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Real Time Hyperbolae Recognition

and Fitting in GPR Data

Qingxu Dou, Lijun Wei, Derek R. Magee, and Anthony G. Cohn

Abstract—The problem of automatically recognising

and fitting hyperbolae from Ground Penetrating Radar

(GPR) images is addressed, and a novel technique com-

putationally suitable for real time on-site application is

proposed. After pre-processing of the input GPR images,

a novel thresholding method is applied to separate the

regions of interest from background. A novel column-

connection clustering (C3) algorithm is then applied to

separate the regions of interest from each other. Subse-

quently, a machine learnt model is applied to identify

hyperbolic signatures from outputs of the C3 algorithm

and a hyperbola is fitted to each such signature with

an orthogonal distance hyperbola fitting algorithm. The

novel clustering algorithm C3 is a central component

of the proposed system, which enables the identification

of hyperbolic signatures and hyperbola fitting. Only two

features are used in the machine learning algorithm, which

is easy to train using a small set of training data. An

orthogonal distance hyperbola fitting algorithm for ‘south-

opening’ hyperbolae is introduced in this work, which

is more robust and accurate than algebraic hyperbola

fitting algorithms. The proposed method can successfully

recognise and fit hyperbolic signatures with intersections

with others, hyperbolic signatures with distortions and

incomplete hyperbolic signatures with one leg fully or

largely missed. As an additional novel contribution, formu-

lae to compute an initial ‘south-opening’ hyperbola directly

from a set of given points are derived, which make the

system more efficient. The parameters obtained by fitting

hyperbolae to hyperbolic signatures are very important

features, they can be used to estimate the location, size

of the related target objects, and the average propagation

velocity of the electromagnetic wave in the medium. The

effectiveness of the proposed system is tested on both

synthetic and real GPR data.

Index Terms—GPR, Column-connection clustering algo-

rithm, hyperbola recognition, orthogonal distance fitting,

machine learning, buried asset detection.

I. INTRODUCTION
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A.G.Cohn@leeds.ac.uk; t: +44 (0)113 343 5430; f: +44 (0)113 343

5468.

A
S a non-destructive tool for investigation of

shallow subsurface, GPR has been widely used

in detection and mapping of subsurface utilities such

as pipes and cables [1]. There are typically two

pattern shapes in B-scan images of GPR, hyperbolic

curves and linear segments [2]. Hyperbolic curves

are due to objects with a cross-section size of the

order of the radar pulse wavelength; linear segments

stem from planar interfaces between layers with

different electrical impedance. Because of system

noise, the heterogeneity of the medium and mutual

wave interactions, GPR images are usually noisy. It

is a complex task to automatically extract hyperbo-

lae from GPR data. Considerable research has been

devoted in this area and many different strategies

have been employed to tackle this topic e.g. [3]–

[11]. In addition, if the parameters of a hyperbolic

signature can be obtained by fitting a hyperbola to it,

the parameters can be used to estimate the location

and size of the related target object, and the average

propagation velocity of the electromagnetic wave in

the medium [12].

In [9], [13]–[15], the generalized Hough trans-

form is used to find the parameters of hyperbolae.

It is time consuming to determine the parameters

of a hyperbola with generalized Hough transform

algorithms because the algorithms need to be per-

formed in a space with at least 4 dimensions.

In addition, the accuracy of a generalized Hough

transform algorithm depends on the discretization of

the parameters. Increasing the discretization of the

parameters moderately could lead to the computing

time increased dramatically. In [16], the generalized

Hough transform method was extended to record the

associative sets of position/time data pairs that form

a contribution to each bin in the Hough accumulator

space, which can then be used with a conventional

least-squares algorithm to reveal the object position,

depth, and radius or velocity. In [17], the edges in

the GPR images are detected first and followed by

an edge fitting algorithm. This algorithm is only
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suitable for very clean GPR images. Otherwise, it

would be very difficult to group the points detected

from a certain edge for fitting. In [10], an edge

detector is also applied to detect edges from GPR

images. Although this method can be applied on

complex GPR images, in fact, no fitting is applied

directly on the detected edge points so only the

apexes of the hyperbolae are detected and other

parameters of the related hyperbolae are missed,

which are essential for identifying other properties

of the utilities such as the size of the utilities [12]

and even the materials of the utilities [11].

Another type of approach uses machine learning

methods to narrow down the regions including hy-

perbolae in the first step and then a fitting method is

applied to find the hyperbola parameters [9], [18].

In [18], after the regions including hyperbolae are

extracted with a neural network, an edge detector is

employed to detect edges in the extracted regions

and then the parameters of hyperbolae are extracted

through a generalized Hough transform. In [9], the

Viola-Jones algorithm [19] is employed to extract

the regions believed to contain hyperbolae, followed

by a generalized Hough transform fitting based on

the detected edge points. The disadvantages of ex-

tracting hyperbola parameters through a generalized

Hough transform and edge fitting are pointed out

above. In addition, as pointed out by the authors of

[9], the quality of detection results depends strongly

on the quality and size of the available data for train-

ing. The experimental statistics are very impressive

with respect to recall and precision for hyperbolae

detection and fitting in [7], but the algorithm is only

tested with synthetic data generated with GprMax

[20] and the scenarios are relatively simple such as

no intersection of the hyperbolic signatures is seen

in the displayed GPR images. In [21], the authors

suggest a probabilistic hyperbola mixture model

based on a classification expectation maximization

algorithm to extract multiple hyperbolae from a

GPR image in one go. There are at least two issues

worthy for further consideration. First, compared

with an orthogonal circle or ellipse fitting algorithm,

orthogonal hyperbola fitting algorithms are more

sensitive to the configuration of the given points.

