nm (ΔA₄₁₄) of the pelleted reaction aliquots was treated by subtracting the A₄₁₄ of UO₂(NO₃)₂·6H₂O solution of equivalent dilution to isolate ΔA₄₁₄ due to variation of U(VI) speciation. This treated data was then fitted using a Gaussian function to guide the eye (Fig. 4a black square, Gaussian fit in dashed black). Fresh solutions were prepared.
at 0.01 M initial U(VI) concentration to pH 2–5 and their UV–Vis spectra collected between wavelength range of 350–500 nm (Fig. 4b).

Dynamic light scattering (DLS) Ex-situ DLS measurements were made using a 532 nm Nd:YAG laser and a Brookhaven digital correlator (BI-9000AT) controlled using the 9KDSLW data recording and analysis software package. The precursor Ca/U solution was filtered using a 0.22 μm syringe filter and the reaction vessel covered to reduce dust contamination. As the reaction proceeded, aliquots of reaction solution were extracted at 0.5 pH intervals from pH 2 until pH 5.5. A refractive index of R = 1.63 was derived for the particles via the Gladstone-Dale [38] relationship [39,40] (see Supplementary materials). Reflective energies used for the constituents UO₃, CaO and H₂O were included from literature between 50°C and a maximum temperature, T max, with T max increasing in 100°C increments between 100 and 1000°C. These samples were placed in a 70°C ±1°C. These samples were placed in a 70°C ±1°C. The heating rate of the analyses was at 10°C min⁻¹ and the samples were held in isothermal plateau at the T max for 300 min. All TGA-DSC data were blank subtracted and then derived with respect time to over a region of 20 data points to give the corresponding DTG trace (Fig. 7).

X-Ray Diffraction (XRD) analyses Calcined samples were pulverised and analysed on a Bruker D8 Diffractometer equipped with Cu Kα x-ray source and lynx eye detector. A hydrous sample (Fig. 8a, 25°C) was dried after 7 days of storage under IPA, then pulverised and analysed in the same manner as for the calcined samples. XRD patterns were compared to International Centre for Diffraction Data (ICDD) powder diffraction file database (PDF#4). The 25–600°C XRD patterns were treated using a quadratic polynomial Savitzky-Golay filter [42] (10 point window) to improve data clarity in poorly crystalline samples that required no further analysis. Quantitative phase compositions were determined using the Rietveld method [43,44] via the X'Pert Highscore Plus software using available crystal structural data for CaUO₄ and UO₂.

SEM analyses Solid samples were carbon coated and imaged using a FEI Quanta FEG 650 Environmental Scanning Electron Microscope (ESEM) equipped with an electron microprobe. EDS spectra were collected from a minimum of 3 regions per sample. The AZTEC software package was used during standardless quantification of Ca and U elemental concentrations.

TEM analyses Particle suspensions were dried onto amorphous carbon support copper grids prior to imaging using a FEI Tecnai TF20 FEGTEM. Image [45] was used to measure particle size and lattice fringe spacing via Fast Fourier Transform patterns (FFT).

ICP-OES analyses 0.5 ml aliquots were removed from the reaction vessel and immediately passed through a 0.22 μm pore size filter and then centrifuged at 14400 g for 5 min. The supernatant was acidified overnight using Aristar HNO₃, diluted to 1 wt% acid concentration (~50 ppm U) and used for uranium ICP-OES analysis on a Thermo iCAP 7400 instrument. The solids from the TGA analyses were digested using a 100 μl aliquot of 70% nitric acid, then diluted as for the solution samples. All samples were calibrated against calcium-uranium standards containing Yttrium as an internal standard.

