
This is a repository copy of Verification of logical consistency in robotic reasoning.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/102508/

Version: Accepted Version

Article:

Qu, H. orcid.org/0000-0002-1643-8926 and Veres, S.M. (2016) Verification of logical
consistency in robotic reasoning. Robotics and Autonomous Systems, 83. pp. 44-56. ISSN
0921-8890

https://doi.org/10.1016/j.robot.2016.06.005

Article available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Accepted Manuscript

Verification of logical consistency in robotic reasoning

Hongyang Qu, Sandor M. Veres

PII: S0921-8890(15)30125-1

DOI: http://dx.doi.org/10.1016/j.robot.2016.06.005

Reference: ROBOT 2652

To appear in: Robotics and Autonomous Systems

Received date: 21 September 2015

Accepted date: 14 June 2016

Please cite this article as: H. Qu, S.M. Veres, Verification of logical consistency in robotic

reasoning, Robotics and Autonomous Systems (2016),

http://dx.doi.org/10.1016/j.robot.2016.06.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a

service to our customers we are providing this early version of the manuscript. The manuscript

will undergo copyediting, typesetting, and review of the resulting proof before it is published in

its final form. Please note that during the production process errors may be discovered which

could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.robot.2016.06.005

Verification of Logical Consistency in Robotic Reasoning

Hongyang Qua, Sandor M. Veresa,∗

aDepartment of Automatic Control and Systems Engineering, University of Sheffield

Sheffield S1 3JD, United Kingdom

Abstract

Most autonomous robotic agents use logic inference to keep themselves to
safe and permitted behaviour. Given a set of rules, it is important that the
robot is able to establish the consistency between its rules, its perception-
based beliefs, its planned actions and their consequences. This paper investi-
gates how a robotic agent can use model checking to examine the consistency
of its rules, beliefs and actions. A rule set is modelled by a Boolean evolution
system with synchronous semantics, which can be translated into a labelled
transition system (LTS). It is proven that stability and consistency can be
formulated as computation tree logic (CTL) and linear temporal logic (LTL)
properties. Two new algorithms are presented to perform realtime consis-
tency and stability checks respectively. Their implementation provides us a
computational tool, which can form the basis of efficient consistency checks
on-board robots.

Keywords: Stability analysis, Robot programming, Formal verification.

1. Introduction

A robotic system’s decision making is well known to be in need of some
hard decision making at times. A most popular example is Asimov’s Laws
[1], which demonstrate the difficulties to apply logic by robots in practice.
A shortened version of these laws is “1. A robot may not allow a human
being to come to harm. 2. A robot must obey the orders given to it by
human beings except if the order causes harm to humans. 3. A robot must

∗Corresponding author. Tel: +44 (0)114 222 5652
Email addresses: h.qu@sheffield.ac.uk (Hongyang Qu),

s.veres@sheffield.ac.uk (Sandor M. Veres)

Preprint submitted to Elsevier April 25, 2016

protect its own existence as long as such protection does not cause harm
to humans.” Assuming these, what would happen to the robot’s decision
making if a human commands a robot to kill someone, but at the same time
threatens to kill himself if the robot does not obey? In this example the
human introduces a contradiction into the logic of the robot. To avoid this
the robot may have a complex rule base to provide it with legal and ethical
principles and can be equipped by a meta law which says that “the robot
should not allow itself to be dictated by communicated conditions which make
its logic contradictory”. In this example one could say that in legal terms the
suicide will remain the sole “responsibility” of the threatening person who
commands the robot.

The problem is not only the imperfection of Asimov’s robotic laws or that
an agent programmer can make mistakes. Logical consistency checks are also
needed when the robot’s perception-based beliefs are wrong. The agent can
be programmed to re-examine whether its beliefs may need to be changed as
were mistakenly believed to be true or false. This is not unlike enabling the
agent to think like Poirot, Miss Marple or Sherlock Holmes when they are
reassessing their initial beliefs or impressions. But there are simpler cases:
a robot may decide that the book it sees on the table cannot be Tom’s as
that one is in his home. In this paper we address the problem of how a robot
can quickly and efficiently resolve inconsistencies in order to make the right
decisions.

The ability of making fast decisions about logical consistency, and the
robot’s ability to detect when inconsistency occurs, is an important problem
for the future of robotics. It is also of particular importance for logic-based
robot control systems, e.g., [2, 3, 4, 5, 6, 7, 8]. A typical logic-based robotic
system usually contains a belief set, which provides the basis of reasoning
for a robot’s behaviour [3]. An inconsistent belief set could lead to a wrong
plan causing an unexpected result, e.g., an unmanned vehicle can hit an
obstacle, instead of avoiding it, if it mistakenly believes that any route of
avoidance could cause more damage, due to, for instance, mis-perception of
the environment. Its mis perception could perhaps be corrected if it had
been able to combine environmental prior knowledge with current sensing.

In a rapidly changing environment Bayesian methods can be used to iden-
tify and track movements of objects and establish functional relationships,
e.g., [9]. When faced with balanced probabilities for two hypothetical and
competing relationships in the robot’s environment, it may need to make a
decision based on the application of logic using prior knowledge. Discovery of

2

logical inconsistency in geometrical and physical relationships in an environ-
mental model should prompt a robotic agent to revise its perception model
of the world. For instance belief-desire-intention (BDI) agents should carry
out consistency checks in their reasoning cycle in languages such as Jason,
2APL and Jade [10, 11, 12, 13, 14]. In these systems the agent programmer
should program logical consistency checks and handling of inconsistencies at
design stage of the software.

To topic of fast consistency checking by robots has also implications for le-
gal certification of robots. As we humans formulate social and legal behaviour
rules in terms of logical implications, the process is likely to be similar for
robots and the problem of consistent decisions by robots is an important
generic capability. Future legal frameworks for certification of robots need
to take into account verifiable decision making by robots.

Consistency checks on a set of logic rules in propositional logic is a text-
book problem and has been extended to various types of logic systems in
terms of validity, consistency and satisfiability. For instance [15] provides
an authoritative account of the history of logical consistency checking in a
propositional logic. Relevant methods and algorithms have long been inves-
tigated for database systems and rule-based expert systems, e.g., [16], but
none has been specifically designed for robotics. Query Language 4QL [17]
and Boolean Networks (BN) [18] are very similar to our modelling formalism
Boolean evolution systems. The former allows a variable to have four values:
true, false, unknown and inconsistent. The algorithm that computes the
unique well-supported model in [17] can be adapted to check consistency,
but it can only deal with one initial evaluation of variables at a time. BN
was developed for modelling gene regulatory networks in Biology. In BN,
a Boolean variable can only take either true or false, while in our formal-
ism, a variable can be initialised as unknown. Research on BDI reasoning
cycles focuses on runtime detection and resolution of conflicting goals, such
as [19, 20]. No work has been conducted on complex reasoning process, which
will be required by autonomous and intelligent robots.

For realtime robotic systems it is important to increase solver efficiency
to be able to deal with large search spaces with complex reasoning process
for both offline and online application. In this respect, the use of binary
decision diagram (BDD) is very effective by compressing search space through
generating a unique and succinct representation of a Boolean formula. BDD
has been widely adopted for model checking [21], and applied successfully to
verification of large systems. In this paper we adopt the BDD based symbolic

3

model checking approach [22] to robotics. To our best knowledge, nothing
has been reported on its application on consistency and stability checking of
decisions by robots.

In this paper we propose a fast method for discovery of inconsistency in
a set of logic rules and statements on relationships in a current world model,
past actions, planned actions and behaviour rules of a robotic agent. We
do not address the problem of how to resolve logical inconsistency, mainly
because we hold the view that, to eliminate inconsistencies, a robot can
efficiently improve its world model by non-logic based techniques. Such tech-
niques can include gathering more perception data, active vision, using al-
ternative action plans or analyzing and deriving spatial temporal models
using probabilities. If a single new perception predicate or predicate derived
by logic rules of the robot contradicts its otherwise consistent world model,
then the robot may apply a set of logic rules to derive a correction of its
belief in terms of the predicate. What to derive and analyse for consistency
is however a broad topic and lies outside of the scope of this paper. Here
we focus on fast discovery of inconsistencies which is fundamental for safe
operations of autonomous robots. With time it should be a key technical
part in the process of legal certification of future autonomous robots.

Our contribution builds on and develops our past efficient state space
generation and parallel computation [23] methods further. We have previ-
ously developed various state space reduction techniques for symbolic model
checking via BDDs, such as symmetry reduction [24, 25] and abstraction [26].
The preliminary results of our techniques have been published in [27]. In
this paper we elucidate the setting for which our techniques are designed and
demonstrate their way of using it in robotics. We also extend the techniques
to deal with a different semantics and develop a new technique to extract
counterexamples efficiently when the system is inconsistent or unstable. The
counterexamples are useful for system developers to correct robotic reasoning
systems; they can provide guidance on how to improve the reasoning process
of robots.