The expectation maximization algorithm starts with

a general initial partition of the given points, it

is difficult to guarantee the convergence of the

hyperbola fitting algorithm. Second, the computa-

tion of an orthogonal hyperbola fitting algorithm is

Fig. 1. Examples of difficult scenarios that can be tackled by

the proposed hyperbola recognition and fitting method. The first

column contains the input GPR images, the second column contains

the candidate hyperbolic signatures, and the third column contains

the fitted hyperbolae with difficult scenarios, including intersecting

hyperbolae in rectangles 1, incomplete or distorted hyperbolae in

rectangles 2 and rectangles 3.

expensive. In each step the expectation maximiza-

tion algorithm calls the hyperbola fitting algorithm

multiple times.

In this work, we propose a method to automat-

ically detect and fit hyperbolae to GPR images.

The proposed multi-stage approach can deal with

complex GPR images and especially can recognize

and fit hyperbolic signatures in some difficult sce-

narios as shown in Figure 1, such as hyperbolic

signatures with intersections with others, hyperbolic

signatures with distortions and incomplete hyper-

bolic signatures with one leg fully or largely missed,

possibly due to local velocity changes. The fitted

parameters of the hyperbolic signatures can then be

used to estimate the location, size of the related

target objects and the average propagation velocity

of the signals in the medium for future applications.

The proposed system is composed of four stages,

an application of the proposed system is shown in

Figure 2. First, a pre-processing procedure is applied

to the input image and then a threshold value is se-

lected automatically based on the results of an edge

detection. With this threshold value, the regions of

interest are separated from the background. With

the proposed C3 algorithm, the regions of interest

are separated into different clusters. As mentioned

above, a hyperbola must be fit to a hyperbolic sig-

nature to guarantee convergence. Which regions can

be regarded as a hyperbolic signature? A machine

learnt model is applied to identify the hyperbolic

signatures. As pointed out above, it is necessary to

fit a hyperbola to each hyperbolic signature to obtain
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(a) Input image
(b) After pre-

processing
(c) Regions of

Interest

(d) Output of

C3 algorithm

(e) Identified

hyperbolic

signatures

(f) Output im-

age with fitted

hyperbolae

Fig. 2. An illustration of the application of the proposed technique

on the bright regions (as described in Section II-A) of a real

GPR image. In the first row, (a) the input image, (b) the image

after preprocessing, (c) the regions of interest after thresholding.

In the second row, (d) clusters after applying C3 algorithm, (e)

identified hyperbolic signatures by applying the machine learning

algorithm, (f) the output image from the system with fitted hyperbolae

Intersecting(with crossing tails, connected without crossing tails),

Distorted (asymmetric or incomplete) (best viewed in colour).

the corresponding parameters which can be used to

estimate the location and size of the target object,

and the signal propagation velocity in the medium

[12].

The C3 algorithm is the central component of this

work. The previous clustering algorithms are either

based on the distance between points [22], [23] or

the density of points within a certain area [24],

[25]. They are not capable of separating connected

regions or segmenting two hyperbola signatures

with an intersection. The proposed C3 algorithm

is based on matching sequences of elements in

adjacent columns with the same row numbers. The

output clusters of this algorithm include different

combinations of connected blocks and one block can

belong to multiple different clusters. With this algo-

rithm, most hyperbolic signatures can be segmented

from other regions even if they are connected or

have intersections before clustering. Without this

step, the proposed machine learning algorithm and

hyperbola fitting algorithm can not be applied.

The hyperbola fitting algorithm is also a crucial

component of this work. There is a large body of

conic fitting algorithms in the literature [26]–[30].

Compared to algebraic distance, orthogonal distance

is invariant to transformations in Euclidean space,

therefore orthogonal distance fitting algorithms are

more robust and accurate than algebraic distance

fitting algorithms [26]. In this work, we introduce

a least-squares orthogonal distance fitting algorithm

for ‘south-opening’ hyperbolae based on the work

of [26]. The efficiency of the fitting algorithm makes

this system suitable for real time on-site application.

In addition, a novel way to compute the initial

hyperbola parameters directly from the given points

is introduced. Compared to using algebraic hyper-

bola fitting results as the initial hyperbola for the

orthogonal hyperbola fitting as in [26], [29], [31],

the initial hyperbola computed with the proposed

method is usually closer to the final fitted one, this

makes the fitting algorithm even more efficient.

The rest of this paper is organised as follows. We

present the proposed C3 algorithm and the related

GPR image pre-processing schemes in section II,

which is followed by a description of the machine

learning algorithm for hyperbolic signatures iden-

tification in section III. The orthogonal distance

hyperbola fitting algorithm and the hyperbola ini-

tialisation procedure are presented in Section IV.

The experimental results are shown and analysed

in Section V, and finally, conclusions are drawn in

Section VI.

II. A COLUMN-CONNECTION CLUSTERING

ALGORITHM

In this section, we present the proposed column-

connection clustering (C3) algorithm and the related

pre-processing procedures on real data.

A. Adaptive Thresholding of the Input Images

Before applying the proposed clustering algo-

rithm, a series of processing techniques are em-

ployed on real GPR images. From Figure 2 (a), it

can be seen that some regions including hyperbolic

signatures, a strip at the upper part of the image and

some small irregular regions have higher responses.

