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Abstract

The High Dimensional Model Representation (HDMR) method has been applied in several

previous studies to obtain global sensitivity indices of uncorrelated model parameters in combustion

systems. However, the rate parameters of combustion models are intrinsically correlated and

therefore uncertainty analysis methods are needed that can handle such parameters. A generalized

HDMR method is presented here, which uses the Rosenblatt transformation on a correlated model

parameter sample to obtain a sample of independent parameters. The method provides a full set of

both correlated and marginal sensitivity indices. Ignition delay times predicted by an optimized

hydrogenair combustion model in stoichiometric mixtures near the three explosion limits are

investigated with this new global sensitivity analysis tool. The sensitivity indices which account for

all the correlated effects of the rate parameters are shown to dominate uncertainties in the model

output. However these correlated indices mask the individual influence of parameters. The final

marginal uncorrelated sensitivity indices for individual parametersbetter indicate the change of

importance of homogeneous gas phase and species wall-loss reactions as the pressure is increased

from above the first explosion limit to above the third limit. However, these uncorrelated indices are

small and whilst they provide insights into the dominant chemical and physical processes of the

model over the range of conditions studied, the correlations between parameters have a very

significant effect. The implications of this result on model tuning will be discussed.

*Revised unmarked manuscript
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1. Introduction

Combustion models usually have many parameters, the quantification ofwhich involves a level

of uncertainty. Uncertainty analysis is widely used in combustion chemistry [1, 2] to investigate the

uncertainty of simulation results knowing the uncertainty of model parameters. A critical step in

determining such predictive uncertainty is the determination of the extent of uncertainty in model

input parameters. One possibility for the assessment of input uncertainties is the investigation of the

parameters one-by-one by tracing the source of the parameter value. A measurement that aims to

determine a kinetic or thermodynamic parameter is usually called a direct one. The evaluation of the

systematic and statistical errors of these direct measurements allows an estimation of the uncertainty

of each parameter [3]. In most uncertainty analysis studies carried out so far in combustion chemistry

(seee.g. [4-9]), the model parameters were considered to be uncorrelated, since no information was

available on their joint distributions.

Indirect measurements can be interpreted only by multi-parameter models. In combustion, such

indirect measurements include determinations of laminar burning velocities, species concentration

profiles or ignition delay times. Rate parameters of combustion mechanisms are intrinsically

correlated, since the mechanisms are developed not only based on direct measurements, but also to

reproduce the results of indirect measurements. Traditional methods for mechanism development

inevitably involve some tuning of parameters within their suggested uncertainty limits, in order to

reproduce indirect measurements over selected sets of conditions. This approach however, does not

provide information on the correlation of rate parameters. An alternative approach is the systematic

optimization of reaction mechanisms (seee.g. [10-13]), where the highly sensitive model parameters

are fitted to experimental data. Such methods can provide information on parameter correlations.
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Sheen and Wang calculated the covariance matrix of the fitted parameters for ethylene andn-heptane

combustion mechanisms [14-16], which carries information on the joint uncertainty of the

parameters. The optimized rate parameters were ArrheniusA parameters and 3rd body collision

efficiency factors. Turányi et al. [17-20] extended the methodology to the determination of all

Arrhenius parametersA, n, E of important reaction steps together with the fitting of the important 3rd

body collision efficiency factors. They also calculated the covariance matrix of all determined

parameters. It is expected that the joint uncertainty of model input parameters will be available for

more and more combustion systems as optimization methods become more widespread. Therefore,

development of global uncertainty and sensitivity analysis techniques is needed that can utilize the

newly available, more realistic correlated uncertainty of the parameters.

In this article a new global sensitivity analysis methodology is presented that is able to handle

the correlated uncertainty information obtained by mechanism optimization methods. This new

method is applied to the investigation of the explosion limits of a hydrogenair combustion system.

2. Methods

2.1 HDMR Global Uncertainty Analysis

The aim of sensitivity analysis is to assess how the values of the model parameters influence the

modelling results. Local sensitivity analysis [21] is regularly used in combustion modelling practice.

The drawback of local methods is that they provide information on the importance of a parameter

when all parameters of the model take their nominal value, and therefore cannot easily capture any

nonlinear effects. In global sensitivity analysis, all model parameters may take any value within their

joint domain of uncertainty and the importance of parameters is investigated within this domain.

Uncertainty analysis methods assess the uncertainty of model results, knowing the uncertainty of

model parameters. Global sensitivity analysis includes global uncertainty analysis, since the former
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provides information on both the uncertainty of model output and the contribution of the parameters

to the uncertainty of the predictions. A wide range of global uncertainty and sensitivity analysis

methods have been elaborated [2], which differ in computational requirements and the information

provided.