We study the efficiency of the agent’s ability to examine the consistency of
its beliefs and logic rules and, if inconsistency occurs, generate counterexam-
ples to the rules which can then be used by the robot to resolve inconsistency.
Our technique can be used both by robot programmers at software design
stage and by robots when reasoning. In the former case, system develop-
ers can check the logical consistency of reasoning cycles in agent programs
at design stage. For each inconsistent check, a counterexample can be pro-

4

duced to help developers understand the source of inconsistency and correct
the program. In the latter case, consistency checks are carried out by the
robots themselves in realtime and counterexamples are examined to improve
reasoning, e.g., bringing in more sensor data to eliminate ambiguity or bring
about alternative decisions about future actions.

In Section 2 we introduce the problem in a robotic framework and its
characteristics. In Section 3 Boolean evolution systems are formally repre-
sented. In Section 4, we translate Boolean evolution systems into transition

systems which are now widely used in the control systems literature [28, 29],
which provides the basis of verification. Note that in this paper we abstract
robotic behaviour to propositional logic to be able to cope with computa-
tional complexity of consistency checking. Section 5 contains our results on
stability of Boolean evolution systems in terms of CTL and LTL formulae.
An important result states that stability checking can be reduced to a reach-
ability problem which only asks for one fixpoint computation. Similarly,
consistency checking can be also converted into simple fixpoint computation.
Section 6 presents a case study in a home robotics scenario, which demon-
strates the use of uncertain sensory and communication information and a
set of rules to satisfy. In Section 7, performance comparison between CTL
formulae based solutions and the reachability based algorithms is highlighted
and implemented in the symbolic model checker MCMAS [30]. We discuss
stability checking under an alternative semantics of evolution in Section 8.
We conclude the paper in Section 9.

2. Perception clarification and robot logic

Our predicates-based knowledge representation of a robot, which is de-
rived from sensing events, remembering the past as well as from prediction
of a future environment, is schematically depicted in Fig. 1. For new sensory
predicates we assume that the robot is able to identify which are uncertain
in a probabilistic sense. The following specific problems are to be addressed:

1. Assuming inconsistency occurs, identify which uncertain new sensing
predicates in Ut ⊆ Bt can be made certain within rules RP based on
physical models.

2. The agent considers a set At ⊆ Bt of actions as its options. For each
action αk in At it simulates a physical model over a time horizon and
abstracts a set of events Ft for its future consequences.

5

3. It checks if Ft ⊆ Bt and its behaviour rules RB are consistent based on
1) and 2).

4. The set Pt ⊆ At of feasible actions αk in At , which are consistent with
RB, are used by the robot to make a final choice of an action using
non-logic based evaluations (for instance using planning).

2.1. Discovering inconsistency

In Fig. 1 the diamonds indicate the procedural locations of logical consis-
tency checks, based on predicates and sets of rules (logical implications). It

Sensed event set Bt

Ut Bt with probabilities < 1

World model &

Rules of physics: RP

 + world model

Agent Reasoning:

option set At for actions

Simulator over some

future time horizon

Set of abstractions for future events Ft

Behaviour rules of the

robot: RB

Final actions selection for robot

plans: for intentions, sub-goals, etc.

A

Figure 1: Types of predicates in a robot’s reasoning at time t.

can however happen that some of the probabilistic sensing of events remain
unresolved based on physical models and associated rules: let Dt ⊆ U de-
note the set of undecided perceptions. The robotic agent needs to check for
each of its possible actions what would happen if various combinations of its
uncertain perceptions in Dt were true or false. In safety critical situations
a robot cannot take any action, which could lead to it breaking its rules in
some combination of truth values in Dt. Checking this can require complex

6

consistency checking to be done while the robot interacts with its environ-
ment, hence the efficient methods proposed in this paper are key to timely
decisions by a robot.

This paper is not committed to any particular type of software architec-
ture. We assume that propositional logic using a predicate system, which
can admit arguments but is equivalent to propositional logic (for decidability
properties), is used in the robotic software. We also assume that the robot
perceives and creates predicates about environmental events and about its
actions periodically within a reasoning cycle performed at an approximately
fixed rate per second.

At a given reasoning cycle of the robotic agent, indexed with time t, the
agent holds a set of predicates Bt ⊂ B in its memory, possibly some of these
with negation signs. This means that the predicates in Bt split into two dis-
joint sets as Bt = Btrue

t ∪ Bfalse
t consisting of ones assigned value true while

the rest the Boolean value false. Such an assignment of Boolean values in
Bt is called a valuation of the Boolean variables in Bt and denoted by Bt.
The agent also has a set of rules at time t denoted by Rt = {rt

1, · · · , r
t
m}.

The rule set Rt may contain more variables than Bt. Those not in Bt are un-
known to the agent and its logic reasoning is then interested in the problem
of satisfiability of all the logic rules by suitable assignments to the unknown
variables. In the following we will drop the time index t as we will be inter-
ested in the consistency of logic rules at any time, in view of some Boolean
evaluations. The terms “variable” and “predicate” will be used interchange-
ably. Our primary problem is that the robotic agent has limited time for
logical derivations, when quick response is required, and it needs to assess
the following:

(1) Are its current evaluations and its rule base consistent in the sense that
unknown variables can take on values to satisfy all the rules?

(2) Having answered the previous question negatively, can it modify some
of its own Boolean evaluations so that its set of predicates becomes
consistent with its set of rules?

Testing consistency of a set of evaluations can be achieved by checking
satisfiability of the conjunction of the evaluations and the rule set, and ob-
taining consistent values for unknown variables can be done by starting to
apply the rules until the Boolean evaluation becomes stable, i.e. the logical
value of no variable changes any more. However, it can be inefficient to use

7

this method as the number of evaluations may increase exponentially with
the number of variables.

2.2. An example of robot reasoning

By analogy to previous definitions [31, 32, 33] of AgentSpeak-like ar-
chitectures for belief-desrie-intention type of robotic agents, we define our
reasoning system by a tuple:

R = {F , B, L, Π, A} (1)

where:

• F = {p1, p2, . . . , pnp
} is the set of all predicates.

• B ⊂ F is the total atomic belief set. The current belief base at time
t is defined as Bt ⊂ B. At time t beliefs that are added, deleted or
modified are considered events and are included in the set Et ⊂ B,
which is called the Event set. Events can be either internal or external

depending on whether they are generated from an internal action, in
which case are referred to as “mental notes”, or an external input, in
which case are called “percepts”.

• L = RP ∪RB = {l1, l2, . . . lnl
} is a set of implication rules.

• Π = {π1, π2, . . . , πnπ
} is the set of executable plans or plans library.

Current applicable plans at time t are part of the subset Πt ⊂ Π, this
set is also named the Desire set. A set I ⊂ Π of intentions is also
defined, which contains plans that the agent is committed to execute.

• A = {a1, a2, . . . , ana
} ⊂ F \ B is a set of all available actions. Actions

can be either internal, when they modify the belief base or generate
internal events, or external, when they are linked to external functions
that operate in the environment.

AgentSpeak-like languages, including LISA (Limited Instruction Set Ar-
chitecture) [34, 35], can be fully defined and implemented by listing the
following characteristics:

• Initial Beliefs.
The initial beliefs and goals B0 ⊂ F are a set of literals that are
automatically copied into the belief base Bt (that is the set of current
beliefs) when the agent mind is first run.

8

• Initial Actions.
The initial actions A0 ⊂ A are a set of actions that are executed when
the agent mind is first run. The actions are generally goals that activate
specific plans.

• Logic rules.
A set of logic based implication rules L = RP ∪ RB describes theoreti-

cal reasoning about physics and about behaviour rules to redefine the
robot’s current knowledge about the world and influence its decision
on what action to take.

• Executable plans.
A set of executable plans or plan library Π. Each plan πj is described
in the form:

pj : cj ← a1, a2, . . . , anj
(2)

where pj ∈ Pt is a triggering predicate obtained by consistency in Ut ∪
Ft ∪ Pt ⊂ Bt and possible valuation for the best choice of pj from Pt.
Next the pj ∈ Pt allows the plan to be retrieved from the plan library
whenever it becomes true; cj ∈ B is called the context, which allows the
agent to check the state of the world, described by the current belief
set Bt, before applying a particular plan; the a1, a2, . . . , anj

∈ A form
a list of actions to be executed.

The above list of steps are cyclically repeated to run the reasoning process
of a robotic agent.

3. Boolean evolution systems

A binary-decision-diagram (BDD) [36] is a succinct representation of a
set of Boolean evaluations and, motivated by this, we examine the possibility
of applying symbolic model checking via BDDs to verify consistency and
stability. This way, we avoid the combinatorial explosion of evaluations. We
will show that BDD based model checking is very efficient for this task to
be carried out in realtime, while the agent needs to give quick responses to
its environment. As agent perception processes are often prone to errors
in a physical world due to sensor issues or to unfavourable environmental
conditions, this is an important problem of robotic systems. We present a
formal definition of the consistency checking problems in the next section.

9

Definition 1. [Boolean evolution system] A Boolean evolution system BES =
〈B,R〉 is composed of a set of Boolean variables B = {b1, · · · , bn} and a set
of evolution rules R = {r1, · · · , rm} defined over B. A rule ri is of the form
g → X, where g is the guard, i.e., a Boolean formula over B, and X is an as-
signment that assigns true (“1”) or false (“0”) to a Boolean variable b ∈ B.
For simplicity, we write a rule of the form g → b := true as g → b, and write
g → b := false as g → ¬b. We also group rules with the same guard into
one. For example, two rules g → b and g → c can be written as g → b ∧ c.