It is a common feature for a GPR image to have

a bright strip at the top of the image, which is

due to the reflectance of the ground surface. In the

pre-processing, a moving average filter is applied

to the input image to reduce the noise, and then

the ensemble mean of each row is subtracted to
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Fig. 3. The illustration of effect of ρb in Equation (1) on the values of

recall and precision of hyperbola fitting when applying the proposed

system on a group of GPR images. Recall = tp

tp+fn
, precision =

tp

tp+fp
, where tp is the number of correctly fitted hyperbolae by the

algorithm, fn is the number of hyperbolae in the ground truth which

are not correctly fitted by the proposed algorithm, and fp is the

number of fitted hyperbolae not included in the ground truth.

eliminate the bright ground surface reflectance strip.

An example image after the pre-processing is shown

in Fig. 2 (b). The window size of the filter should

not be too large but within a certain range, the

experimental results are not that sensitive to it. In

our experiments, we tried with 3×3, 5×5 and 7×7
(in pixels) and very similar results were obtained.

The experimental results shown in this paper were

done with filter window size of 3× 3.

The regions corresponding to the maxima of

positive phase (bright) or minima of negative phase

(dark) of the reflected radar signal are the regions

of interest for identifying hyperbolae. Since the

dark regions of an image corresponding to the

bright regions of its inverse image, in the following

sections of this paper, we focus on the bright regions

representing high responses. If a suitable threshold

value can be selected to separate the regions of

interest (high responses) from the background, it

simplifies further processing. To pick a threshold

to separate two regions with different intensities in

an image, it is natural to use the intensity value of a

pixel on the boundary between these two regions as

the threshold. In our work, a large number of regions

of interest need to be separated from the background

and many boundaries between the regions of interest

and the background are involved. We decide to pick

a threshold, which relates to the average of the in-

tensity values of the boundary points. First, an edge

detector is used to extract the edges between regions

of interest and the background to obtain the intensity

values of the edge points. If we use the average of all

the edge points as the threshold, then experiments

give good recall values but bad precision. If we

average by chopping off some darker edge points,

the balance between the value of recall and the

value of precision improves. But if we chop off

too many darker edge points before averaging, the

balance worsens. So only the edge pixel intensities

which are greater than a certain percentage of the

value of the highest edge pixel intensity are used

for averaging to obtain the threshold value. The

computation of the threshold can be performed with

the following expression:

thresholdb = mean{Ie|Ie > ρb ×MaxIe} (1)

where mean is a function for computing the average

among a set of values, Ie is the intensity value of

an edge pixel, MaxIe is the highest edge intensity

value and ρb is a fraction (0 < ρb < 1).

The effect of the value ρb on the values of recall

and precision of fitted hyperbolae when applying

the proposed system on a group of real GPR images

is demonstrated in Fig. 3. It can be seen that with

the value of ρb increasing, recall decreases while

precision increases. Balancing between these two

factors, 0.1 is used in our experiments.

The proposed adaptive thresholding algorithm

is also compared with other existing thresholding

methods in the literature, which are totally different

from each other: the statistical thresholding method

in [32], the maximum entropy thresholding method

in [33], and the unimodal thresholding method in

[34]. The method proposed by Kapur et al in [33]

was also used by [11] on GPR images to separate

the hyperbola regions from the background. As can

be seen in Figure 4(c), it seems that the threshold

given by the statistical thresholding method in [32]

is too low and it only removes those dark areas;

and the threshold given by the maximum entropy

thresholding method in [33] is usually too high

to retain all the hyperbola regions (Figure 4(b)).

The outputs from the unimodal thresholding method

[34] (Figure 4(e)) are very similar to those of

the proposed method (Figure 4(f)), although based

on totally different computation strategies. Further

comparison on these two methods with detailed

statistics can be found in section V.

With the computed threshold value, the original

image is converted into a binary image (e.g. Fig.

2 (c)), which is used for further processing. In a

binary image, if the value of a pixel is non-zero,
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(a) Original image
(b) The proposed

thresholding

(c) Statistical

thresholding

[32]

(d) Maximum

entropy thresh-

olding [33]

(e) Unimodal

thresholding

[34]

Fig. 4. Comparison of different thresholding methods for bright

regions on one real GPR image.

it is regarded as a point. On the other hand, if the

value at a pixel is zero, it is regarded as background.

B. Column-connection Clustering (C3) Algorithm

After an input image is converted into a binary

one by thresholding, the C3 algorithm is applied to

separate the selected regions into different clusters.

To explain the C3 algorithm clearly, two concepts

should be clarified first: Column Segment and Con-

necting Elements of two column segments from

adjacent columns.

Column Segment: when searching along a column

of a binary image, if the number consecutive points

is equal to or higher than a pre-defined number s,

then this group is called a column segment. For

example, in Figure 5, if the value of s is defined

as 4, then there are three column segments along

column C1. The second group is not a column

segment as there are only two consecutive elements

in this group. The purpose of selecting a threshold

s for column segments is for noise resistance. The

criterion to choose it depends on the noise level

of the sensor, the radar central frequency and the

sampling frequency. Concretely, the maximum value

of s is proportional to the sampling frequency fs and

inversely proportional to the radar frequency fc. An

ideal value of s should be bigger than most of the

noise but lower than k · fs/fc (k is a constant) so

Fig. 5. An illustration of the C3 algorithm (see detailed explanation

in the text).

as to reject most of the noise and remain the signal.

In our experiments, the value of s is the same for

different parts of the image.

Connecting Elements: The location of a point in

a certain column segment is defined by its row num-

ber. If we say two adjacent column segments have

connecting elements, it means they have elements

from the same row. In this work we only compare

the elements between two column segments which

are from adjacent columns. For example, in Figure

5, there are four connecting elements between the

first column segments from column C1 and column

C2.