The High Dimensional Model Representation (HDMR) method [22-26] has several

advantageous features. This method has several variants and the description below concentrates on

the random sampling method (RS-HDMR) which is used in the present work.

First, we denote the parameters of a model byx=(x1,x2,...,xn) and the simulation result byf(x) (f:

Rn R). The result of the model can be expressed as a hierarchical expansion of the parameters:

(1)

where constantf0 represents the mean value of the model output across the input sample,

fi(xi):R R is the contribution of thei-th input parameterxi to f(x); fij(xi,xj):R
2 R is the cooperative

contribution of thei-th andj-th inputs parameters tof(x), etc. The zeroth-order, first-order, second-

order, etc. component functions are denoted byf0, fi, fij etc., respectively. In the present work, these

expansions were truncated at second order terms. If parametersx1, x2 xn are independent, then

the component functions can be determined uniquely and optimally [27] and can be expressed using

an orthogonal polynomial basis:
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whereOi and Oij denote the order andi , ij denote the coefficients of basis functionsi and j.

These coefficients are determined by fitting the RS-HDMR function to a sample of runs from the full

model. It is important to notice that the determination of the orthogonal basis functions depends on

the distribution of the input parameters. If optimal basis functions are chosen and the optimal

coefficients are calculated (e.g. using a least-squares method), then sensitivity indices can be

determined as detailed below.

Let V denote the total variance off(x), Vi the partial variance off(x) due toxi alone andVij the

partial variance off(x) due to the interactions betweenxi andxj. We can define the first- and second-

order sensitivity indices asSi = Vi/V = V(E(f(x)|xi))/V(f(x)) and Sij = Vij/V = V(E(f(x)|xi,xj))/V(f(x)),

respectively. If an accurate fit is obtained such that Eq. (2) provides a good representation of the

expansion in Eq. (1), then the sum of these indices should be close to 1.

The total order effect for parameterxi can be expressed as:

(3)

The total sensitivity indexSi
total measures the contribution ofxi to the output variance, including

all variances caused by its interactions of any order, with any other input parameters. If the input

parameters are independent, we can determine the optimal orthogonal polynomial expansion of the

component functions. Using Eq. (1), the partial variances can be calculated and the sensitivity

indices of the parameters can be determined:

(4a)

(4b)
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This methodology is not applicable when the parameters are dependent, because in this case the

polynomial expansion of the component functions is not unique, and coefficientsi and ij cannot be

used to calculate sensitivity indices [27].

Here we follow the approach of Mara and Tarantola [28] to calculatesensitivity indices of

models with dependent parameters. A similar approach was also published by Zhouet al. [29]. This

method was encoded and coupled to the GUI-HDMR program of Ziehn and Tomlin[30, 31]. The

methodology is applicable for any distribution of model inputs, but since the covariance matrix of the

optimized combustion mechanism is assumed to have multivariate normal distribution, only the case

of a normal distribution is discussed here.

2.2 Decorrelation Using the Rosenblatt Transformation

Mara and Tarantola [28] suggested the application of the Rosenblatt transformation [32] to

create an uncorrelated sample from a correlated one. First, a sample must be generated based on the

joint distribution function of the parameters. The Rosenblatt transformation consists of the following

steps. Let denote a random vector with an absolutely continuous distribution

function . Consider the following transformation of the vector

(5a)

(5b)

The transformed parameters , are uniformly and independently distributed on

the interval [0,1]. This transformation can be expressed explicitly when F is a normal distribution



7

with mean vectorm and covariance matrixC = . Let = , p
ijC be the

cofactor of in pC and be the determinant of . In this case, the transformed parameters can

be calculated using the following equations
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where is the standard normal distribution function, which converts a standard normal pdf to a

standard uniformpdf. This means that without applying functionat the end of the transformation,

the transformed parameters obtained are independent with standard normal distribution functions, as

applied in the present work. We used Hermite polynomials as basis functions in the RS-HDMR

according to the standard normal distribution of the transformed model inputs. Equation (6) shows

that the covariance matrix of the sample must be positive definite.

2.3 Interpretation of the Sensitivity Indices of Transformed Parameters

The transformed parameters are standard normally and independently distributed.