In practice, the set B is usually partitioned into 2 subsets: Bknown and
Bunknown, where variables in the former are initialized to either true or false,
and variables in the latter initialized to unknown. Accordingly, the guard
of a rule can be evaluated to true, false and unknown. The last case can
occur when the guard contains a variable in Bunknown.

To model a predicates-based knowledge representation and reasoning sys-
tem in Fig. 1 by a BES, we translate each predicate in Bt, action in At and
future event in Ft into a Boolean variable and each reasoning rule in RP ∪RB

into a Boolean formula. In particular, the uncertain sensing predicates in
Ut ⊆ Bt and future events in Ft are placed in Bunknown, and those in Bt \ Ut

and actions in At are placed in Bknown.
Let B be a valuation of the Boolean variables, and B(b) the value of

variable b in B. We say that a rule r ∈ R is enabled if its guard g is evaluated
to true on B. The new valuation, after applying the evolution rules to B, is
defined by synchronous evolution semantics as follows.

Definition 2. [Synchronous evolution semantics] Let R|
B
⊆ R be the set of

rules that are enabled. The new valuation B
′

is the result of simultaneously
applying all rules in R|

B
to B. That is, every value of b in B

′

is defined as
follows.

B
′

(b) =

true if there exists a rule g → b in R|
B
,

false if there exists a rule g → ¬b in R|
B
,

B(b) otherwise.

The evolution from B to B
′

is written as B −→ B
′

. We assume that for
each valuation, there exists a non-empty set of enabled rules.

Definition 3. [Stability] A Boolean evolution system is stable if from any
valuation and applying the rules recursively, it eventually reaches a valuation

10

B where no other valuation can be obtained, i.e., B
′

= B. We say that B is
a stable valuation, written as Bs.

Whether stability happens is decidable by the agent: it requires that two
consecutive steps in the evolution have identical valuations.

Definition 4. [Inconsistency] Three problems might occur during evolution
of a BES:

1. two enabled rules try to update the same Boolean variable with oppo-
site values at some time;

2. a variable in Bknown is updated to the opposite value of its initial value
at some time.

3. a variable in Bunknown is updated to the opposite value at some time
after its value has been determined1.

If any of these problem happens, we say that the system is inconsistent.
Otherwise, the system is consistent.

These problems should be identified when robotic software is programmed.
For instance belief-desire-intention rational agent implementations apply the
logic rules in each reasoning cycle in Jason, 2APL and Jade [10, 11, 12].
Within one reasoning cycle, where the input to the variables in Bknown is
kept constant. This justifies the second and third problems in Definition 4.

Example 1.

a→ ¬b ∧ c

¬b→ ¬c

This example demonstrates the inconsistency under synchronous seman-
tics. For the initial valuation a = true ∧ b = c = unknown, both the first
and second rules are enabled, which makes b = false and c = true. In the
next evolution iteration, the second rule sets c to true, while the third one
sets c to false. Fig. 2 illustrates the evaluation in these evolution iterations.

The following result can be used to provide a simple algorithm to solve
problem (1) of the agent.

1The third problem is different from the second one because the variables in Bunknown

are initially set to unknown, which can be overwritten using the evolution rules.

11

a=true, b=unknown, c=unknown

a=true, b=false, c=true

a=true, b=false, c=false a=true, b=false, c=true

Figure 2: The evolution process showing inconsistency.

Theorem 1. Let B be a Boolean evaluations of variables in the rule set R.
Then the following hold.

If the Boolean evolution system is not stable then B and R are inconsis-
tent which the agent can detect from the same evaluation reoccurring during
the Boolean evolution.

Proof: If the evolution is not stable, then during the transition steps between
a recurrence of the same evaluation, some evaluations must be different as
otherwise the evolution would be stable with the evaluation that occurred at
two consecutive identical evaluations. As an evaluation reoccurs, this means
that some variable values in that evaluation are changed between the two
identical occurrences of valuations. Let a be such a variable. The logic rules
applied, which led to the recurrence of the evaluation, have in fact forced
a at least once to change to its opposite value and later change back. This
means that the rule set R for the initial evaluation is inconsistent with the
rules, i.e. R is not satisfiable by any evaluation which is consistent with the
initial evaluation B. 2

Theorem 1 shows that stability is guaranteed in consistent systems. For
certain systems, however, the inconsistency conditions in Definition 4 are
considered unnecessarily strict in that the initial value of known variables
may not be obtained directly from the environment. Hence, these values
can sometimes be incorrect. To alleviate this problem, the second and third
inconsistency condition in Definition 4 can be relaxed. Using this principle,
we say that the second and the third conditions are solvable if the system
eventually reaches a stable state by ignoring these two conditions. This

12

principle makes consistency and stability checking not straightforward any
more: some rules can correct the evaluations of some predicates.

Example 2.

a→ b ∧ d

b ∧ d→ ¬c ∧ ¬a

¬c ∧ d→ ¬b

¬b ∧ d→ c

c ∧ d→ b

b ∧ c→ ¬d

This example shows a consistent and stable system, where Bknown = {a}
and Bunknown = {b, c, d}. We use a sequence of ‘0’, ‘1’ and ‘?’ to represent
states. For example, the initial state ‘0???’ represents a = false ∧ b =
unknown ∧ c = unknown ∧ d = unknown.

• For valuation a = false, the evolution is 0??? −→ 0??? −→ · · · .

• For valuation a = true, we have 1??? −→ 11?1 −→ 0101 −→ 0001 −→
0011 −→ 0111 −→ 0100 −→ 0100 −→ · · · .

4. Modelling Boolean evolution systems

In this section, we describe how to enable model checking to deal with
Boolean evolution systems. First, we introduce transition systems, which are
a mathematical formalism that forms the basis of model checking. Second,
we present an example of encoding a Boolean evolution system under the
semantics of transition systems using an input language of a model checker.

4.1. Transition systems

Model checking is usually performed on transition systems. Here we
present the definition of transition systems and the translation of a Boolean
evolution system into a transition system.

Definition 5. [Transition system] A transition systemM is a tuple 〈S, S0, T, A,
H〉 such that

13

• S is a finite set of states;

• S0 ⊆ S is a set of initial states;

• T ⊆ S × S is the transition relation;

• A is a set of atomic propositions;

• H : S → 2A is a labelling function mapping states to the set of atomic
propositions A. We denote the set of atomic propositions valid in state
s by H(s).

Let S ⊆ S be a set of states. The function Image(S, T) computes the
successor states of S under T . Formally,

Image(S, T) = {s ∈ S | ∃s′ ∈ S such that (s′, s) ∈ T}.

Given a Boolean evolution system BES = 〈B,R〉 with n1 unknown vari-
ables, i.e., Bunknown = {b1, · · · , bn1

} and n2 known variables, i.e., Bknown =
{bn1+1, · · · , bn1+n2

}, let A = {B1, · · · , Bn1
, Bn1+1, · · · , Bn1+n2

} ∪{D1, · · · , Dn1
,

Dn1+1, · · · , Dn1+n2
} ∪ {Kn1+1, · · · , Kn1+n2

}, where Bi is an atomic proposition
representing that a variable bi ∈ B

unknown ∪ Bknown is true, Di representing
that bi is false, and Kj representing that an unknown variable bj ∈ B

unknown

has value unknown. A transition system (TS) M can be generated from
BES as follows.

1. S is composed of all 3n1 × 2n2 valuation of B.

2. S0 is composed of 2n2 valuations, where variables in Bknown can take
either true or false, and variables in Bunknown take unknown.

3. A transition (B,B
′

) ∈ T iff (B −→ B
′

). In the presence of inconsis-
tent update of some Boolean variables, the successor valuation is chosen
randomly, which results in multiple successor states. For example, con-
sider a valuation s from where a Boolean variable a can be updated to
true by rule r1 and false by rule r2. In the transition system, s has
two successor states, i.e, valuation: one state contains a = true and
the other contains a = false. If there are k Boolean variables that are
updated inconsistently in s, then s has 2k successor states.

4. H(B) is defined such that for each variable bi ∈ B
unknown ∪ Bknown,

Bi ∈ H(B) iff bi is evaluated as true, Di ∈ H(B) iff bi is evaluated as
false, and for each variable bj ∈ B

unknown, Kj ∈ H(B) iff bj is evaluated
to true.

14

Note that all possible input values of variables in Bunknown are captured by
S0, i.e., each possible valuation of Bunknown is encoded into an initial state in
S0.

The set of states and the transition relation in a transition system can be
illustrated as a direct graph, where a transition (s1, s2) ∈ T is represented
by an arrow from s1 to s2. Fig. 3 shows the directed graph for Example 1 in
Section 2.

0: a=false, b=unknown, c=unknown

1: a=true, b=unknown, c=unknown

2: a=true, b=false, c=true

3: a=true, b=false, c=false

Figure 3: The transition system for Example 1.