In Figure 5, if column C1 is the first column

scanned, then after searching along this column

the seeds of three clusters are generated. we call

them Cluster 1 to 3 from top to bottom. Next,

Column C2 is scanned and the column segments

from this column are obtained. The first column

segment from Column C2 has 4 connecting elements

with the first column segment from Column C1. If

two column segments from adjacent columns have

connecting elements, then the cluster extends to the

next column to include the elements of the column

segment from the later column. Thus, cluster 1 is

extended to Column C2. There are two column

segments of Column C2 which have 4 connecting

elements with Cluster 2 of Column C1. In this
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situation, Cluster 2 extends to Column C2 and splits

into two clusters Cluster 2a and Cluster 2b. All

the elements in Cluster 2 are associated with both

clusters with the elements in the second column

segment of Column C2 added to Cluster 2a and the

elements in the third column segment of Column C2

added to Cluster 2b. As for the third column segment

in Column C1, since there is no connecting element

in Column C2 with it, Cluster 3 stops at Column

C1. The fourth column segment in Column C2 has

four elements which is no less than s, and there is

no connecting element in the previous Column C1,

therefore a new cluster starts from Column C2 with

the elements in the fourth column segment as the

seeds.

This procedure is performed until the last column

is scanned to obtain all the clusters based on col-

umn connection. This algorithm is symmetric with

respect to the scanning direction, i.e. there is no dif-

ference in performing the scanning procedure from

left to right or from right to left. The outputs of the

clustering algorithm with one GPR image are shown

in Figure 6 (b) and (c). For each output cluster from

the C3 algorithm, a central string, which is the

curve connecting the middle points of the elements

in each column is computed as shown in Figure 6

(b). The central string is a very important feature

in C3 algorithm, it is used for further segmentation,

machine learning and hyperbola fitting. Physically,

the calculated central string corresponds to the peak

point of the reflected signal.

The C3 clustering algorithm can separate hyper-

bolic signatures with intersections. It can be seen in

Figure 6, two hyperbolic signatures, which intersect

each other, are separated by the C3 algorithm as

displayed in Figure 6 (c). This example is based

on synthetic data. In real GPR images, the intersec-

tions between two hyperbolic signatures are more

complicated. In some cases, due to the low strength

of response, the parts below the intersection point

are missed as the cluster shown within the rectangle

window in Figure 7(a). In this situation, the C3 al-

gorithm described so far can not separate them from

each other. The whole region is usually identified as

a non hyperbolic signature in the machine learning

step and two hyperbolae are missed. To deal with

this situation, the above mentioned C3 algorithm is

extended with a further segmentation step.

Suppose the curve shown in Figure 7(b) is the

central string of an output cluster from the first step

(a) Input image
(b) Hybrid clusters with central

strings

(c) Hyperbola-shaped clusters with

central strings

(d) Output im-

age

Fig. 6. The application of the proposed system on a synthetic data

set. Some output clusters of the C3 algorithm with the central strings

are displayed in (b) and (c). The fitted hyperbolae are shown in (d).

of the C3 algorithm. It is similar to the situation

where two hyperbolae intersect each other at point

P and the parts below point P are not detected.

Mathematically, the first derivative at point P is 0
and the second derivative at point P is positive;

point P is detected by checking its first and second

derivatives and the related cluster is broken at the

column corresponding to point P . In the final output

of C3 fed to the machine learning algorithm (which

will filter out non-hyperbolic shaped responses), the

original cluster before this step is also included for

avoiding misjudgements.

(a) After one

step of C3

(b) A schematic

of two

connected

hyperbolae

(c) After further

segmentation

Fig. 7. Further segmentation on connected hyperbola signatures (best

viewed in colour).

The C3 algorithm is also helpful for eliminating

image noise. From Figure 11, we can see that
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the original image is noisy but the images of the

separated clusters are clean. This is achieved with

the help of pre-defined parameter s. For a reasonable

value of s such as 2 or 3, the number of the consec-

utive noise points along a column is usually not as

high as s. Therefore almost all the noisy points are

eliminated in the clustering step. By tuning the value

of s, the proposed algorithm can deal with images

with different noise levels. We tried different values

for parameter s in our experiments. The best results

were obtained using s = 3. So we set s equal to 3
in the shown experimental results.

The pseudo-code of the proposed clustering algo-
rithm can be presented as follows:

for i from min_column to max_column do

if i==min_column

for j from 1 to num_col_seg_c do

cell{j,1}=col_seg_c(j);

end

else

for j from 1 to num_col_seg_c do

record=zeros(1,num_col_seg_p);

for k=1 to num_col_seg_p do

n=num_same_elements(col_seg_c(j),

col_seg_p(k));

if n>=s && record(j)==0

cell{j,1}=[cell{j,1} col_seg_c(j)];

record(j)=1;

elseif n>=s && record(j)==1

kk=size(cell,1)+1;

cell{kk,1}=cell{j};

cell{kk,1}=[cell{kk,1} col_seg_c(j)];

elseif n<s

kk=size(cell,1)+1;

cell{kk,1}=col_seg_c(j);

end

end

end

end

end

For a cluster containing one hyperbolic signature,

a hyperbola is fitted to this cluster to obtain its

parameters. Which output clusters should be re-

garded as a hyperbolic signature? We answer this

question by a machine learnt model for identifying

hyperbolic signatures, which is explained in the next

section.