3. Results

3.1. Thermodynamic modelling

The distribution of U(VI) species in aqueous solution was calculated using the software package PHREEQC [46,47] loaded with the ANDRA ThermoChimie database [48] and updated thermodynamic data for uranium [49,50]. Additional Ksp data was inserted into the working database to include an amorphous Schoepite phase [51]. Specific ion-interaction theory (SIT) was used for ionic strength corrections. Percentage speciation for Ca and U(VI) and relevant crystalline phase saturation indices (SI) are presented (Fig. 1). The latter being a logarithmic relationship between ion activity product (IAP) of dissolved species and solid phase solubility product (Ksp) to give phase saturation index (SI), where phase SI > 0 represents supersaturation; SI < 0 represents undersaturation and SI = 0 represents phase equilibrium between dissolution and precipitation.

![Fig. 1. PHREEQC reaction model of a) major total U(VI) (left axis) and Ca(II) (right axis) speciation by percentage at 20°C. b) Relevant saturation indices of solid phases (left axis) and total dissolved U(VI) content (right axis).](image-url)
Accordingly, the calculations show that the precursor solution is dominated by uncomplexed \(\text{UO}_2^2+ \) and binuclear \(\text{UO}_2\text{OH}^{3+} \). \(\text{UO}_2^2+ \) is consumed with increasing solution pH towards 2.5 and less rapidly from pH > 3 until complete consumption by pH 5. Between pH 2–5, concentration maxima in U(VI) hydroxides occur at solution pH values of 3.5 \([\text{UO}_2\text{OH}^{3+}] \), 4.1 \([\text{UO}_2\text{OH}^{2+}] \), 4.3 \([\text{UO}_2\text{OH}^{-}] \) and 4.8 \([\text{UO}_3\text{OH}^2] \) respectively and is reflected in a pH 3.75 maxima in total polymeric U(VI) hydroxides. There is also a rapid incremental increase in expected Ca concentration results in solution supersaturation in CaUO\(_4\) and CaU\(_2\)O\(_7\) whilst the \([\text{UO}_2\text{OH}^{-}] \) dominated region (pH 4.5–9) is rapidly exchanged for anionic \([\text{UO}_3\text{OH}^2] \) at pH 9.2. Excess \(\text{OH}^- \) in solution leads to depolymerisation of \([\text{UO}_3\text{OH}^2] \) to form monomeric hydroxides \([\text{UO}_2\text{OH}] \) and \([\text{UO}_2\text{OH}]^2 \).

3.2. QCM measurements

During alkalinisation of the initially bright yellow transparent precursor solution (Fig. 2 circle 1) by addition of clear transparent Ca(OH)\(_2\) solution, a diminished change occurs in the frequency (\(\Delta F \)) and resistance (\(\Delta R \)) shifts up to pH 4.8. The almost linear decrease in \(\Delta F \) is reflected by an opposing increase in \(\Delta R \) in this region and a progressive yellowing of the transparent solution. This 40 Hz (9%) reduction in \(\Delta F \) (Fig. 2 solid line) corresponds to a comparatively minor +0.56 \(\Omega \) (16%) increase in \(\Delta R \) (proportional to vibrational dissipation [52]) and allows use of the Sauerbrey relationship [53, 54] to approximate an average mass of a rigidly adsorbed and evenly spread thin-film on the QCM crystal surface to ~3.5 mg. Using database values for the densities of Schoepite (ICSD 82477, \(\rho = 4818.64 \text{ kg m}^{-3} \)) and Metaschoepite (ICSD 23647, \(\rho = 8017.66 \text{ kg m}^{-3} \)), an average film thickness of an adsorbed layer would range between 0.87 and 1.45 nm. A sharp increases in \(\Delta F \) and \(\Delta R \) gradients (\(\Delta F, \Delta R \)) coincide with the solution becoming visibly opaque (Fig. 2* circle 2) at pH 4.8. Subsequent reductions in

\[
\text{d}F/\text{d}R \text{ occur at pH 5.8 and pH 6.8 respectively to reach a plateau between pH 6.8 and pH 7.5, whilst the suspension darkens in colour. A final progressive increase in } \Delta F \text{ and } \Delta R \text{ up to pH 12 occurs with the formation of a clear colourless supernatant layer above the agitated particle bed.}
\]

3.3. Zeta potential (ZP) measurements

A point of zero charge (PZC) (Fig. 3) was found for the precipitated particles at pH 4.1 regardless of electrolyte concentration in the aqueous matrix. However relative differences become immediately apparent in their rates of change by pH 4.8 (~16.2 and ~−8.0 mV respectively), resulting in a more negative pH 12 ZP for the pure water suspension (~35.7 mV) compared to the 0.01 M NaCl suspension (~22.0 mV). ZP trends for both suspensions coincide with similar hydrous divalent (Mg, Mn, Ni) uranium oxides.