4.2. Implementation

A Boolean evolution system can be written as a program in the input
language of a symbolic model checker, such as NuSMV [37]. The program
is then parsed by the model checker to build a transition system. In this
section, we show how to model a Boolean evolution system by an ISPL
(Interpreted System Programming Language) [30] program, inspired by the
Interpreted System semantics [38], and the corresponding transition system
can be generated by the model checker MCMAS [30]. We use Example 1
to illustrate how to construct an ISPL program from the Boolean evolution
system BES = 〈Bunknown ∪ Bknown,R〉.

An ISPL program contains a set of agents, a set of atomic propositions,
an expression representing the initial states and a set of logic formulas rep-
resenting the specification of the system. The structure of the program is as
follows :

15

Agent 1 ... end Agent

...

Agent n ... end Agent

Evaluation ... end Evaluation

InitStates ... end InitStates

Formulae ... end Formulae

where atomic propositions are defined in the section “Evaluation” and the
initial states defined in “InitStates”. Each agent is composed of a set of
program variables, a set of actions that the agent can execute, a protocol and
an evolution function. Each agent has a set of local states that are encoded
by its program variables: each valuation of the variables is a local state. Its
protocol defines a set of enabled actions for each local state, and its evolution
function specifies the transition relation among its local states. The structure
of an agent M is below:

Agent M

Vars: ... end Vars

Actions = {...};

Protocol: ... end Protocol

Evolution: ... end Evolution

end Agent

To encode a BES into an ISPL program, we only need one agent, and this
agent has only one action, which is enabled in every local state. In the
rest of this section, we give details of the construction of the ISPL program.
The definition of actions and protocol is omitted as they do not affect the
translation of the BES.

1. As explained before, we do not directly list all states in the state space
S of the corresponding transition system. Instead, we define program
variables to match variables in BES. Each variable in Bknown is trans-
lated into a Boolean variable in ISPL and each variable in Bunknown into
an enumerated variable with three values True, False and Unknown.
The corresponding ISPL code for Example 1 is as follows.

Vars:

a: boolean;

b: {True, False, Unknown};

c: {True, False, Unknown};

end Vars

16

2. Each evolution rule is translated into a guarded transition “c if g”
in ISPL, where guard g is a Boolean expression over variables, and c

is a set of assignments. Indeed, the semantics of a guarded transition
matches exactly that of an evolution rule. The rules in Example 1 are
translated into the ISPL code below.

Evolution:

b=False if a=true;

c=True if a=true;

b=False if c=False;

end Evolution

3. As each variable in Bunknown in BES is initialized to unknown, we need
to specify this in the initial state section IniStates in an ISPL program.
The following code is generated for Example 1.

InitStates

M.b=Unknown and M.c=Unknown;

end InitStates

Note that M is the name of the agent, which encapsulates the variables
and transitions, and M.x refers to the variable x in M.

4. An atomic proposition in ISPL is of the form “x if g”, where x is the
name of the atomic proposition, and g is a Boolean expression that
defines the set of states x holds. That is, x holds in any state whose
corresponding valuation satisfies g. The ISPL code for Example 1 is
below.

Evaluation

a_true if M.a=true;

a_false if M.a=false;

b_true if M.b=True;

b_false if M.b=False;

b_unknown if M.b=Unknown;

c_true if M.c=True;

c_false if M.c=False;

c_unknown if M.c=Unknown;

end Evaluation

The above construction steps suggests that a compiler can be produced
without difficulties to automatically generated ISPL code from a given Boolean
evolution system.

17

Although we have shown the possibility of coding a Boolean evolution
system in ISPL, we would like to emphasize that compilers for other symbolic
model checkers can also be constructed when necessary. For example, the
semantics of the input language of NuSMV is similar to that of ISPL in this
setting as we do not use the capability of specifying actions and protocols in
ISPL.

5. Stability and inconsistency check

Computation Tree Logic (CTL) [39] and Linear time Temporal Logic
(LTL) [40] are the most popular logics adopted in verification of transition
systems to specify properties that a system under investigation may possess.
CTL is a branching time logic, which considers all possibilities of future
behaviour, while LTL only deals with one possible future behaviour at a
time. In this section, we use CTL to formulate stability and inconsistency
checks due to the efficient implementation of CTL model checking. But we
also discuss the application of LTL when possible.

5.1. CTL and LTL

LTL can be specified by the following grammar [21]:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ©ϕ | 2ϕ | 3ϕ | ϕ U ϕ

CTL on the other hand is given by the extended grammar [21]:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | EXϕ | EGϕ | EFϕ | E(ϕ Uϕ) |

AXϕ | AGϕ | AFϕ | A(ϕ Uϕ)

Both CTL and LTL are defined over paths in a transition system. Given
a transition system M = 〈S, S0, T, A, H〉, a path ρ = s0s1 . . . sk is a (finite
or infinite) sequence of states such that for each pair of adjacent states,
there exists a transition in the system, i.e., si ∈ S for all 0 ≤ i ≤ k and
(sj, sj+1) ∈ T for all 0 ≤ j < k. We denote the i-th state in the path ρ, i.e.,
si, by ρ(i). The satisfaction of CTL and LTL inM is defined as follows.

Definition 6. [Satisfaction of CTL] Given a transition systemM = 〈S, S0, T, A, H〉
and a state s ∈ S, the satisfaction for a CTL formula ϕ at state s in M,
denoted by s |= ϕ, is recursively defined as follows.

• s |= p iff p ∈ H(s);

18

• s |= ¬ϕ iff it is not the case that s |= ϕ;

• s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2;

• s |= EXϕ iff there exists a path ρ starting at s such that ρ(1) |= ϕ.

• s |= EGϕ iff there exists a path ρ starting at s such that ρ(i) |= ϕ for
all i ≥ 0;

• s |= EFϕ iff there exists a path ρ starting at s such that for some
i ≥ 0, ρ(i) |= ϕ;

• s |= E(ϕ1Uϕ2) iff there exists a path ρ starting at s such that for some
i ≥ 0, ρ(i) |= ϕ2 and ρ(j) |= ϕ1 for all 0 ≤ j < i;

• s |= AXϕ iff for all paths ρ starting at s, we have ρ(1) |= ϕ.

• s |= AGϕ iff for all paths ρ starting at s, we have ρ(i) |= ϕ for all i ≥ 0;

• s |= AFϕ iff for all paths ρ starting at s, there exists i ≥ 0 such that
ρ(i) |= ϕ;

• s |= A(ϕ1Uϕ2) iff for all paths ρ starting at s, there exists i ≥ 0 such
that ρ(i) |= ϕ2 and ρ(j) |= ϕ1 for all 0 ≤ j < i;

Definition 7. [Satisfaction of LTL] Given a transition systemM = 〈S, S0, T, A, H〉
and a state s ∈ S, the satisfaction for a LTL formula ϕ at state s inM, de-
noted s |= ϕ, is recursively defined as follows.

• s |= p iff p ∈ H(s);

• s |= ¬ϕ iff it is not the case that s |= ϕ;

• s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2;

• s |=©ϕ iff for all paths ρ starting at s, we have ρ(1) |= ϕ.

• s |= 2ϕ iff for all paths ρ starting at s, we have ρ(i) |= ϕ for all i ≥ 0;

• s |= 3ϕ iff for all paths ρ starting at s, there exists i ≥ 0 such that
ρ(i) |= ϕ;

• s |= ϕ1Uϕ2 iff for all paths ρ starting at s, there exists i ≥ 0 such that
ρ(i) |= ϕ2 and ρ(j) |= ϕ1 for all 0 ≤ j < i;

19

When we verify whether a CTL/LTL formula ϕ holds on a model, we
check if this formula is satisfied by all initial states, denoted by M |= ϕ. In
particular, when we say that an LTL ϕ holds in the model, every path from
every initial state has to satisfy ϕ. More details of CTL and LTL, as well as
the difference between them, can be found in [21].

5.2. Formulation of stability and inconsistency by logic formulae

Lemma 1. The first category of inconsistency can be checked by the follow-
ing CTL formula

AG(¬(EXB1 ∧ EXD1) ∧ · · · ∧ ¬(EXBn ∧ EXDn)). (3)

Proof: If a system is inconsistent due to the first case, then there must exist
a state that has two successor states such that a variable is evaluated to true

in one successor state, and to false in the other. The CTL formula EXBi ∧
EXDi captures this scenario for variable bi. The negation ¬(. . .) excludes
the occurrence of inconsistency caused by bi. Operator AG guarantees that
inconsistency does not occur in any states. Note that it is not necessary to
consider a case like EXKi ∧ EXBi ∧ EXDi for an unknown variable because
it cannot be assigned to unknown during evolution. 2

If the above formulae are evaluated to true, then the Boolean evolution sys-
tem is consistent. Note that this category of inconsistency cannot be checked
by an LTL formula because LTL can only specify linear properties. However,
a small modification would make LTL work again on checking consistency.
Lemma 1 searches for occurrences of inconsistency by checking if two oppo-
site values of a variable can be reached from one state. The following theorem
focuses on looking for such a state to perform consistency checks.

Theorem 2. Checking the first category of inconsistency can be transformed
into a reachability problem as follows.