III. MACHINE LEARNING ALGORITHM FOR

IDENTIFYING HYPERBOLIC SIGNATURES

In this section we present a machine learning

method for identifying hyperbolic signatures.

A. Feature Extraction for A Neural Network Clas-

sification Algorithm

In order to successfully identify hyperbolic sig-

natures from the outputs of C3 algorithm, it is

Fig. 8. The first and second derivative curves of a south-opening

hyperbola on a domain symmetric to the hyperbola centre. The

marker points on each curve make up a template.

necessary to extract attributes that characterise hy-

perbolic signatures and distinguish them from other

undesired clusters and composite clusters of more

than one hyperbola.

In a GPR image, the detected hyperbolae are

manifested as ‘south-opening’ branches. The gen-

eral equation of a ‘south-opening’ branch of a

hyperbola is written as

(y − y0)
2

a2
−

(x− x0)
2

b2
= 1, with y < y0 (2)

where y and x relate to the values along the vertical

and horizontal axes, the vertical axis y is propor-

tional to the two-way travel time of waves and the

horizontal axis x is the distance along the measured

direction. (x0, y0) is the centre of the hyperbola, a
is the length of the semi-major axis and b is the

length of semi-minor axis.

The first and second derivatives of the function

expressed by equation (2) have the following form:

dy

dx
= −

a

b

x− x0
√

(x− x0)2 + b2
(3)

d2y

dx2
= −

ab

((x− x0)2 + b2)3/2
(4)

The graphs of the functions expressed by equa-

tions (3) and (4) on a domain symmetric to the

centre of the hyperbola are presented in figure

8. It can be seen that, on a domain symmetric

to the centre of a hyperbola, the first derivative

and second derivative of a ‘south-opening’ branch

of this hyperbola have certain configurations. To

determine if a curve is a hyperbola, we can compare

the similarity of the first and second derivative

configurations of this curve with those of a pre-

defined ‘south-opening’ hyperbola with the related
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normalized cross correlation (NCC) values. As a

typical hyperbola of response from buried utilities,

y2/25−x2/16 = 1 is used as the pre-defined hyper-

bola in all the experiments in this work. By testing

with different hyperbolae, we found that there is no

significant difference if other hyperbolae are used as

the pre-defined template hyperbola because NCC is

invariant to scaling and the shape of hyperbolae do

not change significantly for small sized objects.

When x is discretized in a certain range, the re-

lated first and second derivatives of the pre-defined

hyperbola make up two vectors, which are used as

templates to identify the hyperbolic signatures from

the outputs of C3 algorithm. To use the templates,

for each output cluster from the C3 algorithm, the

central string is computed as shown in Figure 6 (b).

NCC values of the first and second derivative values

along each central string against the templates are

computed after aligning the peaks of the central

string and the pre-defined hyperbola curve. The

NCC value of two vectors v1 and v2 is defined as

follows:

ncc =
|v1 · v2|

|v1| ∗ |v2|
(5)

When two ‘south-opening’ hyperbolae are

aligned with respect to the x coordinates of their

centres, the NCC values of their first and second

derivative curves are high (close to 1).

The normalized cross correlation values of the

first and second derivatives are used in the following

neural network classification step to identify the

hyperbolic signatures.

B. Neural Network Classification

A group of positive and negative samples are

selected manually from the outputs of C3 algorithm

and the two NCC values of each sample are com-

puted, which are used to train a neural network clas-

sifier. This stage provides the subsequent stages with

a continuous measure of confidence as to whether a

particular output of the C3 is a hyperbolic signature

or not. First, a three-layer feed-forward perceptron

neural network (as in Figure 9) was trained with

the backpropagation learning algorithm [35] and the

corresponding vectors were recorded. The trained

neural network can be applied to classify the outputs

of C3 algorithms new to the neural network.

In practice, a smoothed version of the central

string is used when comparing with the templates.

Fig. 9. Neural network diagram.

Judged by the experimental results below in sec-

tion V, the proposed neural network classification

algorithm works very well for most hyperbolic

signatures.

IV. ORTHOGONAL DISTANCE HYPERBOLA

FITTING

In this section, we present a robust orthogonal

distance fitting algorithm for hyperbola fitting [26]

and introduce a method to initialize a hyperbola

directly from given points.

A. The Hyperbola Fitting Algorithm

Given a set of points (xi, yi)
m
i=1, the orthogonal

distance di of a point Pi = (xi, yi) to a hyperbola

can be expressed by

d2i = min
φi

[(xi − x(φi))
2 + (yi − y(φi))

2] (6)

where (x(φi), y(φi)) is the corresponding closest

point of Pi on the hyperbola.

The task is to determine a, b, x0 and y0 for this

hyperbola by solving

argmina,b,x0,y0

m
∑

i=1

d2i (7)

It is not a trivial task to find the closest point

of Pi on a hyperbola when Pi itself is not on this

hyperbola as explained below. Suppose P (x, y) is

the closest point of Pi on the hyperbola expressed

by Equation (2). Since the connecting line of P
and Pi is perpendicular to the tangent line of the

hyperbola at P , the coordinates of P satisfy the

following equation
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Fig. 10. An example of hyperbola fitting with a synthetic data set.

dy

dx
·
yi − y

xi − x
=

a2(x− x0)

b2(y − y0)
·
yi − y

xi − x
= −1 (8)

The coordinates of P can be obtained by solving

the system of equations (2) and (8) with a gener-

alized Newton method. The average time needed

for finding the closest point of a given point on a

hyperbola is about 0.0015 seconds using a computer

with Intel 3.6GHz processor coded in Matlab.