3.4. UV–vis absorbance

Solution aliquots develop in total absorbance between pH 3–5.7 before increasing rapidly at pH 5.7 towards a final plateau between pH 6–12. The centrifugation reaction aliquots (Fig. 4, black squares) exhibit a Gaussian shaped absorbance peak centred at pH 4.5 with a peak width of 3 pH values, no further changes in absorbance is apparent after pH6. The absorbance spectra of samples before the cloud point (pH 5.5) between pH 2–3.5 (Fig. 4b) shows that A\(_{\text{max}}\) remains constant up to pH 3 (Fig. 4b). They are characterised by three major A\(_{\text{max}}\) at (i) 403, (ii) 413.8, (iii) 426 nm with shoulders at 392 nm and 438 nm is consistent with previous spectroscopic data for the \(\text{UO}_2^2+ \) ion [56]. The pH 3.5 spectrum is characterised by broadened peaks, though maintains the three A\(_{\text{max}}\) observed at lower pH values. Higher pH spectra (Fig. 4b, pH 4–5) show consistently broadened characteristics whilst completely shifting the A\(_{\text{max}}\) peak to 421.8 nm and 429 nm. U(VI) speciation data (Fig. 1a, black lines) reveals a solution dominated by \(\text{UO}_2^2+ \) ions up to pH 3, followed by formation of \(\text{UO}_2\text{OH}^2 \) up to its maximum.

![Fig. 2. QCM frequency and resistance shift as a function of solution pH; with asterisk (*) representing the visible solution cloud point. Image circles are ordered from left-right as 1–5; and show (1) initial uranyl nitrate solution followed by addition of calcium hydroxide titrant until (2) solution clouding point, (3) gelation, (4)–(5) collapse and settling.](image)

![Fig. 3. Particle zeta potential of hydrous Ca–U(VI) oxide as a function of solution pH in DI water and 0.01 M NaCl; other divalent metal U(VI) oxides from Vochten et al. (blue) [55] and SiO\(_2\) particles 0.01 M NaCl solution respectively are included for reference. For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.](image)

![Fig. 4. Solution pH](image)
at pH 4 and subsequently by the higher uranyl hydroxylation products \([\text{UO}_2\text{O}_3\text{OH}_5]^+\) and \([\text{UO}_2\text{O}_4\text{OH}_7]^+\) up to pH 5.

3.5. ICP-OES analyses

Approximately 10% of initial U and Ca is removed simultaneously from solution up to pH 5 whilst the [Ca/U] ratio of filtered solids reach unity. Between pH 5 and 7, almost complete removal of uranium is occurs whilst an additional ~48% Ca is gradually removed up to pH 12 to yield a final expected [Ca/U] ratio of ~0.6.

The average calcium to uranium molar ratios of precipitates calcined between 25 and 1000 °C (25 °C sample represents the untreated precipitate) were also analysed after dissolution in 1% HNO₃ acid to give Ca/U = 0.68 ± 0.043 (Ca:U ~ 0.25:0.38) or a calculated stoichiometric formula of Ca₂U₂.92O₁₀.77.

3.6. Dynamic light scattering

Dynamic light scattering performed on a range of 0.066 M/0.01 M Ca(UVI) nitrate solutions buffered between pH 2–5.5 using HNO₃ and \((\text{CH}_3)_3\text{NOH}\), though only the pH 5–5.5 sample yielded scattered light count rates above background. Fig. 6 shows that non-regularised (NNLS) and regularised (CONTIN) least squares fitting yielded a pH 5.5 particle size distribution (PSD) that is characterised by three major particle size populations that approximately corroborate between the two data fitting methods; [NNLS, CONTIN] hydrodynamic diameter = [144–193, 248 nm], [1750–3160, 1370 nm] and [5680–10240, 4260–10000 nm]. These correspond to d₅₀ by volume as d₅₀NNLS = 5550 nm, d₅₀CONTIN = 5150 nm respectively.