1. For each pair of rules g1 → X1 and g2 → X2, check if X1 and X2 assign
opposite values to the same Boolean variable. If the answer is yes and
g1 ∧ g2 6= false, then we add a new atomic proposition C that holds in
states satisfying g1 ∧ g2.

2. Let C = {C1, . . . , Cm} be the set of all newly added propositions in the
previous step. The first category of inconsistency can be identified by
the CTL formula

¬EF (C1 ∨ · · · ∨ Cm) (4)

20

or the LTL formula
¬3(C1 ∨ · · · ∨ Cm) (5)

The system is consistent if Formula 4 or 5 is true.

Proof: If a state satisfies a proposition Ci, which is constructed as gj1 ∧ gj2 ,
then both guards gj1 and gj2 are satisfied in the state. Thus, the corre-
sponding rules gj1 → Xj1 and gj2 → Xj2 are enabled in the state. As
these two rules set opposite values to a variable, inconsistency occurs in
this state if it is reachable from an initial state. C captures all states where
inconsistency could happen, and EF and 3 examine if any of these states
can be reached from an initial state. Note that ¬EF (C1 ∨ · · · ∨ Cm) ≡
¬(EF C1 ∨ · · · ∨EF Cm) and ¬3(C1 ∨ · · · ∨Cm) ≡ ¬(3C1 ∨ · · · ∨3Cm). 2

Although the second and the third cases are not needed in the relaxed
inconsistency conditions, we still present the temporal logic properties for
checking them.

Lemma 2. The second category of inconsistency can be checked by the fol-
lowing CTL formula

AG(¬(Bn1+1 ∧ EXDn1+1) ∧ ¬(Dn1+1 ∧ EXBn1+1)∧

· · · ∧ ¬(Bn ∧ EXDn) ∧ ¬(Dn ∧ EXBn)).
(6)

or LTL formula

2(¬(Bn1+1 ∧©Dn1+1) ∧ ¬(Dn1+1 ∧©Bn1+1)∧

· · · ∧ ¬(Bn ∧©Dn) ∧ ¬(Dn ∧©Bn)).
(7)

Proof: If this case occurs, then there must exist a state s that has a successor
state s′ such that a variable is evaluated to true in s and false in s′, or
false in s and true in s′. The CTL formulas Bi ∧ EXDi and Di ∧ EXBi

(n1 + 1 ≤ i ≤ n) capture this scenario for variable bi. The LTL formulas
Bi∧©Di and Di∧©Bi have the same effect. The negation ¬(. . .) excludes the
occurrence of inconsistency caused by bi. Operator AG (or 2) guarantees
that inconsistency does not occur in any states. 2

The third category of inconsistency can be checked in the same way over
the unknown variables.

21

Lemma 3. The stability problem can be checked by the following CTL for-
mula

AF ((AG B1 ∨ AG D1 ∨ AG K1) ∧ · · · ∧

(AG Bn1
∨ AG Dn1

∨ AG Kn1
)∧

(AG Bn1+1 ∨ AG Dn1+1) ∧ · · · ∧

(AG Bn ∨ AG Dn)).

(8)

or LTL formula

3((2B1 ∨2D1 ∨2K1) ∧ · · · ∧

(2Bn1
∨2Dn1

∨2Kn1
)∧

(2Bn1+1 ∨2Dn1+1) ∧ · · · ∧

(2Bn ∨2Dn))

(9)

If the above LTL or CTL formula is evaluated to true, then the Boolean
evolution system is stable.

Proof: In a stable system, every path leads to a stable state, where no
unknown variable will change its value any more. Therefore, one of three
cases 2Bi, 2Di or 2Ki for unknown variable bi holds in the stable state.
The last case means that the unknown variable remains unknown during the
evolution. The known variables cannot take value unknown. Thus, we do not
need to consider them being unknown in the LTL formula. The operator 3

specifies that this stable state will be reached eventually. The CTL formula
can be reasoned in a similar way. 2

5.3. Efficient algorithms for stability and inconsistency check

Although Theorem 2 provides a simpler CTL/LTL formula than Lemma 1,
in practice, it can be improved further. In order to check if the formula EFϕ

is satisfied in a transition system M = 〈S, S0, T, A, H〉 by symbolic model
checking, we need to compute the set of states satisfying the formula EFϕ

using a fixed-point computation. Let SAT (ϕ) represent the set of states
satisfying ϕ. The fixed-point computation begins with a set X0 = SAT (ϕ)
and computes a sequence of sets such that X0 ⊆ X1 ⊆ · · ·Xn ⊆ Xn+1 until
Xn = Xn+1. The detailed algorithm is presented in Algorithm 1.

Algorithm 1 could be time-consuming for a large system. Fortunately,
we can utilise a characteristic of model checking to avoid the problem of

22

Algorithm 1: Compute SAT (EFϕ)

X := SAT (ϕ); Y := ∅;
while Y 6= X do

Y := X; X := X ∪ {s ∈ S | ∃s′ ∈ X such that (s, s′) ∈ T};
end

return X

checking EF . A model checker generates only reachable states, which can
be reached from initial states, and perform model checking algorithms on
the reachable states. To identify inconsistency, showing the existence of a
reachable state with two conflict successor states is sufficient. As model
checkers only work on reachable states, the existence of a bad state can be
converted into non-emptiness of the set of states satisfying C = {C1, . . . , Cm}
defined in Theorem 2, returned by a model checker. Therefore, the fixed-
point computation for EF can be avoided. Indeed, checking existence of
bad states can be integrated into the process of generation of reachable state
space. Once a bad state is found, the process can be aborted to give fast
feedback to the programmer.

For a large system, the CTL formula specified in Lemma 3 involves a large
number of conjunction clauses AG Bi ∨ AG Di ∨ AG Ki or AG Bj ∨ AG Dj,

and each AG requires a computational expensive fixed-point computation,
as AGϕ = ¬EF (¬ϕ). Therefore, model checking this formula could be
time consuming. The following theorem tells us that stability checking can
be reduced to a reachability problem, which only asks for one fixed-point
computation.

Theorem 3. Stability in a consistent system M = 〈S, S0, T, A, H〉 can be
checked in the following three steps.

1. Find the set X of states that only have self-loop transitions, i.e., X =
{s ∈ S | ∀s′ such that (s, s′) ∈ T implies s′ = s};

2. Find the set Y of states that can reach states in X;

3. Check if S0 ⊆ Y . If the answer is yes, then the system is stable if it is
consistent.

Proof: From the definition of stability, we know that a stable valuation cor-
responds to a state that only has self-loops, and vice versa. In a consistent
system, a state cannot enter a non-stable loop if it can reach a stable state.

23

Otherwise, there exists a state that has two successor states, which contra-
dicts the assumption that the system is consistent. Step 3 checks if there
exists an initial state that cannot reach a stable state. The existence of such
a state means that the system contains a non-stable loop. 2

5.4. Implementation

For instance the CUDD library [36] can be used to manipulate BDDs in
MCMAS. The first step can be implemented using the function “Cudd Xeqy”
in CUDD, which constructs a BDD for the function x = y for two sets of BDD
variables x and y. When applied to the transition relation in the system, this
function simply enforces that the successor state of a state s is s itself, i.e.,
a self-loop. The second step can be achieved by the classic model checking
algorithm for EF . The third step is done by checking if S0 − Y is a zero
BDD, which means that the result from the set subtraction S0−Y is empty.
Therefore, this algorithm runs more efficiently than model checking the long
formula in Lemma 3. In practice, this stability check can be combined with
consistency checks. During the generation of the reachable state space, we
check if the system is consistent using Theorem 2. If the generation is not
aborted due to the occurrence of inconsistent states, then a stability check is
executed.

5.5. Counterexample generation

A common question asked after a formula is model checked is whether
a witness execution or counterexample can be generated to facilitate deep
understanding of why the formula holds or does not hold in the system. In
our situation, it is natural to ask the model checker to return all evolution
traces that lead to inconsistency or instability. We will show how to compute
traces in MCMAS for inconsistency first and for instability afterwards.

It is usually good in practice to generate the shortest traces for counterex-
amples/witness executions in order to decrease the difficulty of understanding
them. To achieve this for our setting, we utilize the approach of construction
of state space in MCMAS. Starting from the set of initial states S0, MCMAS
can compute the state space in the following manner [30].

In this algorithm, S is the set of reachable states and next, initialised as
S0, is the set of states that their successor states need to be computed, which
is done by the function Image(next, T). In each iteration, we compute the
successors next′ of next, and remove from next′ the states that have been
processed before by next′ − S. This iteration continues until no new states

24

Algorithm 2: Compute reachable states

S := ∅; next := S0; q := S0

while S 6= q do
S := q; next := Image(next, T); n := next \ S; q := S ∪ next;

end

return S

can be added to S, i.e., next′−S = ∅. We modify the state space generation
algorithm to store every intermediate next: in each iteration i, we change
next to nexti. The modified algorithm is shown in Algorithm 3.