After finding the closest point P on the hyperbola

for each given point Pi, the coefficients of the

hyperbola satisfying Equation (7) can be obtained

by using Gauss-Newton iteration

J ·∆c = ∆P (9)

ck+1 = ck + λ∆c (10)

where c = [a, b, x0, y0]
t are the parameters of

the current hyperbola, ∆P = |P − Pi| with Pi =
[xi, yi]

t, a given point, and P = [x, y]t, the closest

corresponding point of Pi on the current hyperbola.

J = ∂F
∂c
|ck is the Jacobian matrix with F as the

corresponding expression of the current hyperbola

and λ is the step size parameter.

B. Direct Hyperbola Initialization

In previous work on orthogonal distance fitting,

some authors suggest to take the initial parameter

values from the corresponding algebraic distance

fitting [26], [29]. In this work, because of the

robustness of the fitting algorithm and the fact that

we only deal with the south-opening branch of a

hyperbola from GPR data, we propose a simple

and fully automatic procedure to directly compute

the parameters of the initial hyperbola which works

very well for converging to the global minimum of

Equation 7 in our experiments.

To determine a south-opening branch of a hy-

perbola, if its apex is given, only two other points,

which satisfy certain constraints, are needed.

Given (xv, yv) as the coordinates of the apex of

a south-opening branch of a hyperbola and (xl, yl)
as a point on the left hand side of line x = xv

and (xr, yr) as a point on the right hand side of

the line x = xv, what constraints must be satisfied

to determine a hyperbola? Obviously, the following

two constraints should be satisfied first: yv > yl and

yv > yr. Second, (xl, yl) and (xr, yr) can not be

symmetric to the line of x = xv. The reason will be

given later in this section. Third, when xv, yv, xl, yl
and xr are fixed values, the value of yr must satisfy

Equations (11) and (12).

yr < yv +
(xv − xr) · (yv − yl)

xv − xl

(11)

yr >
sl · yv − sr · (yv − yl)

sl
(12)

where sr = (xr − xv)
2 and sl = (xl − xv)

2.

For a given set of points (xi, yi)
m
i=1 for fitting a

south-opening hyperbola, to initialize a hyperbola,

we first compute three points from the given points.

First, the point with largest y-coordinate is found

and a centroid is computed among the given points

within a neighbourhood of this point. This centroid

is used as the apex of the initial hyperbola. Denote

its coordinates as (xv, yv), then x0 = xv with x0 the

x-coordinate of the centre of the initial hyperbola.

Next, pick a region to the left of (xv, yv) which

includes some given points. Denote the coordinates

of the centroid of the given points within this region

as (xl, yl), which are also used to compute the initial

hyperbola. The same procedure is applied to the

right side of (xv, yv) to obtain a point (xr, yr). To

avoid (xl, yl) and (xr, yr) being symmetric to line

x = xv , the regions picked on both sides of (xv, yv)
should have different distances to line x = xv. If

the value of yr satisfies Equations (11) and (12), its

value is used to initialize the hyperbola, otherwise

its value is replaced by the average of the right-hand

sides of Equations (11) and (12). Then the other

three parameters in Equation (2) can be computed

as follows

y0 =
sl · y

2
r − sr · y

2
l + (sr − sl) · y

2
v

2(yr · sl − yl · sr + yv · (sr − sl)
(13)
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a2 = (y0 − yv)
2 (14)

b2 =
sr · a

2

(yr − y0)2 − a2
(15)

where sr and sl are the same as in Equation (11)

and (12) and y0 is the y-coordinate of the centre of

the initial hyperbola.

If (xl, yl) and (xr, yr) are symmetric to line x =
xv, and then sr = sr and yr = yl. In this situation,

the denominator of the right side of Equation (13)

is zero. So points (xl, yl) and (xr, yr) should not be

symmetric to line x = xv.

An example of orthogonal distance hyperbola

fitting is presented in Figure 10 where the initial

hyperbola is computed with the proposed method.

Although only three points are used to compute the

initial hyperbola, it is reasonably close to the given

points. After sufficient steps, the fitting procedure

converges. In our experiments, most fittings con-

verge within 100 iterations.

V. EXPERIMENTS

In this section, experimental results on synthetic

and real data are displayed and analysed. The com-

putational cost is also analysed in this section.

A. Synthetic Data

First, we applied the proposed algorithm on syn-

thetic data sets. The synthetic data sets are generated

to simulate the different scenarios of hyperbolae

configuration in GPR images, such as hyperbolae

with different shapes and sizes, intersecting hyper-

bolae with crossing legs, noisy strips and points, etc.

In the first experiment (Figure 11), there are two

hyperbola-shaped regions and three linear segment

regions (Figure 11 (a)). There is no intersection

between the two hyperbolic signatures but one of

the linear segments is connected to one of the hyper-

bolic signatures. There are 5 clusters in total given

by the C3 algorithm and 4 of them are displayed in

Figure 11 (b) and (c). From the output clusters, it

can be seen that the hyperbolic signature, which is

connected to a linear segment region, is separated

from it (Figure 11 (c)).

In the second experiment (see Figure 6), besides

the connections of a hyperbolic signature with the

linear segment regions, there is an intersection be-

tween the hyperbolic signatures in the input image.

(a) Input image (b) Linear or hybrid clusters

(c) Hyperbola-shaped clusters
(d) Output im-

age

Fig. 11. The illustration of the application of the proposed system

on a synthetic data set.

TABLE I

EXPERIMENTAL RESULTS ON SYNTHETIC DATA.