3.7. Thermogravimetric analysis

Fig. 7 shows ~10% weight loss occurs when samples were heated from 50 °C to 1000 °C and the samples appeared to follow a 5-region weight loss profile outlined below:

- **Region 1** — an initial steep ~5.80% (6.63 mg) weight loss region between 50 and 175 °C with mild endothermic heat flux, which is reflected as a double minima in the DTG trace as two changes in weight loss regime within this region. Isothermal weight loss is highest in this range (Fig. 7, insert).

- **Region 2** — a lesser ~3.94% weight loss region between 175 and 700 °C which appears as a broad depression in the DTG trace, whilst isothermal weight loss stabilises. Particles deepen in colour to ochre from light orange.

- **Region 3** — samples became progressively darker in orange with increasing temperature until an ochre colouration is reached between 700 and 800 °C; where the ochre colouration is intermixed with dark green specks. Dynamic weight loss over this range is diminished, whilst isothermal weight loss begins to rise.

- **Region 4** — a ~1.55% weight loss region between 800 and 950 °C this facile weight loss is reflected in a sharp depression in the DTG trace over the same temperature range and is accompanied by a change in colouration towards a green tinged black;

- **Region 5** — a secondary weight loss plateau beyond 950 °C accompanied by darkening of colour until a lustrous black solid of a
brittle nature remained. A broad endotherm begins at 600 °C (Region 3) until Region 5 does not coincide with specific weight losses. Isothermal stability decreases linearly from the Region 2 minima up to region 5.

As carbon dioxide was excluded from precursor solutions and the reaction vessel, the gaseous decomposition product was assumed to be water. Mass loss was therefore used to calculate molar water loss and incorporated into the stoichiometric formulae as H2O and OH groups for clarity (see Equations (2)–(5)).

3.8. XRD analysis

Sample pXRD patterns (Fig. 8a, 25 °C) below 700 °C show poor peak definition with broad intensity maxima resembling those of Ca1.5UO2(OH)7O16.7H2O [57]. Calcination of samples in a N2 atmosphere up to 700 °C results in gradual increase in peak definition towards a Ca2U3O11 phase. The samples calcined to 1000 °C match database peak maxima for CaUO4 and UO2.

Phase quantification for the 900 °C sample was attempted using the Rietveld method [43,44] with known structural data for UO2 (PDF: 04-007-7779) and CaUO4 (PDF: 04-007-9939). This yielded weight percentages for UO2 and CaUO4 of 34.4 wt% and 65.6 wt% respectively and a calculated bulk [Ca/U] stoichiometry of 0.601 (Ca2U2.3O12). Parameters refined were specimen displacement, background, scale factor, unit cell parameters, peak shapes, W and U profile parameters. Goodness of Fit (GOF, χ^2) and R weighted profile (Rwp) values were monitored to improve the refinement. R and refined unit cell parameters are summarised in (Fig. 8). As structural data is unavailable for Ca2U3O11, structural refinement was not attempted on the 700 °C XRD pattern.

3.9. SEM and TEM imaging

TEM micrographs are presented in Fig. 9 of the solids extracted from the reaction solution at three pH values after initial onset of precipitation. The solids appear to be composed of a network of randomly distributed nanoparticle aggregates that warped during imaging for the pH 5.5 and to a lesser degree for the pH 8.5–11 aggregates. Size measurement of particles with coherent lattice fringes (Fig. 9 circlets) revealed their diameters to be 14.06 ± 2.25 nm, 12.06 ± 2.14 nm and 9.17 ± 1.49 nm for pH 5.5, 8.5
and 11 samples respectively. The rectangular crystallites had average geometric anisotropy ratios (length/width) of 1.9 ± 0.2, 2.0 ± 0.4 and 2.1 ± 0.3 respectively. Inspection of the FFT interference patterns (Fig. 9 square inserts) derived from particle lattice fringes reveal spacings in order of decreasing intensity 3.1 Å, 3.3 Å, 2.6 Å, 2.7 Å and in the pH5.5 solids, also at 1.8 Å, 1.9 Å; corresponding approximately with the d-spacings for the (111), (111) and (311) diffraction peaks of crystalline Ca2U3O11.