Algorithm 3: Modified state space generation

S := ∅; next0 := S0; q := S0; i := 0
while S 6= q do

i := i + 1
S := q; nexti := Image(nexti−1, T) \ S; q := S ∪ nexti;

end

return S, next0, . . . , nexti

Theorem 4. A shortest trace leading to an inconsistent state by enabling
the rules g1 → a and g2 → ¬a, can be achieved in the following steps.

1. Starting from i = 0, we test each nexti to search for the smallest index
k such that nextk ∩ g1 ∩ g2 6= ∅.

2. We pick up an arbitrary state sk from nextk ∩ g1 ∩ g2 and compute its
predecessor sk−1 in nextk−1 by using the reversed transition relation
T ′ such that sk−1 := sk × T ′. If sk has multiple predecessors, then we
pick up an arbitrary one to be sk−1. In the same way, we compute a
predecessor of sk−1 in nextk−2. This process continues until we find a
state s0 in next0, which is S0.

To find the shortest counterexamples for unstable loops, we need to iden-
tify all such loops first, and for each loop, we test each nexti from i = 0 if
it contains a state in the loop, i.e., if ni ∩ Sloop 6= ∅, where Sloop is the set of
states in the loop. Next we apply the second step in Theorem 4 to generate
the shortest trace. Now we focus on how to find all unstable loops efficiently.

25

Lemma 4. Given a consistent system, none of the unstable loops interfere
with each other.

Proof: If the conjunction of two loops is not empty, then there exists a state
such that it has two outgoing transitions, one in each loop. Hence, this state
leads to the occurrence of inconsistency. 2

Due to Lemma 4, finding unstable loops is equivalent to finding non-trivial
strongly connected components (SCCs) when the system is consistent. There
are several SCC identification algorithms in the literature working on BDD
representation of state spaces [41, 42]. The more efficient one was reported
in [43]. But before we apply these algorithms, we could remove states that
cannot reach any unstable loops from the state space in order to speed up the
computation. Those states are identified as Y in the second step of stability
checking in Theorem 3.

6. Case study

In this section we illustrate the use of our consistency and stability check-
ing techniques on an example scenario which could occur to a household
robot. The robot with arms observes an object rolling across a table. It
needs to decide whether to stop it or allow it to drop off from the table. The
object can be a glass or a light effect. It would be unwise to stop the object
if it is the latter case. The robot may resort to more accurate sensors to
decide how to react. The model is formalized in a Boolean evolution system
based on the perception structure in Fig. 5.

1. Feasible sensing possibilities (Bt) are:

• roll(O): object O rolls across table

• sensed roll(O): senses that object O is rolling across table

• virt real(O): sensed O but there is no real object O

• virt real derived(O): derived that light effect moving across ta-
ble, there was no real object O sensed

In Bt, the uncertain sensing events (Ut) are sensed roll(O) and virt real derived(O).

2. Action possibilities (At) are:

• stop rolling(O): stop rolling object by arm

• do nothing: remain idle

26

3. Future events predicted (Ft) are:

• fall(O): object O falls

• break(O): object O breaks

• useless(O): object O is useless

• handle(O): handling of object O

• proper observation: the robot has made the correct observation

• proper action: the robot chooses the correct action

4. Naive physics rules (RP) are:

• ¬stop rolling(O) ∧ roll(O) → fall(O): the object will fall if not
stopped

• fall(O)→ break(O): if the object falls it will break

• stop rolling(O)∧ roll(O)→ ¬fall(O): if object is stopped it will
not fall

• ¬fall(O) → ¬break(O): if object will not fall then it will not
break

5. General rules - values and moral consequences rules (RB) are:

• virt real(O) ∧ handle(O)→ wrong in sensing

• stop rolling → handle(O)

• break(O)→ useless(O)

• useless(O)→ wrong in action

• ¬break(O)→ ¬useless(O)

• do nothing → ¬stop rolling(O)

The robot starts with a simple but fast reasoning cycle by considering
each action individually using observation only. The criteria for choosing the
correct action is to guarantee the following goals.

• useless(O) = false

• proper action = true

• proper sensing = true

27

When only one of events roll(O) and virt real(O) is true, the robot can
make its decision easily. However, it is difficult to do so when both events
are true. The reasoning process is as follows.

1. Evaluation of action choice 1: Goals + do nothing

This choice results that proper action becomes false.

2. Evaluation of action choice 2: Goals + stop rolling(O)
This results inconsistency in the reasoning process as shown in Fig. 4,
which demonstrates the evolution of the value of proper sensing.

0: proper_sensing=unknown

1: proper_sensing=unknown

2: proper_sensing=true 3: proper_sensing=false

4: proper_sensing=false 5: proper_sensing=true

6: proper_sensing=true

7: proper_sensing=false

Figure 4: The counterexample showing inconsistency.

To resolve the inconsistency, the robot needs to acquire information from
more sensors, which would instantiate the two sensing events sensed roll(O)
and virt real derived(O) in Ut with two extra physical rules.

• ¬sensed roll(O)→ ¬roll(O)

• ¬virt real derived(O)→ ¬virt real(O)

28

If these two sensing events do not become true simultaneously, then the
robot can make the correct decision.

Our consistency and stability checking techniques of this kind can be
used in both offline and online modes. In the online mode, counterexamples
are used to assist the system to acquire more information, i.e., fixing the
uncertain sensing events, or adjusting the possible actions that can be take, in
order to solve inconsistency or instability problems in a consistency resolution
cycle. Our case study demonstrates an application of the online mode. Fig. 5
illustrates the consistency resolution cycle that can be implemented in agent
programs.

Current hypothesized predicate set:

Bt = Bt U Ut U At U Ft

Taking Action
C

Fixed rule set:

R = R
B
 U R

P

Are Bt and R consistent? Modify At

 Take action to clarify

uncertainty in Ut

yes

no

no

Figure 5: A possible process of inconsistency resolution in agent operations. This paper fo-
cuses on fast consistency checking with counter examples which can guide the modification
of At and actions taken to improve sensory performance to re-evaluate Ut.

In the offline mode, users can apply the techniques to their rule-based
reasoning system to check consistency and stability. If a problem is found,
users can revise their system using generated counterexamples as a guidance.
For example, If we add the following extra general rules in the case study,

• useless(O)→ stop rolling(O)

• ¬useless(O)→ ¬stop rolling(O)

29

the robot could be trapped in a circular reasoning process when roll(O) is
true land virt real(O) is false because

stop rolling(O) ∧ roll(O) −→¬fall(O) −→ ¬break(O) −→ ¬useless(O) −→

¬stop rolling(O)

and

¬stop rolling(O) ∧ roll(O) −→fall(O) −→ break(O) −→ useless(O) −→

stop rolling(O).

This circular reasoning process can be captured by our stability check.

7. Implementation and performance evaluation

We have integrated the algorithms in Theorem 2 and 3 into the model
checker MCMAS [30]. The implementation slightly deviated from Theorem 2
in order to maximize the utility of the internal encoding of the transition
relation in MCMAS. Instead of finding all pair of conflicting rules, we built a
single BDD for each variable v. We first collect all rules {g1 → v, . . . , gj → v}
that set v to true, and all rules {g′

1 → ¬v, . . . , g′

k → ¬v} that set v to false.
Second, we generate a BDD D representing

(g1 ∨ . . . ∨ gj) ∧ (g′

1 ∨ . . . ∨ g′

k). (10)

If the BDD is not empty, then there exists a pair of conflicting rules that
might be enabled simultaneously. Searching for a bad state is done by testing
the conjunction of D and S, the set of reachable states.

To demonstrate their performance, we applied them to the following ex-
ample, where Bknown = {a0, ak,0, . . . , ak,m−1} and Bunknown = {a1, . . . , am−1}.
In the experiment, we fixed m to 32, and generated a series of models by
replicating the group of variables {ak,0, . . . , ak,m−1}. In the largest model,
this group has ten copies, i.e., k ranges from 1 to 10, which means the total
number of variables is 32 + 32 ∗ 10 = 352. Each variable in Bknown requires
one BDD variable to encode, as one BDD variable can represent two values
0 and 1, perfectly matching Boolean values false and true. Each variable
in Bunknown needs two BDD variables because it has three values. Therefore,
the total number of BDD variables in the largest model is 383.

30

Example.

a0 → a1

a1 → a2

...

am−2 → am−1

am−1 → ¬a0

¬a0 → ¬a1

...

¬am−2 → ¬am−1

¬am−1 → a0

ak,0 → ak,1

ak,1 → ak,2

...

ak,m−2 → ak,m−1

ak,m−1 → ¬ak,0

¬ak,0 → ¬ak,1

...

¬ak,m−2 → ¬ak,m−1

¬ak,m−1 → ak,0

The experimental results are listed in Table 1. For each model, we present
the number of variables and corresponding BDD variables in parentheses,
as well as the number of reachable states. The time (in second) spent on
checking consistency and stability via the CTL formulae 3 and 8 are shown
in the two columns in the middle, and the time for the direct algorithms
in Theorem 2 and 3 are given in the last two columns. The results clearly
demonstrates the huge advantage of using our stability checking algorithm.
The performance of our consistency checking algorithm is also excellent, given
the fact that the CTL formula 3 is quite efficient already. Note that the time
spent on building BDD D for each variable is shown to be below 1ms in the
penultimate column of the table.