Ground truth True positive False positive

52 52 3

The experimental result demonstrates that the hyper-

bolic signatures can be clearly separated from each

other by the C3 algorithm (Figure 6 (c)). In Figure 6

(b) and (c), the central string of the corresponding

clusters are also displayed. In our experiments, a

smoothed version of each central string is used

in the neural network classification algorithm for

identifying hyperbolic signatures.

More experimental results on synthetic data sets

are displayed in Figure 12. It can be seen that all the

hyperbolic signatures are detected. In the synthetic

data, there are many intersections between different

hyperbola branches. For each such intersection, a

cluster is obtained through the C3 algorithm such as

the one displayed in the right image in Figure 6 (b).

Most of them are classified correctly by the neural

network classification algorithm as non hyperbolic

signatures and only few of them are regarded as

hyperbolic signatures such as the red curve in the

first image in Figure 12. Precise statistics are given

in Table I. For the correctly classified hyperbolic

signatures, the proposed hyperbola fitting algorithm

converges to the global minimum in all cases.
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Fig. 12. Some experimental results on synthetic data (Best viewed

in colour).

B. Real Data

We also applied our algorithms to real data sets.

For a real data set, a thresholding step needs to

be applied to separate the regions of high response

from the background (Figure 4). After this step, the

remaining procedures are the same as those of the

synthetic data.

In the real dataset, 100 GPR images were col-

lected from an externally provided data set. The

images contain hyperbolae at different depths, some

of them are clear and well-shaped, some are weakly

contrasted and asymmetric with numerous interac-

tions between each other. 464 hyperbolae were man-

ually annotated from these images. They are used

as the ground truth for training and testing. With

this group of real data set, 10 fold cross evaluation

were performed. More details of the experimental

results are given in the following sections.

To facilitate the evaluation of the experimental

results with the ground truth, we use a simple way

to represent hyperbolae in the ground truth. For

each hyperbola in the ground truth, three points are

marked manually: the apex, one point on the left

hand side of the apex, and another point on the right

hand side of it (Figure 13). All the coordinates of the

marked points are recorded in a text file with respect

to different images. For a fitted hyperbola in a

certain test image, if a group of three marked points

for ground truth are found with average distance to

that hyperbola less than 10 pixels, this hyperbola is

regarded as a true positive otherwise it is taken as

a false one.

Some experiments on real datasets with the pro-

posed method are displayed in Figures 2, 14, and

16. There are 57 clusters given by the C3 algorithm

in the experiment displayed in Figure 2 and 45

Fig. 13. Example of ground truth in GPR images (Best viewed in

colour).

Fig. 14. Some experimental results on real data (Best viewed in

colour).

clusters in the experiment displayed in Figure 16.

Compared with the synthetic data, the real data are

much more noisy. So there are more output clusters

in the real data experiments. The pre-processing step

captured regions including most of the expected

hyperbolae, and the neural network classification

algorithm works effectively to pick most of the

expected hyperbolic signatures for hyperbola fitting.

For a comparison, experiments are repeated by

replacing the proposed thresholding method with the

unimodal thresholding method introduced in [34]. It

can be seen in Figure 15, the thresholding method

proposed in this paper can keep more hyperbola

regions than the unimodal thresholding. Detailed

statistics are given in Table II. It can be seen that

among the 10 random trials, the average detection

rate and precision rate of the proposed method

are higher than those of the unimodal thresholding

method.
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(a) Results with the unimodal thresholding

(b) Results with the proposed thresholding

Fig. 15. Comparison of different thresholding methods on one real

GPR image: blue curves are the fitted hyperbolae, green rectangles

are the correctly found hyperbolae, red rectangles are the hyperbolae

missed by the detection algorithm (Best viewed in colour).

C. Comparison of Hyperbola Detection and Fitting

Rates with Another Method

We also compared the proposed method with the

one introduced in [9]. In [9], a Viola-Jones based

detector is used to detect the candidate hyperbola

regions at first, and then a generalized Hough trans-

form is used to extract hyperbola parameters by

fitting hyperbolic edges of each candidate region. As

it did not provide any details of the Hough transform

based hyperbola fitting results, we compare this

method with our proposed method using two met-

rics: the detection rate and fitting rate. As mentioned

above, if a group of three marked hyperbola points

for ground truth are found with average distance

(a) Input image
(b) Output im-

age

(c) Regions of

high response

(d) Some output clusters of the C3 algorithm

Fig. 16. An illustration of the application of the proposed technique

on a real GPR image. (a) the input image, (b) output image and (c) the

regions of interest. (d) Some clusters obtained from the C3 algorithm

(not all clusters from the C3 algorithm are shown here (Best viewed

in colour).

to a fitted hyperbola less than 10 pixels, the fitted

hyperbola is regarded as a true positive otherwise

it is taken as a false one. Since in the proposed

method, if a cluster is identified as a hyperbolic

signature, a hyperbola is always fitted to that region.

So the detection rate and fitting rate of the proposed

method are the same. But an obvious difference can

be found in the detection rate and fitting rate with

the methods proposed in [9].