SEM photomicrographs of the 25 °C and 100 °C (Fig. 10a, b) samples show irregular shaped and sized aggregates with average cluster diameters of ~146 nm and ~151 nm respectively. Between 700 and 900 °C, particle diameters decrease in 100 °C increments to ~140, ~124 and ~113 nm accompanied by an observable alteration from smooth spheroids at 700 °C towards spherical particle aggregates by 900 °C interspersed by an increasingly regular pore size distribution. By 1000 °C (Fig. 10f), particle surfaces become smoother and consist of fused spherical particles of ~118 nm interspersed with larger pores. Standardless quantification from EDS data (Fig. 10g) across all samples revealed calcium, uranium and oxygen atom percentages of 11.4 ± 1.2, 18.2 ± 1.9 and 70.3 ± 3.2 respectively and a Ca/U stoichiometry of 0.63 ± 0.02 (Ca1.95U3.01O10.95).

4. Discussion

4.1. Hydrous calcium uranate condenses from clusters of U(VI) hydroxide oligomers

The initial reaction solution is predicted to contain monomeric and partially hydrolysed U(VI) species as UO22+ or (UO2)2(OH)22+ and dissociated calcium as Ca2+. The former is responsible for the low initial pH of the precursor solution (~pH 2) as described by a proton release equilibria (Equation (2)) occurring during hydrolysis [60–62].

\[x\text{UO}_2^{2+} + y\text{H}_2\text{O} \leftrightarrow (\text{UO}_2)_x\text{H}_y(\text{OH})_{2x-y}^{2x-y} + (y\text{H}^+) \]

(2)

A progressive increase in hydroxide in solution during Ca(O-H)2x2+ addition consumes protons to drive kineticolation between uranyl ions towards oligomeric U(VI) species ((UO2)3(OH)34+ → (UO2)3(OH)32+ → (UO2)3(OH)3). This is supported by a shift in the observed UV--Vis spectra (Fig. 4b) from a uranyl towards a U(VI)
hydroxide (UOH) dominated system above pH 3 (Fig. 4b). Due to the 10 and 49 fold greater molar absorptivity of the polymeric uranyl hydroxides \((\text{UO}_2\text{O}_2\text{OH})^{2+}\) (101 \(\pm\) 2 mol \(\text{cm}^{-1}\) \(\text{mol}^{-1}\)) and \((\text{UO}_2\text{O})^{2+}\) (474 \(\pm\) 7 mol \(\text{cm}^{-1}\) \(\text{mol}^{-1}\)) compared to \(\text{UO}_2^2+\) (9.7 \(\pm\) 0.2 mol \(\text{cm}^{-1}\) \(\text{mol}^{-1}\)) [56], the progressive increase in UOH concentration may be followed via spectrophotometric absorbance measurements (Fig. 4 black).

The variation between the A414pelletised and A414non-pelletised samples indicate some removal of U(VI) solids from solution above pH 4.8 (Gaussian fit maxima) and almost complete removal by pH 5.5. However the approximate minimum particle size that may be centrifugally removed from solution is ~44–62 nm (see Supplementary materials) whilst primary crystallites are ~14.06 nm (Fig. 9a). Therefore the increase in overall A414pelletised between pH 2–4.8 may be due to both non-aggregated nanoparticles and U(VI) hydroxides (Fig. 4b).