The RS-HDMR method is then applied using samples of these parameters and the corresponding

simulated output distributions and sensitivity indices are calculated. Since the first parameter is only

transformed and not corrected by the effect of any other parameter, the sensitivity indexS1 of the

first parameter is identical to that of the transformed parameter 1
S , which is in fact identical to the

sensitivity index that reflects all possible parameter correlations. The total contribution of x1 to

the variance of the output (i.e. including first-, second-order effects etc.) is indicated by sensitivity
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index . Performing the transformation for each of the indicesi= 1, 2, 3,

etc., in turn, sensitivity indices and can be calculated for each parameter

independently of the later transformations that aim to decorrelate the parameters. This total

sensitivity index reflects the contribution that each parameter makes to the total output

variance, taking into account all its possible correlations. If a parameter dominates the output

variance, then we would expect this index to be close to 1. However, a large value of can

occur for a parameter which would individually have no effect on the model output, but is strongly

correlated with one or more parameters that have a large effect on the model output.

The subsequent transformations aiming to decorrelate the parameters can be performed in any

chosen order. Hence, havingn parameters in total, in the second step we may select any of the

remaining (n-1) parameters. We denote the second selected parameter by subscript 2 and hence

represents the contribution ofx2 to the output variance, without its correlative contribution withx1.

Notation emphasizes this meaning and represents a marginal sensitivity. In a similar

way the total effect can be calculated, without the influence of parameter 1, denoted by .

These marginal sensitivities are calculated in sequence and in the last step, we obtain , =

= which shows the totally uncorrelated contribution of parameterxn to the

variance off(x). The marginal sensitivity, = = is the total sensitivity

index of parametern without the influence of correlations with any other parameter [28]. While the

intermediate sensitivity indices in the middle of the sequence of decorrelation depend on the order of

the selection of parameters, the final uncorrelated sensitivity indices and are

independent of this order.
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For systems with independent parameters, the importance of a parameter can be simply

determined by a single total sensitivity measure. For correlated systems however, the picture is not

so simple since both the correlated and uncorrelated total sensitivity indices

are available, as well as marginal sensitivity indices which represent partial correlations.

In the present work, for simplicity we restrict the discussion to the correlated and

uncorrelated total sensitivity indices. If both of these indices are close zero, then the investigated

parameter is of low importance. If the correlated index is large (e.g. close to

1), this means that parameterxi is important. However, if its uncorrelated total index is

small, then its influence on the output variance involves strong correlations with other parameters.

Finally, if a parameter has a large uncorrelated index, then it strongly contributes to output variance,

without correlated effects with the other parameters. Within the context of individual parameter

tuning, really this is only feasible if this latter condition is satisfiedfor a given set of target outputs.

3. The investigated system

In the present work the hydrogen combustion mechanism of Vargaet al. [33] was investigated,

which was published along with the covariance and correlation matrices of the determined

parameters (reproduced here in Supplemental Material). These parameters are 30 Arrhenius

parameters of 11 elementary reactions and the third body collision efficiencies of Ar, H2 and H2O for

reaction H+O2+M=HO2+M. These are all parameters that were determined to be important using the

following procedure. Parameters having large local sensitivity coefficients at any of the experimental

conditions considered were identified, the prior uncertainty limits of these parameters were

determined based on direct measurements and theoretical calculations, and in a trial optimization the

importance of the parameters was checked by calculating the posterior uncertainty limits. Those
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parameters were accepted as important for which the posterior uncertainty limits were narrower

compared to the prior uncertainty limits. The covariance matrix shows that there is always a strong

correlation among Arrhenius parameters of the same elementary reactions, as expected from the

structure of the Arrhenius equation [34]. In accordance with the large number of indirect

experimental data used, these rate parameters could be determined with low uncertainty, and also a

strong correlation among all the determined parameters was identified. This is expected, as the

simulation results at the conditions of indirect experiments can depend strongly on multiple

parameter values and thus changing different parameters can have similar effects on the simulated

results. It is important to note that from a mathematical point of view, all correlations, arising

between Arrhenius parameters of the same or different reactions, can be handled identically. We

assume that the covariance matrix belongs to a multivariate normal distribution, truncated at the

upper and lower limits of the rate coefficients.