1) Detection Rate: When we mark the three

points for each hyperbola in the ground truth, a

rectangular bounding box with its sides parallel to

the axes is generated with the marked points. An

enlarged rectangle window with 5 pixels offset from

each side of the bounding box is also recorded as

shown in Figure 13 for later use. For the method

in [9], if a detected region has more than 60%
percent overlap with any recorded rectangle window

in the ground truth, it is considered as a correct

detection. For training purposes, the rectangle win-

dows related to training images are also used to

crop the hyperbola regions and saved as positive

samples. 3000 negative samples are also randomly

generated from the background regions. When using

the Haartraining package of OpenCV to train the

classifier, a basic resolution of 24 × 24 pixels of

each region is used in the training procedure. Then,
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the obtained classifier is used to detect candidate

regions in the testing data set. Detailed statistics of

the average detection rate of the method used in

[9] are given in the first row of Table II. It can be

seen that the detection rate is 0.72, but the average

precision rate is only 0.35.

TABLE II

COMPARISON OF THE AVERAGE DETECTION RATES AND FITTING

RATES AMONG DIFFERENT METHODS

Method Recall Precision F-Measure

Detection rates of [9] 0.724 0.347 0.474

Fitting rates of [9] 0.418 0.091 0.149

Fitting rates of [34] + C3 0.638 0.654 0.643

Fitting rate of our method 0.704 0.708 0.702

2) A generalized Hough Transform Based Fitting

Rate: As presented in [9], the candidate regions are

smoothed with a Gaussian filter to reduce noise and

artefacts, and then converted with a Canny edge

detector into a binary image. After that, a gener-

alized Hough transform is used to fit hyperbolae

based on the edge points. For each candidate region,

only the best hyperbola given by the generalized

Hough transform is fitted. Each fitted hyperbola is

then compared with the ground truth with the same

criterion as described above. It can be seen in some

cases that even a correct region is detected in the

detection step the generalized Hough transform fails

to fit the correct hyperbola, as shown in Figure 18.

The recall rates of the correctly fitted hyperbola

from different methods are shown in the second

column of Table II and Figure 17. In Figure 17,

the two images on the first row are only used

to demonstrate the original GPR image overlapped

with the detected candidate regions from Viola-

Jones based detector, and the figures on the second

row are the enlarged windows of the red rectangles

in the images on the first row. The top horizontal

pattern of the GPR image has no influence on

the generalized Hough transform results since each

candidate region was then cropped and processed

separately for hyperbola fitting.

D. Computational time

The size of the synthetic input images is 100×100
pixels. The average computational time of the ex-

periments on one sample image using a computer

with Intel 3.6GHz processor is approximately 0.43
seconds. The computational time on real images

Fig. 17. Comparison of the fitting rates of different methods on 10

cross evaluations.

Fig. 18. The generalized Hough transform fails to fit correct

hyperbolae in some detected regions. First row: input GPR images

with the ground truth marked by blue rectangles. The red curve is

the fitted hyperbola to the region in the red window based on the

edge points as shown in the second row. It can be seen the fitted

hyperbolae are outside the detected region and are regarded as false

fitting (Best viewed in colour).

depend on how many hyperbolae are detected. In

our experiments, the sizes of the real input images

are 300 × 400 pixels and the computational time of

a real image is on average 0.48+ 0.73× n seconds

with n being the number of candidate hyperbolae for

fitting; on average 6 hyperbolae were detected and

fitted in each test image. This speed is fast enough

for real time on-site applications.

As mentioned above, the computation time of

the generalized Hough transform based hyperbola

fitting method highly depends on the disretization

of the parameters. Table III shows the computation

time of the generalized Hough transform method

when only changing the discretization of the pa-

rameters (a, b, x0, y0) of Equation (1). In this table

ds = (da, db, dx0
, dy0) denotes the discretization

steps of the parameters. It can be seen when ds =
(0.2, 0.2, 0.2, 0.2) the average computation time is

about 15 minutes, which is not comparable with the

proposed method.
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TABLE III

COMPUTATION TIME OF HYPERBOLA FITTING USING A

COMPUTER WITH INTEL 3.6GHZ PROCESSOR

Method Fitting time per hyperbola (s)

Generalized Hough

transform based fitting

method

Discretization values of ds Time

ds = (1, 1, 1, 1) 2.97

ds = (1, 1, 0.5, 0.5) 11.4

ds = (0.5, 0.5, 0.5, 0.5) 47.3

ds = (0.2, 0.2, 0.2, 0.2) 895.3

Proposed hyperbola fit-

ting method

0.73

VI. CONCLUSIONS AND FUTURE WORK

In this paper a novel technique for automatic in-

terpretation of GPR images is introduced. The pro-

posed system1 allows for the detection of the pres-

ence of underground buried objects and can obtain

hyperbola parameters by fitting a hyperbola to each

hyperbolic signature in a completely automatic man-

ner. The C3 algorithm is based on the connecting el-

ements from adjacent columns of the image which is

different from conventional distance/density based

clustering techniques. It can not only cluster the

separated hyperbolic signatures but also segment

intersected or connected hyperbolic signatures into

separated ones. The neural network classification al-

gorithm for identifying hyperbolic signatures needs

only two features and can be trained easily with a

small set of training data. The orthogonal distance

hyperbola fitting algorithm is robust and efficient for

fitting ‘south-opening’ hyperbolae. The hyperbola

parameters obtained through the orthogonal distance

fitting algorithm can be used in further applications

such as estimating the size of the objects [12].

Despite the intrinsic complexity of GPR images, the

experimental results show that the proposed method

exhibits very good performance compared with a

state of the art method, in terms of robustness to

noise, efficiency and accuracy and is fast enough

for real time on-site applications. The proposed

thresholding method works very well compared

with other classic thresholding methods, but we

believe a “multi-level thresholding” method which

we are currently studying may improve the current

method even further by adaptively segmenting the

weak reflections such as those from small plastic

pipes.

1The code will be placed in an open source repository.
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