The 0.87–1.45 nm film deposited onto the QCM crystal surface below the cloud point (Fig. 2, pH 5) contains both U and Ca according to ICP-OES (Fig. 5); and could in part, be due to the SiO\(_{25\times2\times4}\) inner sphere complexation observed in aqueous U(VI)-silicate systems [63,64] that appears unaffected by [Ca\(^{2+}\)]. Continuing pH elevation functionalis the deposited SiO\(_{25\times2\times4}\) to hydroxide clusters with the Ostwald step rule [67], a reduction in system Gibbs energy via the shortest reaction pathway favours the formation of less concentrated materials) whilst primary crystallites are ~14.06 nm (Fig. 10a, b).

Continuing pH elevation functionalises the deposited SiO\(_{25\times2\times4}\) towards poorly-crystalline hydroxides (UO\(_2\))\(_2\)O\(_2\)OH\(_3\)_5.5H\(_2\)O (Fig. 8a), stoichiometric analysis ([Ca/U] ~ 0.64), FTIR analysis (supplementary materials, Fig. 2) and the early weight loss measurements (Fig. 7) discussed above indicate a structure with a lower overall water content and therefore a composition closer to \(\text{Ca}_2\text{UO}_2\text{O}_3\text{OH}_2\text{O}_2\text{H}_3\text{O}_2\text{H}_2\text{O}\). The colour change to black in TG region 4 suggests a U(VI)→U(IV) reduction accompanied by microscale structural changes (Fig. 10d). This transition may be accommodated by conversion of \(\text{Ca}_2\text{UO}_2\text{O}_2\) to biphasic \(\text{CaUO}_4\) and \(\text{UO}_2\) particles (Fig. 8a, 900 °C) via dissociation of 0.5 mol oxygen (Equation (5)) implying that a higher Ca-loading towards [Ca/U] = 1 would increase thermal stability.

\[
\text{Ca}_2(\text{UO}_2)_3\text{O}_3\text{H}_5(\text{OH})_{2.5} \xrightarrow{700–1000 \text{ °C}} 2\text{Ca} \left(\text{U}^{IV}\text{O}_2\right)_2 + \text{U}^{IV}\text{O}_2 + 1/2\text{O}_2
\]

(5)

Whilst the presence of green specks at 800 °C could indicate partial reduction to \(\text{Ca}_2\text{UO}_2\text{O}_2\) [76], the relative thermal stability of \(\text{Ca}_2\text{UO}_2\text{O}_2\) (Fig. 7, insert) in addition to requiring a reductive atmosphere precludes this pathway from being likely.

5. Conclusions and implications

The alcalisation of aqueous U(VI) – Ca(II) solutions results in hydroxylation of uranyl species towards oligomeric U(VI) clusters. The majority of U(VI) (~87 mol%) was removed from solution between pH 5–7 via nucleation into poorly-ordered nanoparticles of 14 nm. These Ca-deficient aggregates continued to uptake Ca until a final Ca/U ratio of 0.67 was reached. This hydrous calcium uranate \((\text{Ca}_2(\text{UO}_2)_3\text{O}_3\text{H}_5\text{OH}_2\text{O}_2\text{H}_3\text{O}_2\text{H}_2\text{O})\) underwent a two-stage dehydration-dehydroxylation between 100 and 700 °C under a redox-neutral atmosphere to form crystalline \(\text{Ca}_3\text{U}_2\text{O}_8\); which subsequently decomposed into a biphasic \(\text{CaUO}_4/\text{UO}_2\) mixture at 800 °C. The simple and rapid process studied here may be integrated with existing processes [37] to remove U(VI) from aqueous waste streams, whilst creating a crystalline low solubility uranate phase that may be used for long-term storage or permanent disposal of waste uranium.

Acknowledgements

The authors are grateful to the financial support from the EPSRC,
Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jallcom.2016.07.140.

References

[2] OECD, Technology Roadmap Update for Generation IV Nuclear Energy Sys-

[18] D.L. Parkhurst, C. Appelo, Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-reaction, One-dimen-

[26] D.L. Parkhurst, C. Appelo, Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-reaction, One-dimen-