8. Discussion on interleaving semantics

Although synchronous semantics have been applied broadly in practice, a
differently semantics, interleaving semantics, still finds its usefulness in case
of limited processing power. Interleaving means that only one enabled rule,
which is usually chosen randomly, is processed at a time.

Definition 8. [Interleaving semantics] The new valuation B
′

under inter-
leaving semantics is the result of applying a rule r in R|

B
to B. The rule r

is chosen non-deterministically. That is, every new value of b in B
′

is defined
as follows.

B
′

(b) =

true if r = g → b,
false if r = g → ¬b,
B(b) otherwise.

31

Table 1: Experimental results.

Num of
variables

Num of
states

CTL formulae Direct algorithms
Consistency Stability Consistency Stability

time (s) time (s) time (s) time (s)
64 (95) 5.41166e+11 0.049 1.884 < 0.001 0.001
96 (127) 2.32429e+21 0.128 4.773 < 0.001 0.002
128 (159) 9.98275e+30 0.248 9.073 < 0.001 0.003
160 (191) 4.28756e+40 0.31 10.381 < 0.001 0.002
192 (223) 1.84149e+50 0.547 19.766 < 0.001 0.003
224 (255) 7.90915e+59 0.867 29.341 < 0.001 0.008
256 (287) 3.39695e+69 1.154 38.216 < 0.001 0.01
288 (319) 1.45898e+79 0.571 19.169 < 0.001 0.066
320 (351) 6.26627e+88 0.849 29.308 < 0.001 0.062
352 (383) 2.69134e+98 2.242 73.112 < 0.001 0.022

Under the relaxed inconsistency conditions, a system is guaranteed to be
consistent, if at any given time, only one rule is processed. Therefore, the
first inconsistent condition is not satisfied any more. However, the interleav-
ing semantics possesses different characteristics during stability checking. A
stable system under the synchronous semantics may become unstable. Let
us re-examine Example 2 using the interleaving semantics. We can construct
a path that visits unstable states as follows. For valuation a = true, we
have 1??? −→ 11?? −→ 11?1 −→ 1101 −→ 0101 −→ 0001 −→ 0011 −→
0111 −→ 0101 −→ · · · . The infinite loop

0101 −→ 0001 −→ 0011 −→ 0111 −→ 0101

makes the system unstable.
However, the infinite loop is quite special in that the rule

b ∧ c→ ¬d

is enabled infinitely often in state 0111, which is the beginning of the unstable
loop. In practice, such infinite loops rarely happen because of randomness of
choice. Once this rule is executed, the unstable loop is interrupted, and the
system becomes stable. This observation leads to the introduction of fairness
into stability checking.

32

Fairness [44] has been studied and applied to many temporal logic-based
verification, including both CTL and LTL. Various types of fairness con-
straints have been brought up. Among them, the most popular ones are
unconditional, strong and weak fairness. In this section, strong fairness is
sufficient to exclude the above unrealistic/unfair paths.

Definition 9. [Strong fairness] Strong fairness under interleaving semantics
requires that, in every infinite path, an evolution rule has to be executed
infinitely often if it is enabled infinitely often. For transition systems, strong
fairness is composed of a set of fairness constraints, written as

∧

i

(23Φi =⇒ 23Ψi), (11)

where each constraints 23Φi =⇒ 23Ψi specifies that if Φi occurs infinitely
often, then Ψi has to occurs infinitely often as well.

Strong fairness rules out unrealistic evolution paths, where some enabled
rules are consistently ignored. Therefore, it allows more systems evaluated
as stable. For Example 2, we only need one fairness constraint:

23(Bb ∧ Bc) =⇒ 23¬Bd.

This example suggests that the generation of a fairness constraint from a rule
can be straightforward, which can be achieved by following the syntactic form
of the rule.

However, strong fairness still cannot prevent some stable system un-
der synchronous semantics from being unstable. The following example
demonstrates an unstable system under strong fairness. In this example,
Bknown = {a} and Bunknown = {b, c, d, e}

Example 3.

a→ b ∧ d ∧ e

b ∧ d→ c ∧ ¬a

c ∧ d→ ¬b

¬b ∧ d→ ¬c

¬c ∧ d→ b

b ∧ c ∧ e→ ¬d

¬b ∧ ¬c→ ¬e

33

For the initial valuation a = true, we have 1???? −→ 11??? −→ 11?1? −→
11?11 −→ 11111 −→ 01111 −→ 00111 −→ 00011 −→ 00010 −→ 01010 −→
01110 −→ 00110 −→ 00010 · · · . The unstable loop

00010 −→ 01010 −→ 01110 −→ 00110 −→ 00010

cannot be broken because the only rule that can break it, i.e.,

b ∧ c ∧ e→ ¬d

is disabled in state 00010.
Enforcing strong fairness in the verification of CTL formulas can be trans-

formed into finding strongly connected components (SCCs), which in turn
can be implemented using graphic algorithms [44]. As we do not consider
inconsistency for the interleaving semantics, the stability can be checked by
LTL model checkers, such as SPIN [45] and NuSMV. The verification of an
LTL formula f under strong fairness can be achieved directly by checking a
combined LTL formula

fair =⇒ f, (12)

where fair is of the form of Formula (11). For stability checking the f is taken
as in (9). Note that the algorithm in Theorem 3 does not work here because
multiple successor states do not mean inconsistency any more. SPIN uses
explicit model checking techniquesfor the verification. It requires that every
initial valuation has to be enumerated explicitly, which is very inefficient.
NuSMV adopts the method in [46] to check LTL formulae symbolically via
BDDs, which can be more efficient for our purpose.

Now the question is how we identify rules that need to be guaranteed
for execution by strong fairness. Human guidance on the selection of rules
would be ideal. When it is not available, we need to find a solution to allow
automatic selection. A simple method is to put all rules under the protection
of fairness. This solution does not request the modification of an existing
model checker. However, it only works for a small rule set. A large number
of rules would render fair a large LTL formula containing equal number of
constraints as the number of rules.

An alternative solution utilises a sequence of verification to search for a
fair unstable loop. Starting with no fairness constraints, we check Formula (9)
solely on the converted transition system. If the result is false, which means
the system may be unstable, then we ask the model checker to generate a

34

counterexample, i.e. an unstable loop. We examine each state in the loop to
look for enabled rules that are never executed in the loop. If no such rule is
found, then the system is unstable under strong fairness. Otherwise, we put
the unfairly treated rules into fair and re-start the verification. This process
is carried out iteratively until the system is proven to be stable or unstable
under strong fairness. Although the idea of this solution is not complex,
its implementation requires to build an extension of a model checker, e.g.,
NuSMV, which is not a trivial task. Further, its performance would be
degraded when the number of iterations increases.

9. Conclusion

This paper has solved the problem of efficiency for logical consistency
checks of robots by adopting symbolic model checking based on binary de-
cision diagrams. In addition to specifying stability and consistency as CTL
and LTL formulas, also efficient symbolic algorithms have been applied to
speed up consistency and stability checking. Timely decision making by
robots can be vital in many safety critical applications. The most basic task
they need to check is the consistency of their assumptions and their rules.
Speed of computation hence affects quality and safety of robots. As a first
step towards application of our approach, we have embedded it within the
framework LISA [34, 35] for reasoning of robots.

Further direct use of the techniques is in rule-based reasoning systems
before they are deployed on robots. The counter-examples, which can gener-
ated by the techniques presented, can demonstrate the reasons for possible
violation, which can help software developers revising their designs. Some-
times it can be time-consuming to modify the design of a complex system,
possibly the violation is tolerable or is very rare during run-time. In these
cases counter-examples can be used as a guide to correct the reasoning of a
robot while in action.

Future work in this research area can target the implementation of our
approach in practical programming [47, 14], and to aid finding solutions to
making inconsistent/unstable systems consistent and stable. Based on the
results an iterative design process can be defined to enable a programmer
to control an agent’s decision making. Our plans are also to integrate con-
sistency checks in LISA [34, 35] into the control code of Unmanned Aerial
Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) for practical ap-
plication.

35

Acknowledgements

This work was supported by the EPSRC project EP/J011894/2.

[1] Laws of robotics, http://en.wikipedia.org/wiki/Laws of robotics (2013).

[2] K. Arkoudas, S. Bringsjord, P. Bello, Toward ethical robots via mech-
anized deontic, Tech. rep., Logic, AAAI Fall Symposium on Machine
Ethics, AAAI (2005).

[3] S. Maghsoudi, I. Watson, Epistemic logic and planning, in: Proceedings
of Knowledge-Based Intelligent Information and Engineering Systems
(KES’04), Vol. 3214 of Lecture Notes in Computer Science, Springer,
2004, pp. 36–45.

[4] M. Shanahan, M. Witkowski, High-level robot control through logic, in:
Proceedings of Intelligent Agents VII Agent Theories Architectures and
Languages, Vol. 1986 of Lecture Notes in Computer Science, Springer,
2001, pp. 104–121.