The mechanism was investigated near the first, second and third explosion limits of the

stoichiometric hydrogenair system. Diffusion and loss of species to the reactor walls is important in

the phenomena of explosion limits, therefore species loss reactions were added to the model. We

adopted the approach of Wang and Law [35], who modelled the wall-loss of species H, O, OH, HO2

and H2O2 as first order removal reactions, allowing spatially homogeneous simulations of ignition

delays. The other species have low sticking coefficients and therefore the corresponding rate

coefficients are nearly zero. The wall-loss rate coefficients had temperature dependencek = A (T/K)n,

and parametersA and n were calculated for a 7.4 cm diameter, spherical quartz reactor using the

kinetic theory of gases [35]. The rate parameters are given in Table1. As no information was

provided for the uncertainty of the wall-loss reactions, and we could not find well-characterised

experiments that would reveal the interaction of wall and homogeneous phase rate parameters, a

temperature independent uncertainty of 20% (3(lnA) = 0.2) was assumed, and these parameters
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were assumed to be uncorrelated with all other rate parameters.No uncertainty was assumed for the

n = 0.5 parameters, as these parameters are derived from the kinetic theory of gases.
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Table 1. Rate parameters used for the
modelling of the loss of species to the reactor
walls

Reaction A / s 1 n
H 2.95 0.5
O 0.737 0.5
OH 0.715 0.5
HO2 1.54 0.5
H2O2 0.152 0.5

Figure 1. Simulated ignition delay times as a function of the pressure using the original mechanism
of Varga et al. [33] (dotted line) and using the same mechanism with wall reactions added (black
solid line). The red vertical dashed lines mark the five selected pressure values where the uncertainty
analyses were carried out.
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Homogeneous, isochoric, adiabatic simulations were carried out to calculate the ignition delays

of a stoichiometric hydrogen-air mixture at initial temperatures of 800 K, at various pressures. The

ignition delays were defined as the difference between the zero time of the simulations and the

maximum of time derivative of the pressure. In Fig. 1, the calculated ignition delays are plotted as a

function of pressure. The figure shows that without wall reactions there are no explosion limits, but

by adding the wall reactions clear and sharp explosion limits appear. Five initial pressure values were

selected (0.005, 0.1, 0.4, 1 and 5 atm) belonging to just below and above the three explosion limits.

These five cases will be investigated in detail. Such an investigation was not carried out below the

first explosion limit, as the system transitioned extremely sharply into the non-reactive regime, and

its behavior could not be characterized through ignition delays.

Samples of sizes between 10,000 and 250,000 were generated in order to test the convergence of

the computed sensitivity indices. Since good convergence (approximately 10 5 accuracy in the

sensitivity indices) was achieved between sample sizes of 100,000 and 250,000,the results presented

are based on a 250,000-element sample which was generated according to the joint pdf of the

parameters. Simulations were carried out at each condition to calculate the respective ignition delays.

The method described above was used to determine the correlated and uncorrelated sensitivity

indices at these conditions. The model inputs were the important rate parameters of the Vargaet al.

[33] mechanism and the five Arrhenius parameters of the wall-loss reactions. The sensitivity indices

were calculated with respect to the=ln A, n, and = E/R parameters, and the model output was the

logarithm of the calculated ignition delay time.

4. Results and Discussion

The correlated and uncorrelated sensitivity indices were calculated at the five conditions. The

correlated sensitivity indices showed very similar patterns in each investigated case for the chemical
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reactions. As an example, the calculated correlated sensitivity indices at 5 atm are given in Fig. 2.

The high correlations between parameters mean, that the effect of changing one parameter leads to

all other correlated parameters being changed. The similarity of the correlated sensitivity indices

indicates that the rate parameters act as a correlated group rather than through isolated individual

effects. This also suggests that the predictive power of the model could be improved by decreasing

the uncertainty of almost any of the rate parameters, if this information is fed back to the process of

mechanism optimization based on large numbers of direct and indirect measurements and the final

correlation structure remains similar. Conversely, it suggests that the tuning of individual parameters

to new sets of data in isolation should not be carried out. The reason is that whilst the description of a

new data set could be perhaps improved by changing the rate parameters which are important only

for the conditions of the corresponding experiment, this might worsen the reproduction of the other

experimental data. Improvement of the rate parameters of a mechanism should be based on

considering the new and the previously existing data together. This might result in the change of

many correlated rate parameters.

Figure 2. Correlated sensitivity indices at 5 atm, for each parameter. The black bars show the
correlated first-order sensitivity indices.
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Figure 3. Uncorrelated sensitivity indices at the five investigated conditions, for each parameter. Full
black bars show the uncorrelated first-order sensitivity indices, and hollow bars show the further
contributions from higher-order terms. For reaction H+O2+M=HO2+M the parameters marked with
species names refer to the respective third body collision efficiencies, and for the wall-loss reactions
they refer to the species the reaction depletes.

This latter point is further demonstrated in Fig. 3 which shows the uncorrelated sensitivity

indices, highlighting the marginal individual influence of parameters on the model variance. The

uncorrelated indices are generally small for the none wall-loss rate parameters. This is due to the fact
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that the uncorrelated indices take into account only the contribution that comes from the individual

uncertainty of the respective model parameter, without its effect through correlations. Therefore a

much more limited variation in the parameter values is covered by the uncorrelated behavior than the

by the whole distribution, leading to the relatively small contributions to the overall model output

variance.

Despite the small values of the uncorrelated indices, they can be utilized to identify the rate

parameters that are chemically important at the respective conditions. Above the first explosion limit

(case 1,p0= 0.005 atm; short ignition delay) the wall-loss of H and O radicals, and the reaction

H+O2=OH+O have individual effects on the simulated ignition delays. Below the second explosion

limit (case 2,p0= 0.1 atm; short ignition delay) the ignition delay time is determined by the rate

parameters of chain branching reactions H+O2=OH+O and O+H2=H+OH, and chain terminating

reactions H+HO2= H2+O2, 2OH+M=H2O2+M and H wall. Due to the low reactivity of HO2

compared to H and O, reactions H+O2+M=HO2+M and 2OH=H+HO2 also act as important chain

termination reactions. All these reactions are well known important elementary steps between the 1st

and 2nd ignition limits.

Going above the second explosion limit (case 3,p0= 0.4 atm; long ignition delay) the sensitivity

pattern changes dramatically. Reactions H+O2=OH+O and H+O2+M=HO2+M are still very

important, and a new important reaction is H2O2+H=H2+HO2. Also wall losses of HO2 and H2O2

become important. The sensitivity pattern is similar just below the third explosion limit (case 4,p0= 1

atm; long ignition delay).

Above the third ignition limit (case 5,p0= 5 atm; short ignition delay) the previously important

reactions H+O2=OH+O, O+H2=H+OH and H+O2+M=HO2+M become negligible. The important

reactions are H2O2+O2=2HO2. H2+HO2=H2O2+H, H2O2+M=2OH+M. Summing up these elementary

reaction steps (taking the second reaction twice) provides gross reaction 2H2+O2=2H+2OH, which
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produces highly reactive intermediates. The important wall reactions become the loss reactions of

HO2 and H2O2.

The importance of homogeneous gas phase and heterogeneous wall-loss reaction determined by

the uncorrelated sensitivity indices are in accordance with the analysis of Wang and Law [35]. They

emphasized the importance of wall-loss reactions near the third explosion limit, which was

confirmed here. A definite advantage of our approach is that the reaction importance determined this

way belongs to the whole domain of uncertainty of the rate parameters, not only their nominal

values.

5. Conclusions

Several authors have developed methods to carry out global sensitivity analysis of models with

correlated parameters [27-29]. These articles contained descriptionsof methodologies, with

demonstration on simple, few-parameter, mainly artificial models. Shannonet al. [36] carried out a

global sensitivity analysis of a master equation model using a special approach based on ordering of

the covariance matrix. This however is the first article in which a real correlated multi-parameter

model is investigated by fully general global sensitivity approachwhich was based on coupling the

use of the Rosenblatt transformation [28] with an optimized RS-HDMR method [25]. The new

method was applied to investigate the importance of chemical reactions and wall-loss processes near

the explosion limits of hydrogen-air combustion system on the calculated ignition delay times.

The results show that the correlated sensitivity indices dominate the output variance for all

parameters except the wall-loss rates. These indices are well applicable to assess how the uncertainty

of the model results can be decreased and suggest that further experimental data should be

incorporated within an optimization approach since the parameters do not act in isolation on the

predicted outputs. These indices however, do not carry information on the individual importance of

parameters. On the contrary, the uncorrelated sensitivity indices can be used to identify which
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parameters have individual effects on the model outputs. However, in the present case their small

values indicate that the overwhelming majority of the model variance results from the correlated

effects between parameters. The methodology described here is expected to become important in the

near future, when information on the correlation of the uncertainty of rate parameters will be

available for many combustion systems from mechanism optimization methods.
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List of Figure Captions

Figure 1. Simulated ignition delay times as a function of the pressure using the original mechanism
of Varga et al. [33] (dashed line) and using the same mechanism with wall reactions added (black
solid line). The red vertical dashed lines mark the five selected pressure values where the uncertainty
analyses were carried out.

Figure 2. Correlated sensitivity indices at 5 atm, for each parameter. The black bars show the
correlated first-order sensitivity indices.

Figure 3. Uncorrelated sensitivity indices at the five investigated conditions, for each parameter. Full
black bars show the uncorrelated first-order sensitivity indices, and hollow bars show the further
contributions from higher-order terms. For reaction H+O2+M=HO2+M the parameters marked with
species names refer to the respective third body collision efficiencies, and for the wall-loss reactions
they refer to the species the reaction depletes.
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