[5] M. Singh, D.R.Parhi, S.Bhowmik, S.K.Kashyap, Intelligent controller
for mobile robot: Fuzzy logic approach, in: Proceedings of Interna-
tional Association for Computer Methods and Advances in Geomechan-
ics (IACMAG’08), 2008, pp. 1755–1762.

[6] C. R. Torres, J. M. Abe, G. Lambert-Torres, J. I. D. S. Filho, H. G.
Martins, Autonomous mobile robot emmy iii, in: Proceedings of New
Advances in Intelligent Decision Technologies, Vol. 199 of Studies in
Computational Intelligence, Springer, 2009, pp. 317–327.

[7] F. W. Trevizan, L. N. de Barrosand Flavio S. Correa da Silva, Design-
ing logic-based robots, Inteligencia Artificial, Revista Iberoamericana de
Inteligencia Artificial. 31 (2006) 11–22.

[8] P. B. M. Vranas, New foundations for imperative logic i: Logical con-
nectives, consistency, and quantifiers, Noûs 42 (4) (2008) 529–572.

[9] L. Mihaylova, A. Carmi, F. Septier, A. Gning, S. K. Pang, S. J. Godsill,
Overview of bayesian sequential monte carlo methods for group and
extended object tracking, Digital Signal Processing 25 (2014) 1–16.

36

[10] R. H. Bordini, J. F. Hubner, Jason Website,
http://jason.sourceforge.net/wp/description/, 15/07/2013 (2013).

[11] M. Dastani, B. Testerink, M. Cap, T. Behrans, J.-J. Meyei, 2APL Web-
site, http://apapl.sourceforge.net/ (2013).

[12] M. Nikraz1a, G. Caireb, P. A. Bahri, Jade Website,
http://jade.tilab.com/doc/, 15/07/2013 (2013).

[13] N. K. Lincoln, S. M. Veres, Natural language programming of complex
robotic BDI agents, Journal of Intelligent & Robotic Systems (2012)
1–20.

[14] S. M. Veres, N. K. Lincoln, L. Molnar, C. Morice, Autonomous vehicle
control systems a review of decision making, Journal of Systems and
Control Engineering 225 (3) (January 2011) 155–195.

[15] J. Franco, J. Martin, A history of satisfiability, in: Handbook of Satis-
fiability, IOS Press, 2009, pp. 3–65.

[16] W. Moser, K.-P. Adlassnig, Consistency checking of binary categori-
cal relationships in a medical knowledge base, Artificial Intelligence in
Medicine 4 (5) (1992) 389–407.

[17] J. Maluszynski, A. Szalas, Logical foundations and complexity of 4QL,
a query language with unrestricted negation, CoRR abs/1011.5105.
URL http://arxiv.org/abs/1011.5105

[18] S. Kauffman, Homeostasis and differentiation in random genetic control
networks, Nature 224 (5215) (1969) 177–178.

[19] J. Thangarajah, L. Padgham, J. Harland, Representation and reasoning
for goals in bdi agents, Aust. Comput. Sci. Commun. 24 (1) (2002) 259–
265.

[20] V. Morreale, S. Bonura, G. Francaviglia, M. Puccio, F. Centineo,
G. Cammarata, M. Cossentino, S. Gaglio, PRACTIONIST: a frame-
work for developing BDI agent systems, in: Proceedings of the 7th WOA
2006 Workshop, From Objects to Agents, Vol. 204 of CEUR Workshop
Proceedings, CEUR-WS.org, 2006, pp. 187–194.

37

[21] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, The MIT
Press, Cambridge, Massachusetts, 1999.

[22] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang, Sym-
bolic model checking: 1020 states and beyond, Information and Compu-
tation 98 (2) (1992) 142–170.

[23] M. Kwiatkowska, A. Lomuscio, H. Qu, Parallel model checking for tem-
poral epistemic logic, in: Proc of ECAI’10, IOS Press, 2010, pp. 543–548.

[24] M. Cohen, M. Dam, A. Lomuscio, H. Qu, A symmetry reduction tech-
nique for model checking temporal-epistemic logic, in: Proc of IJCAI’09,
2009, pp. 721–726.

[25] M. Cohen, M. Dam, A. Lomuscio, H. Qu, A data symmetry reduction
technique for temporal-epistemic logic, in: Proc of ATVA’09, Vol. 5799
of LNCS, Springer, 2009, pp. 69–83.

[26] A. Lomuscio, H. Qu, F. Russo, Automatic data-abstraction in model
checking multi-agent systems, in: Proc of MoChArt’10, Vol. 6572 of
LNCS, Springer, 2010, pp. 52–68.

[27] H. Qu, S. M. Veres, On efficient consistency checks by robots, in: Proc.
ECC’14, 2014, pp. 336–343.

[28] P. Tabuada, G. J. Pappas, Linear Time Logic Control of Discrete-Time
Linear Systems, IEEE Transactions on Automatic Control 51 (12) (2006)
1862–1877.

[29] M. Kloetzer, C. Belta, A Fully Automated Framework for Control of
Linear Systems From Temporal Logic Specifications, IEEE Transactions
on Automatic Control 53 (1) (2008) 287–297.

[30] A. Lomuscio, H. Qu, F. Raimondi, MCMAS: An open-source model
checker for the verification of multi-agent systems, International Journal
on Software Tools for Technology Transfer.

[31] N. K. Lincoln, S. M. Veres, Natural language programming of complex
robotic BDI agents, Intelligent and Robotic Systems 71 (2) (2013) 211–
230.

38

[32] M. Wooldridge, An Introduction to MultiAgent Systems, Wiley, Chich-
ester, 2002.

[33] S. M. Veres, L. Molnar, N. K. Lincoln, C. Morice, Autonomous vehicle
control systems - a review of decision making 225 (2) (2011) 155–195.

[34] P. Izzo, H. Qu, S. M. Veres, Reducing complexity of autonomous control
agents for verifiability, arXiv:1603.01202[cs.SY].

[35] M. Y. Hazim, H. Qu, S. M. Veres, Testing, verifiation and improvements
of timeliness in ROS processes, in: Proc. of TAROS’16, 2016, to appear.

[36] R. Bryant, Graph-based algorithms for boolean function manipulation,
IEEE Transaction on Computers 35 (8) (1986) 677–691.

[37] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, A. Tacchella, Nusmv 2: An opensource tool
for symbolic model checking, in: Proceedings of CAV 2002, Vol. 2404 of
Lecture Notes in Computer Science, Springer, 2002, pp. 359–364.

[38] R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi, Reasoning about Knowl-
edge, MIT Press, Cambridge, 1995.

[39] E. M. Clarke, E. A. Emerson, A. P. Sistla, Automatic verification of
finite-state concurrent systems using temporal logic specifications, ACM
Trans. Program. Lang. Syst. 8 (2) (1986) 244–263.

[40] A. Pnueli, The temporal logic of programs, in: Proc of 18th Annual
Symposium on Foundations of Computer Science, IEEE Computer So-
ciety, 1977, pp. 46–57.

[41] R. Bloem, H. N. Gabow, F. Somenzi, An algorithm for strongly con-
nected component analysis in log symbolic steps, in: Proc. FMCAD’00,
Vol. 1954 of LNCS, Springer, 2000, pp. 37–54.

[42] R. Gentilini, C. Piazza, A. Policriti, Computing strongly connected com-
ponents in a linear number of symbolic steps, in: Proc. SODA’03, 2003,
pp. 573–582.

[43] M. Kwiatkowska, D. Parker, H. Qu, Incremental quantitative verifica-
tion for Markov decision processes, in: Proc. DSN-PDS’11, IEEE, 2011,
pp. 359–370.

39

[44] C. Baier, J.-P. Katoen, Principles of model checking, MIT Press, 2008.

[45] G. J. Holzmann, The SPIN Model Checker - primer and reference man-
ual, Addison-Wesley, 2004.

[46] E. M. Clarke, O. Grumberg, K. Hamaguchi, Another look at LTL model
checking, Formal Methods in System Design 10 (1) (1997) 47–71.

[47] S. M. Veres, Knowledge of machines: review and forward look, Journal
of Systems and Control Engineering 226 (1) (2012) 3–10.

40

Hongyang Qu is a Senior Research Fellow in the Department of Automatic Control & Systems
Engineering, University of Sheffield. He is currently a member of Autonomous Systems and Robotics
Research Group within the Department. He obtained his Ph.D. from the University of Warwick in 2006
and has previously held research positions at the Universite de Provence, Imperial College London and
the University of Oxford. His research interests includes formal verification and model checking, in
particular, efficient model checking techniques for discrete systems, real-time systems and probabilistic
systems, as well as their application.

Sandor M Veres is a professor of Autonomous Control Systems at the Department of Automatic Control
and Systems Engineering at the University of Sheffield. He is also the director of the Autonomous
Systems and Robotics Research Group within the Department, and an executive group member of
Sheffield Robotics. Between 2002 and 2012 he was professor of control system at Southampton
University in the School of Engineering Sciences. His main current interests are software architectures for
intelligent machines, reconfigurable autonomy, distributed sensing, control and decision making and also
verifiable, certifiable autonomy. He has published 4 books and about 190 refereed papers on a variety of
topics of control sciences.

